
Use of Role Based Access Control for Security-purpose Hypervisors

Manabu Hirano

Department of Information and Computer Engineering

Toyota National College of Technology

Toyota, Japan

hirano@toyota-ct.ac.jp

David W Chadwick

School of Computing

University of Kent

Canterbury, United Kingdom

D.W.Chadwick@kent.ac.uk

Suguru Yamaguchi
Graduate School of Information Science

Nara Institute of Science and Technology

Ikoma, Japan

suguru@is.naist.jp

Abstract— This paper shows the design and implementation of

a Role Based Access Control (RBAC) mechanism for securing

a hypervisor called BitVisor. BitVisor is a small hypervisor

that provides security functions like encryption services for I/O

devices in its hypervisor-layer. BitVisor enforces security

functions without the help of guest OSs, but it only supports a

static configuration file for machine set up. Consequently, we

employ the RBAC system called PERMIS, a proven

implementation of an RBAC policy decision engine and

credential validation service, in order to provide dynamic

configuration control. By using PERMIS, we can write finer

grained authorization policies and can dynamically update

them for the security-purpose hypervisor.

Security-purpose hypervisor; Role Based Access Control

(RBAC); Authorization policies; Virtual Machine Monitors

I. INTRODUCTION

BitVisor is a security-purpose hypervisor that has been
developed since 2008 [1][2][3][4][5]. The source code of
BitVisor is available from http://www.bitvisor.org. BitVisor
was initially developed by a research and development
project initiated by National Information Security Center
(NISC) of Japan and executed by several universities and
companies. The purpose of the project is to prevent
information leakages from desktop computers and laptop
computers in governmental and corporate organizations.
Many information leakage cases are caused by unauthorized
use of unencrypted USB thumb drives, theft of laptop
computers with unencrypted internal storage, etc. Fig.1
shows the architecture of BitVisor. BitVisor is a small
hypervisor that is designed to enhance the security of
computing systems by providing data encryption and
decryption services for both storage media and network
connections. BitVisor can enhance the security of a computer
that uses any OS (e.g. Windows, Linux, FreeBSD, etc.)
because its security functions work on a hypervisor-layer.
BitVisor is aimed at preventing information leakage with
minimal overhead. The basic features of BitVisor are the
following [5]:

Figure 1. Security architecture of BitVisor.

 Boot up login authentication by passwords or PKI-
based smart cards.

 Data encryption for HDD, SSD, USB storages, CD-
RW, and other storage media. An encryption key is
stored in each user’s smart card by the organization’s
administrator. The smart card is protected by the user’s
PIN number.

 BitVisor provides a Virtual Private Network (VPN)
client function by using its built-in IPsec and IKEv1
module. Once BitVisor is installed, BitVisor is
transparent to end users (i.e. VPN connections can be
achieved without the help of any client application on
the guest OS.).

 Providing surveillance points of I/O devices (e.g.

storage, network, etc.) in the hypervisor layer.

The BitVisor’s security model assumes that a computer can
be used by many different users, but only by one user at once
and that each user is identified to the computer by inserting
his or her smartcard (or his or her password). The OS is then
booted up for this user. The current implementation of

Guest OS

NIC ATA
SATA

ATAPI USB Others

Device drivers

PC/SC
(USB)

Smart
card

reader

Security functions
(e.g. Encryption and decryption)

BitVisor
 (Security-purpose Hypervisor)

NIC HDD
SSD

CDRW
DVD

Thumb
drives,

etc

Audio
Video

A user’s
smart
card

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30704581?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BitVisor has no “switch user” facility available, only
shutdown and re-boot.

II. PROBLEMS OF CURRENT BITVISOR

BitVisor has a static configuration file. The configuration file
can specify which VPN gateway the computer has to connect
to, which HDD or SSD devices have to be encrypted, and
whether the use of USB thumb drives is permitted or not, etc.
The problems of the current BitVisor are the follows: (1) the
configuration file of each computer is not written based on
the user’s identity or roles, but is the same for all users of the
machine. Therefore, we cannot use any RBAC policy for its
configuration. Also, (2) the current configuration file is
installed once at the set up time of each machine by an
administrator. Therefore it is difficult to change the
configuration of each machine after distributing the pre-setup
machines in the organization. In addition, (3) we can not
specify detailed conditions in the current syntax of
BitVisor’s configurations. For example, it cannot specify
when the user can use the machine or network.

