General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

(NASA-TM-77719) DYNAMIC PEOPERTY STUDIES OF STERLING ENGINES (National Aeronautics and Space Administration) 12 p HC A02/MF A01 N84-29225

CSCL 131 63

Unclas 7 20045

DYNAMIC PROPERTY STUDIES OF STERLING ENGINES

Y. Tani, M. Seibara, K. Takenai, and W. Yamaguchi

Translation of "Sutaringu enjin no doryoku tokusei shiken", Nihon Kikai Gakkai Koen Ronbunshu, No. 810-5, pp. 132-4

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington D.C. 20546 FEBRUARY 1984

ORIGINAL PAGE IS OF POOR QUALITY

STANDARD TITLE PAGE

١.	Report No. 2. Correspont Asses	ules No.	3. Recipiant's Catalog No.
	NASA TM- 77719		
•	Title and Subsiste		5. Report Date FERRILARY 1984
	DYNAMIC PROPERTY STUDIES OF S	TERLING •	6. Perfeming Organization Code
_	ENGINES		
•	Authodol Y. Tani, M. Seibara, K. Takenai, a		8. Performing Organization Report No.
	W. Yamaguchi		10. Work Unit No.
			11. Contract or Grant No.
).	Performing Organization Name and Address SCITRAN		MAS - 3542
	Box 5456	`	13. Type of Report and Period Covered
	Santa Barbara, CA 93108		Translation
L	Wational Aeronautics and Space Administration		
	Washington, D.C. 20546		14. Sponsoring Agency Code
	Translation of "Sutaringu enjin no doryoku tokusei shiken", Nihon Kikai Gakkai Koen Ronbunshu, No. 810-5, pp. 132-4		
A description is given of the results of dynamic property tests that were carried out using a trial-produced prototype of a 50 KW Sterling engine. The features of the engine are shown graphically. It is found that a high thermal efficiency is found in the low rotation region.			
12	. Koy Vorda (Sciented by Authoria)	Unclass	ified and Unlimited
31	. Security Closest, (of this report) 29. Security Close . Unclassified Unclassif		10 Pages 22. Pais

DYNAMIC PROPERTY STUDIES ON STERLING ENGINES*

Yukio Tani**, Maraseio Seibara**, Kanewa Takenai**, and Wamei Yamaguchi**

1. Introduction

There has been a recent demand for sterling engines as future fuel engines because of their high efficiency, fuel diversity, low toxicity, etc. Progress has been particularly strong in the U.S. on the development of sterling engines because of their low energy consumption. On the other hand, several Japanese research institutes and companies have been carrying out studies on sterling engines. However, there are few experimental reports on the dynamic properties of the engine in the test results on theoretical analyses and component features.

We will report here on the results of dynamic property tests that were carried out using a trial-produced prototype of a 50 KW sterling engine.

Engine Summary

The features of the trial-produced engine are shown in Table 1 and its cross section is shown in Figure 1.

/132***

^{*}April, 1981, 58th Regular Convention- Thermal Engineering and Internal Combustion Engines

^{**}Aishin Seiki Co., Ltd.

^{***(}Translator's note): Numbers in margin indicate foreign pagination.

TABLE 1. Features of Sterling Engine

Operating gas
Fuel
Piston type
Number of air cylinders
Bore x stroke
Heater tube temperature
Coolant temperature
Output pick up device
Axial sealing method
Output control method
Combustion method
Air preheater
High temperature heat
exchanger

Low temperature heat exchanger

Regenerative materials

He gas Kerosene Double acting

φ68 **x** 52 750°C

20°C

Sliding seal
Minimum pressure control method
Ultrasonic wave fogging combustion method
Multitube type

Rotating swash plate engine

SUS tube type

Shell and tube type SUS net

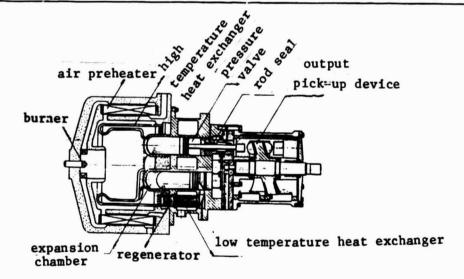


Figure 1. Cross section of Sterling Engine.

This engine is the same as that reported previously [1]. It uses the 4 air cylinder double-acting system and has 4 pistons in a circle at a distance of 90°. The output is picked up by a rotating swash plate engine. The fuel is kerosene and the operating gas is helium. Output control is carried out by control of the minimum pressure of the operating gas with a check valve. Moreover, a sliding seal is used as the rod seal.

