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On well-balanced schemes for non-equilibrium
flow with stiff source terms

By W. Wang, C.-W. Shu†, H. C. Yee‡ AND B. Sjögreen¶

1. Motivation and objectives

In the modeling of unsteady reactive problems, the interaction of turbulence with finite-
rate chemistry introduces a wide range of space and time scales, leading to additional
numerical difficulties. A main difficulty stems from the fact that most numerical algo-
rithms used in reacting flows were originally designed to solve non-reacting fluids. As a
result, spatial stiffness due to reacting source terms and turbulence/chemistry interaction
are major stumbling blocks to numerical algorithm development. One of the important
numerical issues is the proper numerical treatment of a system of highly coupled stiff
non-linear source terms, which will result in possible spurious steady state numerical
solutions (see Lafon & Yee 1996).

It was shown in LeVeque (1998) that a well-balanced scheme, which can preserve the
steady state solution exactly, may solve this spurious numerical behavior. The goal of
this work is to consider a simple 1-D model with one temperature and three species as
studied by Gnoffo, Gupta & Shinn (1989) and to study the well-balanced property of
various popular linear and non-linear numerical schemes in the literature. The different
behaviors of those numerical schemes in preserving steady states and in resolving small
perturbations of such states will be shown.

2. Numerical methods

Assuming no conduction or radiation, the considered non-equilibrium models are a
system of hyperbolic conservation laws with source terms, denoted by

Ut + F (U)x = S(U). (2.1)

Here U , F (U) and S(U) are column vectors with m = ns + 2 components where ns is
the number of species.

U = (ρ1, . . . , ρns, ρv, ρe0)
T , (2.2)

F (U) = (ρ1v, . . . , ρnsv, ρv
2 + p, ρve0 + vp)T , (2.3)

S(U) = (s1, . . . , sns, 0, 0)T , (2.4)

where ρs is the density of species s. The total density is defined as ρ =
∑ns

s=1 ρs and the
pressure p is given by

p = RT

ns
∑

s=1

ρs

Ms
, (2.5)
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where Ms is the molar mass of species s. The temperature T can be found from the total
energy

ρe0 =

ns
∑

s=1

ρsei,s(T ) +

ns
∑

s=1

ρsh
0
s +

1

2
ρv2, (2.6)

where ei,s = nsRT/2Ms is the internal energy with ns = 3 and 5 for monoatomic species
and diatomic species, respectively, and the enthalpies h0

s are constants.
Let the Jacobian matrix A = ∂F/∂U with (a1, . . . , am) being the eigenvalues of A,

(a1, . . . , am) = (v, . . . , v, v + a, v − a), (2.7)

where a is the so-called “frozen speed of sound”. Denote R as the matrix whose columns
are eigenvectors of A. Let al

j+1/2, Rj+1/2 denote the quantities al and R evaluated at
some symmetric average of Uj and Uj+1. Define

αj+1/2 = R−1
j+1/2(Uj+1 − Uj) (2.8)

as the difference of the characteristic variables in the locally x direction.
In this report, the considered schemes are the fifth-order finite difference WENO

schemes (Jiang & Shu 1989), second-order Semi-implicit Predictor-Corrector TVD (P-C
TVD) (Yee & Shinn 1989; LeVeque & Yee 1990), second-order symmetric (Yee 1987) and
Harten and Yee (Yee & Harten 1987; Yee 1989) TVD scheme and second-order MUSCL
scheme (Yee 1989). Except for the P-C TVD, a third-order Runge-Kutta method is used
for time discretization. When the source term is stiff, we apply the pointwise implicit
additive Runge-Kutta (ARK) method (Kennedy & Carpenter 2003) instead.

3. Well-balanced properties and linear schemes

A well-balanced scheme refers to a scheme that preserves exactly specific steady state
solutions of the governing equations.

We will first consider the 1-D scalar balance law, i.e., the steady state solution u
satisfying

f(u, x)x = g(u, x). (3.1)

We define a linear finite difference operator D to be one satisfying D(af1 + bf2) =
aD(f1) + bD(f2) for constants a, b and arbitrary grid functions f1 and f2. A scheme for
Eq. (2.1) is said to be a linear scheme if all the spatial derivatives are approximated by
linear finite difference operators.

Xing & Shu (2006) proved that under the following two assumptions regarding Eq.
(2.1) and the steady state solution of Eq. (3.1), linear schemes with certain restrictions
are well-balanced schemes. Furthermore, high-order non-linear WENO schemes can be
adapted to become well-balanced schemes.

Assumption 1. The considered steady state preserving solution u of Eq. (3.1) satisfies

r(u, x) = constant, (3.2)

for a known function r(u, x).