To solve the above problems, this paper shows the design
and implementation of an integrated combination of an
RBAC policy decision engine (PERMIS) and a security-
purpose hypervisor (BitVisor). BitVisor already has its
X.509 PKI-based authentication function. By introducing
PERMIS’s X.509 PMI-based RBAC authorization function
onto BitVisor, administrators will be able to control its
security functions in a more flexible manner. PERMIS
policies are fine grained, and can be dynamically updated.
We show some useful examples of authorization policies that
can be used for security-purpose hypervisors. This paper’s
contribution is to show a novel implementation of role-based
access control mechanism for security-purpose hypervisors.

III. POLICY DECISION MECHANISMS OF PERMIS

This section presents a brief overview of PERMIS’s
authorization mechanisms. There are two types of policy in
PERMIS [6]. The first policy is for the Credential Validation
Service (CVS), which controls the user-role assignments.
The second policy is for the Policy Decision Point (PDP)
which controls the role-permission assignments. Fig. 2
shows the relationship between the NIST RBAC model [7]
and PERMIS. PERMIS also can handle SOD (Separation of
duty) constraints [8] and role hierarchies. All of these
policies can be handled by the PERMIS policy engine.

Figure 2. Relationship between NIST RBAC model and PERMIS.

A. Credential Validation Service (CVS) Policies

Table 1 shows an example policy of the Credential
Validation Service (CVS) in the new system. This policy
specifies who can assign which roles to whom, under which
constraints. BitVisor uses two roles, permisRole and
securityLevel. The permisRole is used for assigning each
user’s role. The securityLevel is used for distinguishing the
security level of each computer. In Table 1, we define the
same issuer (Source of Authority – SOA) for these two types
of role. This policy permits operations of user assignments
for both the users and the computers belonging to the
specified subject domain, O=TNCT, L=Toyota, ST=Aichi,
C=JP by the SOA who has the subject distinguished name
(DN) of CN=SOA, O=TNCT, L=Toyota, ST=Aichi, C=JP.
If we were to have different SOAs for users and computers,
then we would use different issuers for each role type. Fig. 3
shows an actual CVS policy in the system. We defined three
roles for users: permisRoles of Manager, Employee, and
Trainee. We also defined five (integer) roles for computers:
securityLevel of 1 through to 5, where 1 is the lowest
security level and 5 is the highest. Alternatively we could
have defined role hierarchy policies in the PERMIS’s policy
syntax for string values e.g. securityLevel 2 is superior to
securityLevel 1 etc.

Table 1. CVS policies for user-role assignment.

Issuer Role
Subject
domain

Constraints

CN=SOA,
O=TNCT,
L=Toyota,

ST=Aichi, C=JP

permisRole
(Users’ roles)

O=TNCT,
L=Toyota,

ST=Aichi, C=JP

Time
constraints and

delegation
constraints

CN=SOA,
O=TNCT,
L=Toyota,

ST=Aichi, C=JP

securityLevel
(Computers’

roles)

O=TNCT,
L=Toyota,

ST=Aichi, C=JP

Time
constraints and

delegation
constraints

<SubjectPolicy>

<SubjectDomainSpec ID="SubjectDomain">
<Include LDAPDN="o=TNCT,l=Toyota,st=Aichi,c=JP" />

</SubjectDomainSpec>
</SubjectPolicy>
<SOAPolicy>

<SOASpec ID="TheSOA"
LDAPDN="cn=SOA,o=TNCT,l=Toyota,st=Aichi,c=JP" />

</SOAPolicy>
<RoleAssignmentPolicy>

<RoleAssignment>
<SOA ID="TheSOA" />
<SubjectDomain ID="SubjectDomain" />
<RoleList>

<Role Type="permisRole" Value="Manager" />
<Role Type="permisRole" Value="Employee" />
<Role Type="permisRole" Value="Trainee" />
<Role Type="securityLevel" Value="1" />
<Role Type="securityLevel" Value="2" />
<Role Type="securityLevel" Value="3" />
<Role Type="securityLevel" Value="4" />
<Role Type="securityLevel" Value="5" />

</RoleList>
<Delegate Depth="0" />

</RoleAssignment>
</RoleAssignmentPolicy>

Figure 3. A part of a CVS policy for the system.