Testing Method

In this test the dynamic measurements of the engine were carried out by controlling the r.p.m. using a direct current electric dynamometer. Friction loss of the piston ring, rod seal, and output pick-up device was determined from the amount of heat transmitted to the coolant. Heat loss of the exhaust was computed from the air ratio, which was determined from gas analysis, and the exhaust temperature. The amount of heat exchanged by the air preheater was determined from the flow and temperature of air used in combustion. The temperature control of the heater tube was carried out by setting up 16 CA thermocouples on the outside of the tube and controlling the amount of fuel fed so that the mean temperature would be constant. Furthermore, extra blowers and fuel pumps were used in the tests and were operated separately.

4. Test Results and Considerations

The engine property curves obtained during these tests and the equivalent efficiency curves are shown in Figure 2. Axial output is shown with regard to an operating gas minimum pressure of 10 MPa (during total load), 6 MPa and 4 MPa. The mean temperature of the heater tube was 750°C and the operating gas pressure ratio at this time was approximately 1.8.

The maximum output obtained in these tests was 57 KW (71P)/2,500 r.p.m. and the maximum efficiency was 31%(fuel consumption rate of 196 g/psH)/700 r.p.m. The maximum torque was 30 kg^{-m}/500 r.p.m. Furthermore, the torque in the low rotation region was practically flat up to 200 r.p.m. and smooth operation was possible. Moreover, this engine showed a higher efficiency in the low rotation region.

4-1) Thermal Calculations

The thermal calculation chart during maximum efficiency is shown in Figure 3. Approximately 65% of the thermal energy of the exhaust is recovered by the air preheater in this engine. Exhaust loss is very low at 15%. Heat leaks show an almost constant value under a constant heater tube temperature. The measures are approximately 3 KW through the sealing walls, etc. to the coolant and approximately 1KW from the heating furnace walls, etc. to the atmosphere. Seal loss is due to fraction loss of the piston ring and the rod seal.

4-2 Effects of R.P.M.

The correlation between the efficiency of the entire unit and each section during engine total load and the number of r.p.m.s is shown in Figure 4. Thermal efficiency ${}^{\eta}$ Gross is at the maximum with approximately 700 r.p.m. and decreases on the high rotation side. Burner efficiency ${}^{\eta}$ B is at a maximum near 1,500 r.p.m. (fuel input of 140 KW) and shows a tendency to be lower than the reduction in the heat efficiency of the air preheater and high temperature heat exchanger on a higher rotation side. The illustrated efficiency ${}^{\eta}$ ind is approximately 5.2% in the low rotation

/133

region and decreases with an increase in the r.p.m. The Carnot efficiency shown in the figure is computed from <code>\ncar=(TH-TC)/TH</code> from the temperature TH of the expansion chamber walls and the pressure chamber temperature TC. The curve coefficient <code>\nappa_dia</code> is the ratio of the illustrated efficiency to the Carnot efficiency. The curve coefficient appears to decrease in the high rotation region because of pressure loss of the operating gas. Moreover, the engine efficiency <code>\nappa_m</code> is at a maximum near 1,000 r.p.m. The reduction in the engine efficiency at the high rotation region appears to be due to the fact that in constrast to the decrease in the rate at which the output increases with r.p.m., friction loss of the seal and output pick up device increases almost proportionally to the r.p.m.

4-3) Effect of Operating Gas Pressure

The correlation between the output and operating gas pressure with 1,000 r.p.m. is shown in Figure 5 and the correlation between the efficiency of the total unit and each section and the operating gas pressure is shown in Figure 6. efficiency shows a tendency to increase with an increase in the operating gas pressure. However, the rate of increase decreases at approximately 10 MPa. Burner efficiency decreases on the low pressure side because the heat leak from the heating furnace is practically constant. The illustrated efficiency decreases slightly with an increase in operating This is due to the reduction in Carnot gas pressure. efficiency. The reduction in the Carnot efficiency occurs for the following reasons. (1) The input to the operating gas increases almost proportionally to the operating gas pressure and therefore, the operating gas temperature of the expansion Chamber decreases at a constant heater tube temperature. (2) The amount of heat transmitted by the low temperature heat exchanger increases with an increase in pressure and therefore, the temperature of the operating gas in the pressure chamber increases. Engine efficiency shows a tendency to decrease in thelow rotation region and increase monotonously with an increase in pressure. is due to the fact that the friction loss of the driving section and seal to the illustrated output is very high

/134

ORIGINAL PAGE 18 OF POOR QUALITY

on the low pressure side. Moreover, the friction loss of the seal is proportional to the operating gas pressure and the high pressure side and the driving section loss is proportional to approximately 1/2 this pressure. Therefore, the total of both friction losses decreases relative to the illustrated output.

