7,978 research outputs found

    The VGAM Package for Categorical Data Analysis

    Get PDF
    Classical categorical regression models such as the multinomial logit and proportional odds models are shown to be readily handled by the vector generalized linear and additive model (VGLM/VGAM) framework. Additionally, there are natural extensions, such as reduced-rank VGLMs for dimension reduction, and allowing covariates that have values specific to each linear/additive predictor, e.g., for consumer choice modeling. This article describes some of the framework behind the VGAM R package, its usage and implementation details.

    Technique for producing wind-tunnel heat-transfer models

    Get PDF
    Inexpensive thin skinned wind tunnel models with thermocouples on certain surface areas were fabricated. Thermocouples were designed for measuring aerodynamic heat transfer in wind tunnels

    PROPOSED HEAD-END TREATMENTS OF PUREX-1WW WASTE FOR FISSION PRODUCT RECOVERY BY ION EXCHANGE

    Full text link

    First-passage theory of exciton population loss in single-walled carbon nanotubes reveals micron-scale intrinsic diffusion lengths

    Full text link
    One-dimensional crystals have long range translational invariance which manifests as long exciton diffusion lengths, but such intrinsic properties are often obscured by environmental perturbations. We use a first-passage approach to model single-walled carbon nanotube (SWCNT) exciton dynamics (including exciton-exciton annihilation and end effects) and compare it to results from both continuous-wave and multi-pulse ultrafast excitation experiments to extract intrinsic SWCNT properties. Excitons in suspended SWCNTs experience macroscopic diffusion lengths, on the order of the SWCNT length, (1.3-4.7 um) in sharp contrast to encapsulated samples. For these pristine samples, our model reveals intrinsic lifetimes (350-750 ps), diffusion constants (130-350 cm^2/s), and absorption cross-sections (2.1-3.6 X 10^-17 cm^2/atom) among the highest previously reported.and diffusion lengths for SWCNTs.Comment: 6 pages, 3 figure

    A high order compact scheme for hypersonic aerothermodynamics

    Get PDF
    A novel high order compact scheme for solving the compressible Navier-Stokes equations has been developed. The scheme is an extension of a method originally proposed for solving the Euler equations, and combines several techniques for the solution of compressible flowfields, such as upwinding, limiting and flux vector splitting, with the excellent properties of high order compact schemes. Extending the method to the Navier-Stokes equations is achieved via a Kinetic Flux Vector Splitting technique, which represents an unusual and attractive way to include viscous effects. This approach offers a more accurate and less computationally expensive technique than discretizations based on more conventional operator splitting. The Euler solver has been validated against several inviscid test cases, and results for several viscous test cases are also presented. The results confirm that the method is stable, accurate and has excellent shock-capturing capabilities for both viscous and inviscid flows

    On well-balanced schemes for non-equilibrium flow with stiff source terms

    Get PDF
    In the modeling of unsteady reactive problems, the interaction of turbulence with finiterate chemistry introduces a wide range of space and time scales, leading to additional numerical difficulties. A main difficulty stems from the fact that most numerical algorithms used in reacting flows were originally designed to solve non-reacting fluids. As a result, spatial stiffness due to reacting source terms and turbulence/chemistry interaction are major stumbling blocks to numerical algorithm development. One of the important numerical issues is the proper numerical treatment of a system of highly coupled stiff non-linear source terms, which will result in possible spurious steady state numerical solutions (see Lafon & Yee 1996). It was shown in LeVeque (1998) that a well-balanced scheme, which can preserve the steady state solution exactly, may solve this spurious numerical behavior. The goal of this work is to consider a simple 1-D model with one temperature and three species as studied by Gnoffo, Gupta & Shinn (1989) and to study the well-balanced property of various popular linear and non-linear numerical schemes in the literature. The different behaviors of those numerical schemes in preserving steady states and in resolving small perturbations of such states will be shown

    Assessments of Rhagoletis pomonella (Diptera: Tephritidae) infestation of temperate, tropical, and subtropical fruit in the field and laboratory in Washington State, U.S.

    Get PDF
    To understand the likelihood of any risk of apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae), to domestic and foreign fruit export markets, knowledge of its host plant use is needed. Here, assessments of R. pomonella infestation of temperate, tropical, and subtropical fruit were made in the field and laboratory in Washington State, U.S. In field surveys in 2010– 2017 in central Washington, 6.7% of Crataegus douglasii and 6.1% of feral Malus domestica trees (both temperate plants) in fly-managed (insecticide- treated) sites were infested by larvae. In unmanaged sites, 54.1% of C. douglasii and 16.3% of feral M. domestica tree samples were infested. In field surveys of 36 types of temperate fruit in 2015–2018 in southwestern Washington, new host records for R. pomonella were one species and three hybrids of Crataegus, as well as Prunus domestica subsp. syriaca – all of which produced adult flies. In addition, Prunus avium was a new host record for Washington State, producing one adult fly. Prunus armeniaca x Prunus salicina and Vitis vinifera exposed to flies in the laboratory produced adult flies. Of 37 types of tropical and subtropical fruit hung in fly-infested M. domestica trees in southwestern Washington, only Mangifera indica produced puparia. Out of nine tropical and subtropical fruit types in laboratory tests, Musa acuminata x balbisiana produced puparia but no adult flies. Results provide a basis for further research and hypotheses concerning host use by R. pomonella and its potential impact on protecting both U.S. and tropical and subtropical fruit markets

    Micro and macro approaches to tough polymers for composites

    Get PDF
    The progress to date on the development of techniques to toughen continuous thermoplastic composites is summarized. The work, using the approach of toughening the polycarbonate composite matrix with rubber particles, has focused on determining the differences between Double Cantilever Beam (DCB) samples molded inhouse and those molded by NASA. Specifically, an effort was made to account for the differences in fracture toughness observed between the various specimens. In addition, preliminary results of tensile dilatometry tests are described; these tests suggest that processes leading to increased volume and enhanced shear banding are occurring within the rubber toughened system. The results of the effort using another approach, the preparation of random block copolycarbonates, are presented. The synthetic route to these species was modified so that higher molecular weights of these materials can be obtained. In addition, an attempt is being made to determine the exact block length or the number of functional groups in the oligomers since this procedure also should lead to high molecular weight materials. Dynamic mechanical analysis of the copolymer prepared so far indicates that the scale of cooperative molecular motion of the PBA polycarbonate at sub-Tg temperatures is larger than five monomer units. Efforts to find a suitable rubber-toughener for a thermoset system (bismaleimides) is also discussed. Included is a description of the various tougheners intended for use or currently being used
    corecore