U
Users

R
Roles

P

Permi-
ssions

RH
Role hierarchy

UA
User assignment

(CVS policies of PERMIS)

PA
Permission assignment

(PDP policies of PERMIS)

SOD constraints

<TargetPolicy>
<TargetDomainSpec ID="USBdevicesTargetDomain">

<Include LDAPDN="cn=USBdevices,o=TNCT,l=Toyota,st=Aichi,c=JP" />
</TargetDomainSpec>

</TargetPolicy>
<ActionPolicy>

<Action ID="diskIO" Name="DiskIO">
<Argument Name="encryption" Type="Boolean" />
<TargetDomain ID="USBdevicesTargetDomain" />

</Action>
</ActionPolicy>
<TargetAccessPolicy>

<TargetAccess>
<TargetList>

<Target><TargetDomain ID="USBdevicesTargetDomain" />
<AllowedAction ID="diskIO" /></Target>

</TargetList>
<RoleList><Role Type="permisRole" Value="Employee" /></RoleList>
<IF>

<AND>
<AND>

<GE><Environment Parameter="securityLevel" Type="Integer" />
<Constant Value="1" Type="Integer" /></GE>

<LE><Environment Parameter="securityLevel" Type="Integer"/>
<Constant Value="4" Type="Integer" /></LE>

</AND>
<EQ><Arg Name="encryption" Type="Boolean" />

<Constant Value="true" Type="Boolean" /></EQ>
</AND>

</IF>
</TargetAccess>
<TargetAccess>

<TargetList>
<Target><TargetDomain ID="USBdevicesTargetDomain" />

 <AllowedAction ID="diskIO" /></Target>
</TargetList>
<RoleList><Role Type="permisRole" Value="Manager" /></RoleList>
<IF>

<AND>
<EQ><Environment Parameter="securityLevel" Type="Integer" />

<Constant Value="5" Type="Integer" /></EQ>
<EQ><Arg Name="encryption" Type="Boolean" />

 <Constant Value="true" Type="Boolean" /></EQ>
</AND>

</IF>
</TargetAccess>

</TargetAccessPolicy>

Figure 4. A part of a permission assignment policy for the system.

B. PDP Policies

Fig. 4 shows a part of a role permission assignment policy

in the new system. TargetPolicy defines a name and DN of

a target resource for access control decisions. This example

says the target resource is USB devices. Next, ActionPolicy

defines the actions that have to be controlled. This example

defines the USB devices’ action named “DiskIO” with a

Boolean parameter that specifies encryption or not. Finally,

TargetAccessPolicy defines the permitted actions on targets

for roles, along with any conditions. The first TargetAccess

permits an Employee to perform IO operations on a USB

devices’ disk with the following condition: (1) The

computer’s securityLevel is between 1 and 4; and (2) the

disk IO operations are executed with encryption. The next

TargetAccess permits a Manager to perform IO operations

on a USB devices’ disk with the following conditions: (1)

the computer’s securityLevel is 5 and (2) the disk IO

operations are executed with encryption. Any action that is

not defined in this policy is automatically denied. For

example, another role Trainee cannot use any USB devices

even if he or she uses the encryption functions.

C. Role Management and Policy Elements for Security-

purpose Hypervisors

This subsection describes the role management method for
security-purpose hypervisors. We also describe the building
blocks of PERMIS’s policies. PERMIS’s policies are
basically constructed by elements of Issuers, Subjects,
Actions, Targets, and Environments. We describe the
relationship between these elements and the security-purpose
hypervisor, BitVisor, as follows:

 Issuers are Sources of Authority (SOAs) that issue
attributes (roles) to subjects, as digitally signed X.509
attribute certificates (ACs) [9].

 Subjects are the users using particular computers. A
user’s name (i.e. Subject DN) is retrieved from the
user’s X.509 public key certificate (PKC) which is
stored on his or her smartcard when the administrator
sets up the smart card before distributing it. In the new
system, a user’s roles are dynamically retrieved as
X.509 attribute certificates (ACs) from LDAP servers
after executing BitVisor’s authentication function. By
introducing this method, administrators can change a
user’s roles dynamically even if the smart card is
already setup and distributed to the user.