Assumption 2. The source term g(u,x) can be decomposed as

g(u, x) =
∑

i

si(r(u, x))t
′

i(x) (3.3)



Well-balanced schemes 393

for a finite number of functions si and ti.

A linear scheme applied to Eq. (3.1) would have a truncation error

D(f(u, x)) −
∑

i

si(r(u, x))Di(ti(x)), (3.4)

where D and Di are linear finite-difference operators used to approximate the spatial
derivatives. One restriction to the linear schemes is needed:

Di = D for all i (3.5)

when applied to the steady state solution. For such linear schemes we have

Proposition 1. For the balance law Eq. (2.1) with source term Eq. (3.3), linear
schemes with restrictions Eq. (3.5) for the steady state solutions satisfying (3.2) are
well-balanced schemes.

Proof. For the steady state solutions satisfying Eq. (3.2), the truncation error for such
linear schemes with Eq. (3.5) reduces to

D(f(u, x)) −
∑

i

si(r(u, x))D(ti(x))

= D

(

f(u, x) −
∑

i

si(r(u, x))ti(x)

)

,

where the linearity of D and the fact that r(u, x) is constant for the steady state solution
u are used. Note that for such steady state solution u, f(u, x) −

∑

i si(r(u, x))ti(x) is a
constant, because

d

dx

(

f(u, x) −
∑

i

si(r(u, x))ti(x)

)

= f(u, x)x −
∑

i

si(r(u, x))t
′

i(x)

= f(u, x)x − g(u, x) = 0.

Thus, the truncation error is zero for any consistent finite-difference operator D. There-
fore, linear schemes with Eq. (3.5) preserve these steady state solutions exactly.

We now consider high-order non-linear finite-difference WENO schemes in which the
non-linearity comes from the non-linear weights and the smooth indicators. We follow
the procedures described in Xing & Shu (2005, 2006). We first consider the situation
without flux splitting (e.g., the WENO-Roe scheme in Jiang & Shu 1996). The WENO
approximation to fx can be written as

fx|x=xj
≈

r
∑

k=−r

ckdk+j = Df (f)j ,

where r = 3 for the fifth-order WENO approximation and the coefficients ck depend non-
linearly on the smoothness indicators involving the grid function fj−r, . . . , fj+r. The key
idea now is to use the finite difference operator Df , and apply it to approximate t′i(x) in
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the source terms, i.e.,

t′i(xj) ≈
r
∑

k=−r

ckti(xk+j) = Df (ti(x))j .

Clearly, the finite-difference operatorDf , obtained from the high-order WENO procedure
is a high-order linear approximation to the first derivative for any grid function. There-
fore, the proof for Proposition 1 will be satisfied and we conclude that the high-order
finite difference WENO scheme as stated above, without the flux splitting, and with the
special handling of the source terms described above, maintains exactly the steady state.

The framework described for the scalar case can be easily applied to systems. For a
system with m equations, we would have m relationships in the form of Eq. (3.2):

rl(U, x) = constant, l = 1, . . . ,m. (3.6)

In Assumption 2, si could be arbitrary functions of rl(U, x), and si and ti can be different
for different components of the source vector. The characteristic decomposition procedure
does not alter the argument presented for the scalar case (Xing & Shu 2005).

In this work, we first considered a three-species case (ρ1 = O, ρ2 = O2, ρ3 = N2) with
the following special steady state preserving case































(ρ1)t = 0
(ρ2)t = 0
(ρ3)t = 0
v = 0
p = constant
S(U) = 0

. (3.7)

The source term S(U) has the form

S(U) = (2M1ω,−M2ω, 0, 0, 0), (3.8)

where ω is the reaction progress variable

ω = (kf (T )
ρ2

M2
− kb(T )(

ρ1

M1
)2)(

ρ1

M1
+

ρ2

M2
+

ρ3

M3
). (3.9)

The forward and backward reaction rates kf and kb are functions of temperature

kf = CT−2e−E/T , (3.10)

kb = kf/keq, (3.11)

where

keq = exp(br1 + br2 log z + br3z + br4z
2 + br5z

3), z = 10000/T. (3.12)

Thus

r = S(U) = constant. (3.13)

Note that x and Ux do not appear explicitly in S(U) which is much simpler because all
the t′i(x) = 1. Thus any finite-difference operators Di mentioned in Eq. (3.4) are absent.
Therefore, as described above, linear schemes and WENO-Roe schemes applied to the
steady state solution Eq. (3.7) for the problem Eq. (2.1) are well-balanced and maintain
the original high-order accuracy.

