17,209 research outputs found

    Triple Products and Yang-Baxter Equation (II): Orthogonal and Symplectic Ternary Systems

    Full text link
    We generalize the result of the preceeding paper and solve the Yang-Baxter equation in terms of triple systems called orthogonal and symplectic ternary systems. In this way, we found several other new solutions.Comment: 38 page

    Dynamic property studies of Sterling engines

    Get PDF
    A description is given of the results of dynamic property tests that were carried out using a trial produced prototype of a 50 KW Sterling engine. The features of the engine are shown graphically. A high thermal efficiency is found in the low rotation region

    Quantum error correction via robust probe modes

    Full text link
    We propose a new scheme for quantum error correction using robust continuous variable probe modes, rather than fragile ancilla qubits, to detect errors without destroying data qubits. The use of such probe modes reduces the required number of expensive qubits in error correction and allows efficient encoding, error detection and error correction. Moreover, the elimination of the need for direct qubit interactions significantly simplifies the construction of quantum circuits. We will illustrate how the approach implements three existing quantum error correcting codes: the 3-qubit bit-flip (phase-flip) code, the Shor code, and an erasure code.Comment: 5 pages, 3 figure

    Lepton asymmetry in the primordial gravitational wave spectrum

    Get PDF
    Effects of neutrino free streaming is evaluated on the primordial spectrum of gravitational radiation taking both neutrino chemical potential and masses into account. The former or the lepton asymmetry induces two competitive effects, namely, to increase anisotropic pressure, which damps the gravitational wave more, and to delay the matter-radiation equality time, which reduces the damping. The latter effect is more prominent and a large lepton asymmetry would reduce the damping. We may thereby be able to measure the magnitude of lepton asymmetry from the primordial gravitational wave spectrum.Comment: 14 pages, 5 figure

    More on Gribov copies and propagators in Landau-gauge Yang-Mills theory

    Full text link
    Fixing a gauge in the non-perturbative domain of Yang-Mills theory is a non-trivial problem due to the presence of Gribov copies. In particular, there are different gauges in the non-perturbative regime which all correspond to the same definition of a gauge in the perturbative domain. Gauge-dependent correlation functions may differ in these gauges. Two such gauges are the minimal and absolute Landau gauge, both corresponding to the perturbative Landau gauge. These, and their numerical implementation, are described and presented in detail. Other choices will also be discussed. This investigation is performed, using numerical lattice gauge theory calculations, by comparing the propagators of gluons and ghosts for the minimal Landau gauge and the absolute Landau gauge in SU(2) Yang-Mills theory. It is found that the propagators are different in the far infrared and even at energy scales of the order of half a GeV. In particular, also the finite-volume effects are modified. This is observed in two and three dimensions. Some remarks on the four-dimensional case are provided as well.Comment: 23 pages, 16 figures, 6 tables; various changes throughout most of the paper; extended discussion on different possibilities to define the Landau gauge and connection to existing scenarios; in v3: Minor changes, error in eq. (3) & (4) corrected, version to appear in PR

    Transition matrix Monte Carlo method for quantum systems

    Full text link
    We propose an efficient method for Monte Carlo simulation of quantum lattice models. Unlike most other quantum Monte Carlo methods, a single run of the proposed method yields the free energy and the entropy with high precision for the whole range of temperature. The method is based on several recent findings in Monte Carlo techniques, such as the loop algorithm and the transition matrix Monte Carlo method. In particular, we derive an exact relation between the DOS and the expectation value of the transition probability for quantum systems, which turns out to be useful in reducing the statistical errors in various estimates.Comment: 6 pages, 4 figure

    Modes of Spatial Coding in the Simon Task

    Get PDF
    Many models of the Simon effect assume that categorical spatial representations underlie the phenomenon. The present study tested this assumption explicitly in two experiments, both of which involved eight possible spatial positions of imperative stimuli arranged horizontally on the screen. In Experiment 1, the eight stimulus locations were marked with eight square boxes that appeared at the same time during a trial. Results showed gradually increasing Simon effects from the central locations to the outer locations. In Experiment 2, the eight stimulus locations consisted of a combination of three frames of spatial reference (hemispace, hemifield, and position relative to the fixation), with each frame appearing in different timings. In contrast to Experiment 1, results showed an oscillating pattern of the Simon effect across the horizontal positions. These findings are discussed in terms of grouping factors involved in the Simon task. The locations seem to be coded as a single continuous dimension when all are visible at once as in Experiment 1, but they are represented as a combination of the lateral categories (“left” vs. “right”) with multiple frames of reference when the reference frames are presented successively as in Experiment 2
    • …
    corecore