 The computers are used by the users, but they are also
Subjects in terms of role assignments. The computer’s
identifier (i.e. Subject DN) is stored in the computer’s
X.509 PKC by an administrator at setup time. Like
users’ roles, the computer’s role is retrieved as an
X.509 AC from an LDAP server. As a result,
administrators can change a computer’s role
dynamically even if the computer is already setup and
distributed to users. A computer’s role expresses the
computer’s security level.

 Actions state what the user wants to do on the Targets.
In BitVisor, Actions basically state input and output
operations and optionally attachment operations of
external devices. The input and output operations for
storage devices and for NIC devices can take arguments
for options such as encryption.

 Targets are the types of resource. In BitVisor, they are
I/O devices including storage devices, NIC devices, etc.
BitVisor supports the following I/O devices: storage
devices (ATA, AHCI and AHCI_ATAPI), external
optical discs (ATAPI), USB devices (USB), and
network devices (NIC).

 In PERMIS’s policy, Environment states (conditions
on) environment variables like the current time and date,
or the GPS location. In the prototype system, the
Environment is used to state the required security level
of the computer and whether encryption is required or
not.

Figure 5. The relationship between user’s subject DN, user’s roles, computer’s subject DN, computer’s roles (i.e. security level), and policies in BitVisor.

Fig. 5 shows the relationship between user’s subject DN,

user’s roles, computer’s subject DN, computer’s roles, and
authorization policies in the integrated system of PERMIS
and BitVisor. The red parts show the data and functions for
PERMIS. The purple box is newly developed for the system.
The blue parts show the data and functions that were already
developed in the current BitVisor.

PERMIS’s authorization polies are encapsulated in the
form of ACs, and are retrieved from an LDAP server.
Therefore, administrators can change the authorization
policy after the setup of users’ smart cards and computers. In
Fig. 5, the system has three X.509 PKCs of the different
SOAs, for verifying their issued X.509 ACs. However, we
can use a single common X.509 PKC of a single SOA if it is
issues all of the different ACs. Also, the system has the
computer’s X.509 PKC and private key, and the root CAs’
self-signed PKC. It is important to protect the latter two in
BitVisor. We can protect the root X.509 PKCs, computer’s
private key, BitVisor, and the system’s software by using
trusted boot technology [3].

IV. STATIC CONFIGURATION FILE FOR BITVISOR

As described in section II, this paper’s purpose is to enhance

the BitVisor management method with a secure RBAC

policy mechanism. Before describing the design of the new

system, we have to describe the current management

method of BitVisor with its static configuration file. This

section shows an example of the static configuration of

BitVisor. Fig. 6 shows a definition part for encryption

operations of USB devices in the current BitVisor’s

configuration file.

1 vmm.driver.concealEHCI=1
2 vmm.driver.usb.uhci=1
3 vmm.driver.usb.ehci=1
4 storage.encryptionKey0.place=IC
5 storage.conf1.type=USB
6 storage.conf1.host_id=-1
7 storage.conf1.device_id=-1
8 storage.conf1.lba_low=0
9 storage.conf1.lba_high=0x9FFFFFFF

10 storage.conf1.keyindex=0
11 storage.conf1.crypto_name=aes-xts
12 storage.conf1.keybits=256

Figure 6. A definition part for encryption operations in BitVisor’s

configuration file

Lines 1 to 3 state that the encryption function is enabled.

Line 4 states that the encryption key is stored in a user’s

smartcard. Lines 5 to 12 state how to encrypt USB devices.

In the current BitVisor architecture, an administrator installs

this configuration file onto a computer at the first setup time.

Therefore, an administrator cannot change this configuration

after the initial setup of the computer. BitVisor’s

configuration file also has definition lines for the VPN

function of BitVisor, which contains the VPN gateway’s IP

address, VPN gateway’s authentication method, etc. This

paper only describes an example policy for storage

encryption. However, the new system can apply equally

well for VPN services and the other services of BitVisor

such as HDD, SSD, CD-RW etc. A detailed specification of

BitVisor’s configuration is described in [5].