Next, we will investigate the well-balanced properties of various TVD schemes men-
tioned in Sec. 2. The semi-implicit Predictor-Corrector TVD scheme (Yee & Shinn 1989;
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LeVeque & Yee 1990) for the Eq. (2.1) has the form
[

1 −
1

2
∆tS′(Un

j )

]

∆U
(1)
j = −

∆t

∆x

(

Fn
j − Fn

j−1

)

+ ∆tSn
j (3.14)

U
(1)
j = ∆U

(1)
j + Un

j (3.15)

[

1 −
1

2
∆tS′(Un

j )

]

∆U
(2)
j = −

∆t

∆x

(

F
(1)
j+1 − F

(1)
j

)

+ ∆tSn
j (3.16)

U
(2)
j = ∆U

(2)
j + U

(1)
j (3.17)

Un+1
j = Un

j +
1

2

(

∆U
(1)
j + ∆U

(2)
j

)

+
[

R
(2)
j+1/2Φ

(2)
j+1/2 −R

(2)
j−1/2Φ

(2)
j−1/2

]

. (3.18)

The third step Eq. (3.18) acts as a non-linear filter step (Yee & Sjögreen 2007). The
elements of the vector Φj+1/2, denoted by φl

j+1/2 with l = 1, . . .m are

φl
j+1/2 =

1

2

[

ψ(νl
j+1/2) − (νl

j+1/2)
2
] (

αl
j+1/2 − Q̂l

j+1/2

)

, (3.19)

where

νl
j+1/2 =

∆t

∆x
al

j+1/2. (3.20)

The function ψ(z) is an entropy correction to |z|

ψ(z) =

{

|z| |z| ≥ δ1
(z2 + δ21)/2δ1 |z| < δ1

, (3.21)

where δ1 is the entropy fix parameter. See Yee et al. (1991) for a discussion. Q̂l
j+1/2 is

an unbiased limiter function which can be

Q̂l
j+1/2 = minmod(αl

j−1/2, α
l
j+1/2) + minmod(αl

j+1/2, α
l
j+3/2) − αl

j+1/2 (3.22)

with

minmod(a, b) = sgn(a) · max{0,min[|a|, b sgn(a)]}. (3.23)

In this study, only diffusive limiters are considered. If we consider a “smooth” limiter,
we replace the minmod function minmod(a, b) by the following smooth function

g(a, b) = [a(b2 + δ2) + b(a2 + δ2)]/(a
2 + b2 + 2δ2), (3.24)

where δ2 is a small parameter between 10−7 to 10−5. The predictor step Eq. (3.14) and
the corrector step Eq. (3.16) are linear. However, the last filter step is not linear. We will
explore this further in the next section.

The numerical flux F̂j+1/2 for the second-order symmetric TVD scheme (Yee 1987) is
described as

F̂j+1/2 =
1

2
(Fj + Fj+1 +Rj+1/2Φj+1/2), (3.25)

where

φl
j+1/2 = −ψ(al

j+1/2)(α
l
j+1/2 − Q̂l

j+1/2). (3.26)

Similar to P-C TVD, the non-linearity of the TVD scheme comes from the Q̂l
j+1/2 part

of the numerical flux Eq. (3.26).
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The second-order Harten-Yee scheme (Yee & Harten 1987; Yee 1989) has the same
form as Eq. (3.25) with

φl
j+1/2 =

1

2
ψ(al

j+1/2)(g
l
j + gl

j+1) − ψ(al
j+1/2 + γl

j+1/2)α
l
j+1/2, (3.27)

where

γl
j+1/2 =

1

2
ψ(al

j+1/2)

{

(gl
j+1 − gl

j)/α
l
j+1/2 αl

j+1/2 6= 0

0 αl
j+1/2 = 0

. (3.28)

Examples of the limiter function gl
j can be

gl
j = minmod(αl

j−1/2, α
l
j+1/2) (3.29)

or the smooth Eq. (3.24).
Unlike P-C TVD and the TVD schemes, the second-order MUSCL scheme (Yee 1989)

is fully non-linear. The numerical flux for a MUSCL approach is expressed as

F̂j+1/2 =
1

2
(F (UR

j+1/2) + F (UL
j+1/2) − R̂j+1/2Φ̂j+1/2) (3.30)

with

UR
j+1/2 = Uj+1 −

1

2
∆j+1 (3.31)

and

UL
j+1/2 = Uj +

1

2
∆j . (3.32)

The limiters can be

∆j = minmod(Uj+1 − Uj , Uj − Uj−1) (3.33)

or the smooth Eq. (3.24). We can see that UR
j+1/2 and UL

j+1/2 bring non-linearity into

every term of the flux Eq. (3.30).

