6,205 research outputs found

    Relationship between macroscopic physical properties and local distortions of low doping La{1-x}Ca{x}MnO3: an EXAFS study

    Full text link
    A temperature-dependent EXAFS investigation of La{1-x}Ca{x}MnO3 is presented for the concentration range that spans the ferromagnetic-insulator (FMI) to ferromagnetic-metal (FMM) transition region, x = 0.16-0.22. The samples are insulating for x = 0.16-0.2 and show a metal/insulator transition for x = 0.22. All samples are ferromagnetic although the saturation magnetization for the 16% Ca sample is only ~ 70% of the expected value at 0.4T. We find that the FMI samples have similar correlations between changes in the local Mn-O distortions and the magnetization as observed previously for the colossal magnetoresistance (CMR) samples (0.2 < x < 0.5) - except that the FMI samples never become fully magnetized. The data show that there are at least two distinct types of distortions. The initial distortions removed as the insulating sample becomes magnetized are small and provides direct evidence that roughly 50% of the Mn sites have a small distortion/site and are magnetized first. The large remaining Mn-O distortions at low T are attributed to a small fraction of Jahn-Teller-distorted Mn sites that are either antiferromagnetically ordered or unmagnetized. Thus the insulating samples are very similar to the behavior of the CMR samples up to the point at which the M/I transition occurs for the CMR materials. The lack of metallic conductivity for x <= 0.2, when 50% or more of the sample is magnetic, implies that there must be preferred magnetized Mn sites and that such sites do not percolate at these concentrations.Comment: 27 pages, 8 figures, to be submitted to Phys. Rev.

    Nonexistence theorems for traversable wormholes

    Full text link
    Gauss-Bonnet formula is used to derive a new and simple theorem of nonexistence of vacuum static nonsingular lorentzian wormholes. We also derive simple proofs for the nonexistence of lorentzian wormhole solutions for some classes of static matter such as, for instance, real scalar fields with a generic potential obeying ϕV(ϕ)0\phi V'(\phi) \ge 0 and massless fermions fields

    Well-posedness for set optimization problems

    Get PDF
    If you wish to contact a Curtin researcher associated with this document, you may obtain an email address fro

    Multiple human herpesvirus-8 infection

    Get PDF
    In Malawian patients with Kaposi sarcoma (KS) and their relatives, we investigated nucleotide-sequence variation in human herpesvirus-8 (HHV-8) subgenomic DNA, amplified from oral and blood samples by use of polymerase chain reaction. Twenty-four people had amplifiable HHV-8 DNA in >1 sample; 9 (38%) were seropositive for human immunodeficiency virus type 1, 21 (88%) were anti-HHV-8-seropositive, and 7 (29%) had KS. Sequence variation was sought in 3 loci of the HHV-8 genome: the internal repeat domain of open-reading frame (ORF) 73, the KS330 segment of ORF 26, and variable region 1 of ORF K1. Significant intraperson/intersample and intrasample sequence polymorphisms were observed in 14 people (60%). For 3 patients with KS, intraperson genotypic differences, arising from nucleotide sequence variations in ORFs 26 and K1, were found in blood and oral samples. For 2 other patients with KS and for 9 people without KS, intraperson genotypic and subgenotypic differences, originating predominantly from ORF K1, were found in oral samples; for the 2 patients with KS and for 4 individuals without KS, intrasample carriage of distinct ORF K1 sequences also were discernible. Our findings imply HHV-8 superinfection

    Two algorithms for the student-project allocation problem

    Get PDF
    We study the Student-Project Allocation problem (SPA), a generalisation of the classical Hospitals / Residents problem (HR). An instance of SPA involves a set of students, projects and lecturers. Each project is offered by a unique lecturer, and both projects and lecturers have capacity constraints. Students have preferences over projects, whilst lecturers have preferences over students. We present two optimal linear-time algorithms for allocating students to projects, subject to the preference and capacity constraints. In particular, each algorithm finds a stable matching of students to projects. Here, the concept of stability generalises the stability definition in the HR context. The stable matching produced by the first algorithm is simultaneously best-possible for all students, whilst the one produced by the second algorithm is simultaneously best-possible for all lecturers. We also prove some structural results concerning the set of stable matchings in a given instance of SPA. The SPA problem model that we consider is very general and has applications to a range of different contexts besides student-project allocation

    Monitoring oxide quality using the spread of the dC/dV peak in scanning capacitance microscopy measurements

    Get PDF
    This article proposes a method for evaluating the quality of the overlying oxide on samples used in scanning capacitance microscopy (SCM) dopant profile extraction. The method can also be used generally as a convenient in-process method for monitoring oxide quality directly after the oxidation process without prior metallization of the oxide-semiconductor sample. The spread of the differential capacitance characteristic (dC/dV versus V plot), characterized using its full width at half maximum (FWHM), was found to be strongly dependent on the interface trap density as a consequence of the stretch-out effect of interface traps on the capacitance-voltage (C-V) curve. Results show that the FWHM of the dC/dV characteristic is a sensitive monitor of oxide quality (in terms of interface trap density) as it is not complicated by localized oxide charging effects as in the case of the SCM probe tip voltage corresponding to maximum dC/dV. The magnitude of the dC/dV peak, at any given surface potential, was also found to be independent of the interface traps and only dependent on the substrate dopant concentration, which makes SCM dopant profile extraction possible

    Towards Grid-Wide Modeling and Simulation

    Get PDF
    Modeling and simulation permeate all areas of business, science and engineering. With the increase in the scale and complexity of simulations, large amounts of computational resources are required, and collaborative model development is needed, as multiple parties could be involved in the development process. The Grid provides a platform for coordinated resource sharing and application development and execution. In this paper, we survey existing technologies in modeling and simulation, and we focus on interoperability and composability of simulation components for both simulation development and execution. We also present our recent work on an HLA-based simulation framework on the Grid, and discuss the issues to achieve composability.Singapore-MIT Alliance (SMA

    Incomplete quantum state estimation: a comprehensive study

    Full text link
    We present a detailed account of quantum state estimation by joint maximization of the likelihood and the entropy. After establishing the algorithms for both perfect and imperfect measurements, we apply the procedure to data from simulated and actual experiments. We demonstrate that the realistic situation of incomplete data from imperfect measurements can be handled successfully.Comment: 11 pages, 10 figure
    corecore