LDAP servers

BitVisor

Smartcard

Computer’s

X.509 PKC

X.509 PKC of SOA of PERMIS
authorization policies

X.509 PKC of SOA of computers’ roles

 For

X.509 PKC of SOA of users’ roles

X.509 ACs for computer’s roles
roles

X.509 ACs for users’ roles

Authorization service
(PERMIS)

Authentication service

(BitVisor)

User’s private key

User’s X.509 PKC

 For

Encryption key for storage

or passphrase of VPN

 For

X.509 PKC of trusted

root CAs

Authorization policies (in ACs)

Signature verification
service

pulls

PKC: Public key certificate
AC: Attribute certificate
SOA: Source of authority
DN: Distinguished name

passes the user’s DN and
the computer’s DN that are
got from the user’s and the
computer’s X.509 PKCs.

requests verification of the
signatures of signed ACs

gets the result
of signature
verification of
ACs.

BitVisor-PERMIS controller

Configuration generator

Computer’s

private key

Figure 7. The design of the secure RBAC system for BitVisor.

V. DESIGN

BitVisor has a preparation step before launching the target

OS that is to be protected. At the boot time, BitVisor

launches a special guest OS (a custom initial RAM disk of

Linux) to process the user authentication function based on

the PKI-based smart card. If the authentication is successful,

then BitVisor shuts downs the first operating system

automatically and launches the target OS to be protected,

based on its static configuration file. Fig. 7 shows the design

of the new system. The red boxes show the RBAC extension

parts. It works in the following way (the steps marked (New)

indicate the new developments of the system):

(1) The ID management function authenticates a user using

his or her smartcard. The smartcard has the user’s

private key and his or her X.509 PKC. The user’s X.509

PKC is verified by using the X.509 PKC of the trusted

root CA(s) that was (were) securely stored in the

computer at the setup time.

(2) (New) BitVisor-PERMIS controller constructs a

PERMIS authorization system passing it the DN of the

policy SOA and details of the LDAP server to use.

PERMIS retrieves the authorization policy AC from the

LDAP server, and asks the authentication service to

validate that it is signed by the trusted policy SOA.

(3) (New) BitVisor-PERMIS controller calls the PERMIS

CVS twice, once to verify the user’s roles, and once to

verify the computer’s roles. PERMIS retrieves the

user’s X.509 role ACs from the configured LDAP

servers based on his or her DN which BitVisor retrieved

from the user’s X.509 PKC in step (1). PERMIS also

retrieves the computer’s X.509 role ACs from the

LDAP servers by using the computer’s DN that

BitVisor retrieved from the computer’s X.509 PKC.

(The computer’s X.509 PKC and private key are stored

securely within the initial RAM disk image that can be

verified by TPM and by using the X.509 PKC of the

trusted root CA(s).) PERMIS checks that each role AC

is signed by the correct SOA, as detailed in the CVS

policy (see Fig.3), by calling the signature verification

service. This uses the SOAs’ X.509 PKCs which are

included within the initial RAM disk image.

(4) (New) BitVisor-PERMIS controller places the validated

user’s roles into the subject field, and the computer’s

roles into the environment field and calls the PERMIS’s

PDP multiple times. This is to execute a series of tests

that are used to generate the appropriate configuration

file for BitVisor with the guest OS, based on the current

authorization policy.

(5) (New) The configuration generator dynamically

generates a bespoke configuration file for BitVisor as

described below.

(6) After shutdown of the first guest OS (the initial RAM

disk of Linux), BitVisor launches the target guest OS to

be protected. This two-step execution mechanism is

already used by the current release of BitVisor [3].

(7) BitVisor enforces the security functions based on the

configuration file that was generated by the previous

steps.

As described above, this paper shows an enhanced method

of using a secure RBAC function for BitVisor with minimal

changes to the original system. The main contribution of

this paper is the translation mechanism from the results of

the PERMIS’s PDP tests to generate a bespoke

Host hardware

BitVisor BitVisor

Host hardware

Protected guest OS
(Linux, Windows, etc.)

The proposed system launches BitVisor and executes the initial
RAM disk for its startup processes.

BitVisor launches a target guest OS to be protected. Administrators prepare
smartcards, ACs for roles
and policies, and LDAP
servers.