4. Numerical study

This section performs a numerical study on two test problems to numerically verify
whether the considered schemes are well-balanced and to study the associated behavior
of these schemes.

4.1. Well-balanced property

First we numerically verify whether the considered schemes are well-balanced for the
special stationary case Eq. (3.7) with

ρO = 4 × 10−5(1 + 0.2 sin(5πx)), p = 105, v = 0, (4.1)

with ρO2
and ρN2

are obtained by the equilibrium state condition. This set of steady
state solutions is of the form Eq. (3.7). We choose Eq. (4.1) as the initial condition, and
the results are obtained by time-accurate time-marching to the steady state.

The error and accuracy are listed in Tables 1 and 2. We can see that WENO-Roe, P-C
TVD and TVD schemes are well-balanced schemes because they show machine round-off
errors. However, WENO-LF and MUSCL schemes are not well-balanced. We remark that
the super convergence of the results for WENO-LF and MUSCL is due to the simple form
of the steady state solutions.

Numerically we have shown that P-C TVD and TVD schemes are well-balanced for
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N error error order

WENO-Roe WENO-LF
40 5.64E-19 2.35E-09 –
80 4.73E-19 2.28E-11 6.69
160 6.46E-19 2.61E-13 6.45
320 9.58E-19 2.03E-15 7.00

Table 1. L1 errors for ρO by WENO5 with N uniform grid points at t = 0.01.

N error error error error order

minmod limiter P-C TVD symmetric TVD Harten-Yee TVD MUSCL
40 9.09E-19 2.71E-21 1.02E-21 4.09E-09 –
80 1.05E-18 1.19E-21 3.39E-22 4.23E-10 3.27
160 1.20E-18 1.19E-21 1.36E-21 2.65E-11 4.00
320 1.38E-18 8.05E-22 5.51E-22 1.58E-12 4.07

smooth limiter
40 6.95E-19 4.74E-21 2.37E-21 4.16E-08 –
80 8.33E-19 4.07E-21 1.69E-22 1.81E-09 4.52
160 8.70E-19 1.20E-19 1.36E-20 3.39E-11 5.73
320 1.05E-18 4.19E-21 7.62E-22 2.02E-12 4.07

Table 2. L1 errors for ρO by TVD schemes with minmod/smooth limiter with N uniform grid
points at t = 0.01, δ1 = 0.

the steady state solution Eq. (3.7). Even though the non-linear term RΦ in the P-C
TVD and TVD schemes is non-linear, we will explain why this part will not destroy the
well-balanced property in these schemes. Since they have similar formulas, we will use
the symmetric TVD scheme as the example.

We claim that the function Φ = 0 for the steady state problem Eq. (3.7). This is due to
the fact that v is equal to zero in the steady state solution. By recalling the eigenvalue a
in Eq. (2.7), it is easy to see that only the last two entries ans+1 and ans+2 are non-zero.
The function ψ is in Eq. (3.21). If we set δ1 = 0, then we have ψ(al) = |al|. Therefore
φ1 . . . φns are always zeros. Note that for any δ1 > 0, P-C TVD and TVD schemes are
not well-balanced.

Next, let us consider the factor αl
j+1/2−Q̂

l
j+1/2 in Eq. (3.19) or Eq. (3.26), where αl

j+1/2

is given in Eq. (2.8). The resulting equations are obtained directly from the system

αns+1 + αns+2 = ∆p/a2, (4.2)

αns+1 − αns+2 = (v∆ρ − ∆(ρv))/a, (4.3)
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where α, v and the frozen speed of sound a are evaluated at the Roe average at j + 1/2,
and ∆p = pj+1 − pj, etc. Since the pressure p is constant and velocity v is zero in the
steady state solution, αns+1 and αns+2 are exactly zeros. Hence, the non-linear term RΦ
is zero and then the P-C TVD and TVD schemes become linear schemes in the steady
state solution Eq. (3.7). By Proposition 1, they are well-balanced schemes.

4.2. Small perturbation

In this section, we will demonstrate the advantages of the well-balanced schemes through
the problem of a small perturbation over a stationary state.

The same stationary state solution Eq. (4.1) is considered, but with a small perturba-
tion ǫ to the density is added to ρO, i.e.,

ρ′O = ρO + ǫ.

The other quantities are kept the same. At t = 0.5, we plot the differences between the
perturbed solutions and the steady state solutions. The reference results are computed
by WENO-Roe with 600 points and are considered to be “exact”.