4-4 Effect of Heater Tube Temperature

The effect of the heater tube temperature on output and efficiency is shown in Fgiure 7. Here the case where the temperature is varied under each operation condition in relation to the maximum output and maximum efficiency is shown. The efficiency increased 1.5% and output increased 5 KW with each 50°C increase in the heater tube temperature within the range of this test. This is obviously due to the increase in the Carnot efficiency.

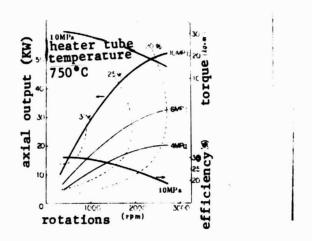


Figure 2 Engine Property Curves and Equivalent
Efficiency Curves

burner efficiency: $\frac{1}{2} = \frac{C+D+E+F}{Q}$ illustrated efficiency: $\frac{1}{2} = \frac{D+E+F}{C+D+E+F}$ engine efficiency: $\frac{F}{D+E+F}$

ORIGINAL PAGE 19 OF POOR QUALITY

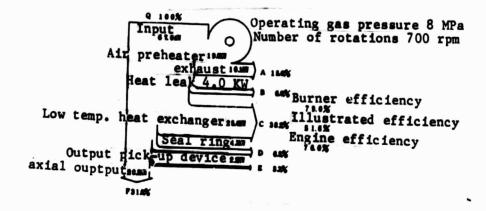


Figure 3. Thermal computation chart

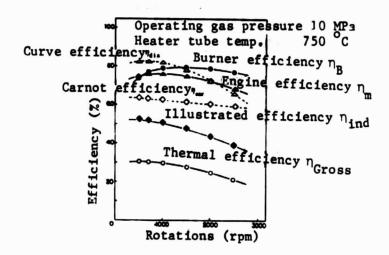


Figure 4. Correlation between efficiency and R.P.M.

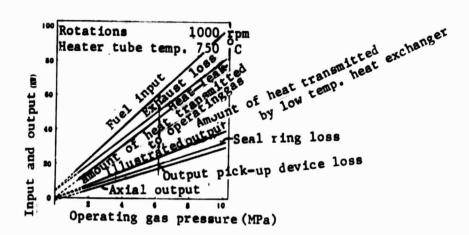


Figure 5. Correlation between input and output and operating gas pressure.

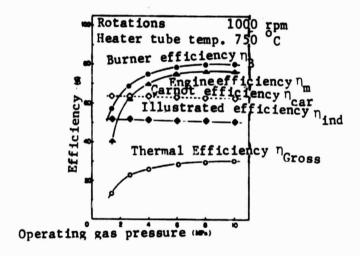


Figure 6. Correlation between efficiency and operating gas pressure.

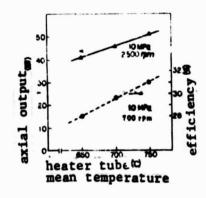


Figure 7. Effect of heater tube temperature

Conclusion

Knowledge on the basic dynamic properties of the sterling engine was obtained from these tests. The particularly important points are as follows: (1) Torque is very large in the low rotation region and smooth operation is possible. (2) A high thermal efficiency is shown in the low rotation region. Moreover, in this test the maximum output was 52 KW and the maximum efficiency was 31%. However, it was also shown that improved efficiency and output can be anticipated with an increase in the operating gas pressure and the temperature. It is a known fact that when hydrogen is used as the operating gas, the output is increased 1.5 times in comparison to the case of helium (2). Therefore, we will also carry out tests on the use of hydrogen.

In conclusion we would like to express our thanks to the Ministry of International Trade and Industry Industrial Technology Agency for their help in making this study possible, and to the Tokyo Engineering University for their assistance.

Bibliography

- [1] Ishizaki, Tani, and Haramura: "Experimental Research on the Sterling Engine", Nihon Kikai Gakkai Ronbun Shu, No. 790-16 (10/1979).
- [2] Roy C. Tew, et al.: SAE Paper 790327(1979).