Timeline

Smart
card

reader

LDAP
servers

Initial RAM disk
(Linux)

Authentication service
(Signature verification service)

PERMIS CVS and PDP Role ACs
policy ACs

(1)

(2, 3)
(2, 3, 4)

Bespoke configuration file for BitVisor

that is automatically generated based on

PERMIS’s PDP results

(5)

PEP (Security functions of BitVisor)

(6)

Target IO devices

Guest OS’s device drivers

(7)

BitVisor-PERMIS
controller

Configuration
generator

(2, 3, 4)

(4)

(2, 3)

AC: Attribute certificate
PDP: Policy decision point
PEP: Policy Enforcement
point

configuration file for BitVisor based on the user’s role, the

computer’s role, and the authorization policy. The BitVisor-

PERMIS controller program is executed on the initial RAM

disk of Linux, not on BitVisor, because of the following

reasons: (1) PERMIS needs a Java VM but BitVisor cannot

execute a Java VM (this is because BitVisor is written in C

and assembler), (2) BitVisor has only a limited number of

targets and actions, therefore it is reasonable to generate a

static configuration file in advance (the characteristics of the

BitVisor environments only require a simple solution), and

(3) it is difficult to provide high performance from XML

policy parsing (insufficient for BitVisor’s requirements).

 Fig. 8 shows the architecture of the configuration

generator. In the system, an administrator has to prepare test

patterns including targets (e.g. USB devices) and actions

(e.g. Input and output operations) with encryption options

(e.g. true or false). For each test pattern, the administrator

prepares a piece of configuration file that corresponds to the

result of the test. The system checks all test patterns with the

retrieved roles by executing the PERMIS PDP engine. Then

the system selects the appropriate piece of configuration file

based on the result of the PERMIS PDP engine. Finally, the

constructed configuration file is used by BitVisor. Fig. 9

gives an example test and piece of configuration file. In this

example the test is checking if the user has a role of

manager and if so, then he can write encrypted files to USB

devices.

VI. IMPLEMENTATION

We implemented the system by using BitVisor 1.3 [5] and

the latest version of PERMIS decision engine（5.0.2） [10].

We used the PERMIS’s policy editor 5.2.6 for generating the
X.509 authorization policy ACs. We also used the
PERMIS’s attribute certificate manager 5.0.1 for generating
X.509 ACs for users’ roles and computers’ roles. We
employed OpenLDAP 2.2.29 to store the ACs. We used two
different computers, one for the LDAP server and one that is
protected by BitVisor. We used Linux kernel 2.6.31.6 for
making the initial RAM disk image described in section V.
We tested Ubuntu 12.04LTS as the target guest OS. Table 2
shows the hardware specification used in the prototype
implementation. We prepared three smartcards with roles of
Manager, Employee, and Trainee by using the ID
management programs of BitVisor. We evaluated the
prototype system by using the authorization policies shown
in Fig. 3 and Fig. 4. For example, a user with the role
Employee could not use unencrypted USB devices on
computers that have securityLevel between 1 and 4. A user
with the role Manager could use encrypted USB devices on
a computer that has the highest securityLevel 5.

VII. DISCUSSION

The new system does not implement RBAC policies directly
onto hypervisors. Instead, we implement RBAC in the
custom initial RAM disk image for BitVisor. The initial

Figure 8. Architecture of the configuration generator program for BitVisor.

Table 2. Hardware specification.

Smart card reader SCM SCR3310

Smart card NTT Communications
eLWISE (JICSAP 2.0)

Host hardware ThinkPad X121e

USB thumb drive BUFFALO RUF3-C 32GB

Figure 9. An example test and piece of configuration file.

RAM disk image includes the X.509 PKC of the trusted root
CA and the SOA’s PKCs. The initial RAM disk image of
Linux is launched first and is protected by BitVisor. In
addition, we can check the integrity of the initial RAM disk
image before launching it by using a TPM [3]. We can use
trusted boot mechanisms for this purpose.

If we implemented access control mechanisms onto
hypervisors, we have to implement more faster and efficient
programs than current PDP engines. For example, Linux’s
Flask architecture [19] (i.e. SELinux) employs an efficient
access control method for Linux kernel by translating
security policies into a special bitmap called access vector
and uses this bitmap with cache mechanisms.

Finally, even if we deploy security systems based on
hypervisors shown in this paper, we have to prevent many
types of attacks [16][17] against hypervisors in operation.