We first compare the results between WENO-Roe and WENO-LF. We add a ǫ =
10−10 × sin(πx) to the density ρO. To improve the viewing, a factor of 1010 is added
to all the figures. The solution is depicted in Fig. 1(a). The well-balanced property of
WENO-Roe clearly demonstrated with only 100 points to resolve such small perturba-
tion. Although the solution indicates two small bumps in the density plot, these bumps
disappear when the mesh is refined to 200 points.

Unlike the well-behaved WENO-Roe, the results by WENO-LF, which is not a well-
balanced scheme, behave in a very oscillatory fashion using 100 grid points (see Fig. 1(b)).
This is due to the fact that the well-balanced schemes can resolve the steady state solution
exactly, hence they are able to resolve a very small perturbation. However, a scheme
that is not well-balanced can only resolve the solution when the mesh is refined enough
such that the truncation error of the scheme is much smaller than the perturbation.
For example, when the mesh is refined to 300 points for WENO-LF (see Fig. 1(b)), the
oscillations disappear and the solution is resolved.

Next, the numerical results by P-C TVD, TVD and MUSCL schemes are discussed,
respectively. The minmod limiter and the corresponding smooth limiter Eq. (3.24) are
considered. As indicated in Sec. 4.1, P-C TVD and TVD schemes produce machine round-
off errors in computing the steady state solution, and analysis also shows that they are
well-balanced schemes. Comparing these two schemes with the MUSCL scheme, which
is not well-balanced, for the perturbation case, they perform better than MUSCL. For
example, the MUSCL scheme has stronger oscillations than the P-C TVD and TVD
schemes for a mesh N = 300 (see Figs. 2, 3, 4 and 5).

Note that in Figs. 2(a), 3(a) and 4(a), results for P-C TVD and TVD schemes with
minmod limiter show some oscillations, and these oscillations do not disappear in the
mesh refinement until the mesh is extremely fine. This might be caused by the lack of
smoothness of the minmod limiter, which is continuous but not differentiable. When the
minmod limiter is replaced by a smooth limiter, the solutions become smooth.

5. Future plans

The current results serve as a preliminary study on well-balanced schemes for non-
equilibrium flow with source terms. Similar numerical investigation on a more realistic
problem, such as a small perturbation of temperature over an equilibrium state, is planned
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Figure 1. Results by WENO5: ǫ = 10−10 × sin(πx). (a) left: WENO-Roe (WENO-Roe 100:
dash-dot; WENO-Roe 200: dotted with symbols; WENO-Roe 600: solid); (b) right: WENO-LF
(WENO-LF 100: dash-dot; WENO-LF 300: dotted with symbols; WENO-Roe 600: solid).
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Figure 2. Results by semi-implicit Predictor-Corrector TVD : ǫ = 10−10 × sin(πx), δ1 = 0. (a)
left: with minmod limiter; (b) right: with smooth limiter (P-C TVD 300: dash-dot; WENO-Roe
600: solid).

in the future. The same approach will be applied to analyze the well-balanced properties
for the model with larger number of species and a more general type of steady state
problem with non-zero velocity. In this case, the source terms are balanced by the flux
gradients. Special attention will be paid to general reactive flows for which perturbation
from equilibrium states could be small in some parts of the domain and large in other
parts.
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Figure 3. Results by symmetric TVD: ǫ = 10−10 × sin(πx), δ1 = 0. (a) left: with minmod
limiter; (b) right: with smooth limiter (symmetric TVD 300: dash-dot; WENO-Roe 600: solid).
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Figure 4. Results by Harten-Yee TVD: ǫ = 10−10 × sin(πx), δ1 = 0. (a) left: with minmod
limiter; (b) right: with smooth limiter (Harten-Yee 300: dash-dot; WENO-Roe 600: solid).
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Sjögreen performed under the auspices of the U.S. Department of Energy by Lawrence
Livermore National Laboratory under Contract DE-AC52-07NA27344.

REFERENCES

Gnoffo, P. A., Gupta, R. N. & Shinn, J. L. 1989 Conservation equations and
physical models for hypersonic air flows in thermal and chemical nonequilibrium.
NASA Technical Paper 2867, 1–58.



Well-balanced schemes 401

-0.5 0 0.5 1
-3

-2

-1

0

1

2

3

x

(a)

ρ × 1010

-0.5 0 0.5 1
-3

-2

-1

0

1

2

3

x

(b)

ρ × 1010

Figure 5. Results by MUSCL scheme: ǫ = 10−10 × sin(πx), δ1 = 0. (a) left: with minmod
limiter; (b) right: with smooth limiter (MUSCL 300: dash-dot; WENO-Roe 600: solid).
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