VIII. RELATED WORK

We developed the ID management framework for BitVisor
in [4]. Our previous work was to enhance BitVisor by using
user’s identities, but not roles. This paper shows the novel
design and implementation of RBAC functions for BitVisor.
There are many security applications constructed based on

Test
#n

PERMIS
PDP

engine

Roles, environment

variables (current

time, etc.)

Configuration
generator

passes test number and its result
(allow, deny, error)

 Config
#0

 Config
#n

…

Pieces of configuration file
for each test pattern

Test patterns including targets and actions

Target
TARGET_DN=cn=USBdevices,o=TNCT,l=
Toyota,st=Aichi,c=JP
Action
ACTION=DiskIO
Action parameters for encryption
test number, type of variable, value
ACT_PARAM=0, Boolean, true
ACT_PARAM=1, Boolean, false

An example test
(the file name is “0.test”)

vmm.driver.concealEHCI=0
vmm.driver.usb.uhci=0
vmm.driver.usb.ehci=0
storage.conf1.type=USB
storage.conf1.host_id=-1
storage.conf1.device_id=-1
storage.conf1.lba_low=0
storage.conf1.lba_high=0x9FFFFFFF
storage.conf1.keyindex=0
storage.conf1.crypto_name=aes-xts
storage.conf1.keybits=256

“0.1.config”

“0.-1.config” (For error)

“0.0.config”

E.g. If the result of PERMIS PDP for
ACT_PARAM=1 is “permit” then the
system selects the file “0.1.config”.

An example of pieces of configuration
for the test file “0.test”.

BitVisor technology. HyperSafe is one of BitVisor’s
applications [11]. HyperSafe provides self-protection and an
integrity guarantee mechanisms. TreVisor is a hypervisor-
based full disk encryption system that provides resistant
characteristics to main memory attacks [12]. Oyama et al.
show a malware detection mechanism by using signatures in
BitVisor [13].

XACML [18] is a standard XML policy for access
control, but XACML does not support credentials and does
not have a credential validation capability. PERMIS on the
other hand was originally developed for constructing highly
secure RBAC systems with digitally signed credentials and
policies. The current version of BitVisor has the X.509 PKI-
based authentication function; therefore we employ PERMIS
to provide PMI facilities from the same standard using X.509
ACs. Now PERMIS has many applications like a privacy
preserving authorization system for the Cloud [14], self-
adaptive authorization framework for federated access
environments [15], etc.

OpenStack [20] is open source IaaS Cloud computing
software. OpenStack uses a hypervisor for building an IaaS
Cloud, but not for securing client computers. OpenStack has
an integrated authentication and RBAC authorization service
called Keystone, which manages user identities and assigns
them roles for accessing compute, storage and networking
resources.

A recent development for securing client computers is the
use of Cloud Terminal [21]. Users only use a thin cloud
terminal program for securing network connections between
client computers and Cloud servers, for transferring input
and output data, etc. Since BitVisor protects a running OS in
a local computer, then we might be able to deploy our
system for protecting such a thin cloud terminal application
that is executed on an untrusted local computer.

IX. CONCLUSION

The system described in this paper can support flexible

changes of configurations for the security-purpose

hypervisor, BitVisor. By introducing PERMIS’s RBAC

facilities, we can write authorization policies, users’ roles

and computers’ roles and strongly protect them as digitally

signed X.509 ACs, thus preventing any unauthorized person

from modifying the configuration. This can be used to

strongly control the behavior of the distributed computing

systems in organizations. This paper shows the design and

implementation of an integrated system with PERMIS’s

RBAC engine and BitVisor.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Number
23700095.

REFERENCES

[1] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, et al., BitVisor: a Thin
Hypervisor for Enforcing I/O Device Security, In Proceedings of the
2009 ACM SIGPLAN/SIGOPS VEE09, pp.121-130, 2009.

[2] Manabu Hirano, Takahiro Shinagawa, Hideki Eiraku, Shoichi
Hasegawa, Kazumasa Omote, Kouichi Tanimoto, et al., Introducing

Role-Based Access Control to a Secure Virtual Machine Monitor:
Security Policy Enforcement Mechanism for Distributed Computers,
Asia-Pacific Services Computing Conference, pp.1225-1230, 2008.

[3] Manabu Hirano, Takahiro Shinagawa, Hideki Eiraku, Shoichi
Hasegawa, Kazumasa Omote, Kouichi Tanimoto, et al., A Two-Step
Execution Mechanism for Thin Secure Hypervisors, Emerging
Security Information, Systems and Technologies (SECURWARE
'09), pp.129-135, 2009.

[4] Manabu Hirano, Takeshi Okuda, Eiji Kawai, Takahiro Shinagawa,
Hideki Eiraku, Kouichi Tanimoto, et al., Portable ID Management
Framework for Security Enhancement of Virtual Machine Monitors,
Engineering the Computer Science and IT, Chapter 24, pp. 477-488,
ISBN: 978-953-307-012-4, InTech, 2009.

[5] IGEL, BitVisor 1.1 Reference Manual,

http://sourceforge.jp/projects/sfnet_bitvisor/downloads/bitvisor/manu
al/1.1/bitvisor-1.1-manual.pdf.

[6] D.W. Chadwick, O. Otenko, The PERMIS X.509 role based privilege
management infrastructure, Future Generation Computer Systems
19(2), Elsevier Science Publishers B.V., pp. 277– 289, 2003.

[7] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and R.
Chandramouli. Proposed NIST standard for role-based access control.
ACM Transactions on Information and System Security (TISSEC),
4(3):224–274, 2001.

[8] Botha, Separation of duties for access control enforcement in
workflow environments. IBM SYSTEMS JOURNAL 40(3), 2001.

[9] S. Farrel, R. Housley, and S. Turner, RFC5755: An Internet Attribute
Certificate Profile for Authorization, 2010.

[10] Modular PERMIS Project, http://sec.cs.kent.ac.uk/permis/.

[11] Zhi Wang; Xuxian Jiang, HyperSafe: A Lightweight Approach to
Provide Lifetime Hypervisor Control-Flow Integrity, Security and
Privacy (SP), 2010 IEEE Symposium on , pp.380,395, 2010.

[12] Tilo Müller, Benjamin Taubmann, and Felix C. Freiling, TreVisor:
OS-independent software-based full disk encryption secure against
main memory attacks, In Proceedings of the 10th international
conference on Applied Cryptography and Network Security
(ACNS'12), ACM, pp.66-83, 2012.

[13] Yoshihiro Oyama, Tran Truong Duc Giang, Yosuke Chubachi,
Takahiro Shinagawa, and Kazuhiko Kato, Detecting malware
signatures in a thin hypervisor. In Proceedings of the 27th Annual
ACM Symposium on Applied Computing (SAC '12), ACM, pp. 1807-
1814, 2012.

[14] Chadwick, D.W. and Fatema, K., A privacy preserving authorisation
system for the cloud, Journal of Computer and System Sciences, 78
(5). pp. 1359-1373. ISSN 0022-0000, 2012.

[15] Bailey, C., Chadwick, D.W., de Lemos, R., Self-Adaptive
Authorization Framework for Policy Based RBAC/ABAC Models,
Dependable, Autonomic and Secure Computing (DASC), IEEE Ninth
International Conference on , pp.37-44, 2011.

[16] Baozeng Ding; Yanjun Wu; Yeping He; Shuo Tian; Bei Guan;
Guowei Wu, Return-Oriented Programming Attack on the Xen
Hypervisor, Availability, Reliability and Security (ARES), 2012
Seventh International Conference on , pp.479,484, 2012.

[17] J. Rutkowska and R. Wojtczuk. Preventing and detecting Xen
hypervisor subversions. In Black Hat USA, 2008.

[18] OASIS “eXtensible Access Control Markup Language (XACML)
Version 2.0” OASIS Standard, 1 Feb 2005.

[19] P. Loscocco and S. Smalley. Integrating flexible support for security
policies into the linux operating system. In Proc.USENIX Tech. Conf.,
FREENIX Track, pages 29–42, 2001.

[20] OpenStack project, OpenStack: The Open Source Cloud Computing
Software, Available: http://www.openstack.org/.

[21] L. Martignoni, P. Poosankam, M. Zaharia, J. Han, S. McCa- mant, D.
Song, V. Paxson, A. Perrig, S. Shenker, and I. Stoica, Cloud
Terminal: Secure Access to Sensitive Applications from Untrusted
Systems, in Proc. USENIX ATC, 2012

