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1 Introduction

Well-posedness of optimization problems was first studied by Tykhonov [1] in 1966. Since

then, the notions of well-posedness have been extended to different kinds of optimization

problems (see [2, 3, 4, 5, 6, 7]). In the book edited by Lucchetti and Revalski [8], Loridan

gave a survey on some theoretical results of well-posedness, approximate solutions and

variational principles in vector optimization. Based on the 𝜀-minimal solutions, Bednar-

czuk [9] investigated several well-posedness for vector optimization problems. Huang [2]

introduced two kinds of extended well-posedness for set-valued optimization problems and

investigated a series of their characterizations and criteria. Also, some authors discussed

the well-posedness of variational inequality and equilibrium problems, see [7, 10, 11].

It is worth noting that there is a kind of optimization problems called set optimiza-

tion problems, which was firstly introduced by Kuroiwa (see [12]). Comparing with the

usual set-valued optimization problems, set optimization problems consider relationship

among image sets, but not look for efficient points of the set of all image sets. Thus, set

optimization problems often play more natural roles. Until now there have been many

papers to study them (see [12, 13, 14, 15, 16, 17, 18]). Kuroiwa [13] showed six relations

among sets, and obtained duality theorems of set optimization. Kuroiwa [15] introduced

efficiencies for a family of sets and investigated existence results of such efficient sets.

Using the concept of cone extension and the Mordukhovich coderivative, Ha [16] studied

some variants of the Ekeland’s variational principle for a set-valued mapping under var-

ious continuity assumptions. Alonso and Rodŕıguez-Maŕın [18] discussed the optimality

conditions for set optimization. But to the best of our knowledge, there is still no paper

concerning well-posedness for set optimization problems.

In this paper, we shall first introduce three kinds of well-posedness for a set opti-

mization problem, i.e., 𝑘0-well-posedness at a minimizer, generalized 𝑘0-well-posedness

and extended 𝑘0-well-posedness. Then, using a generalized version of so-called nonlin-

ear scalarization functional (see [17]), we establish equivalent relations between the three

kinds of well-posedness for the set optimization problem and well-posedness of the three

kinds of scalar optimization problems, respectively. Finally, base on these scalar results,

we extend some basic results of well-posedness of scalar optimization problems to set op-

timization problems and derive some criteria and characterizations for the three types of

well-posedness of the set optimization problem.

The rest of the paper is organized as follows. In Section 2, we present the concepts

2



of three kinds of well-posedness for a set optimization problem and give examples to

illustrate them. In Section 3, we prove the equivalent relations between three kinds of well-

posedness of the set optimization problem and well-posedness of the three kinds of scalar

optimization problems, respectively, and extend many basic results of scalar optimization

problems to the set optimization problem. In Section 4, we give some characterizations

and criteria to the three kinds of well-posedness for the set optimization problem.

2 Preliminaries and Well-Posedness of (𝑋, 𝐼)

Let (𝑋, 𝑑) be a metric space, and 𝑌 be a real topological linear space ordered by a convex

closed and pointed cone 𝐶 ⊂ 𝑌 with its topological interior int𝐶 ∕= ∅. Let 𝑘0 ∈ int𝐶

and 𝑒 = −𝑘0. We say that a nonempty set 𝐴 ⊂ 𝑌 is 𝐶-proper if 𝐴 + 𝐶 ∕= 𝑌 and denote

by 𝒫0𝐶(𝑌 ) the family of all 𝐶-proper subsets of 𝑌 . 𝐴 ⊂ 𝑌 is said to be 𝐶-closed if

𝐴 + 𝐶 is a closed set, 𝐶-bounded if for each neighborhood 𝑈 of zero in 𝑌 there is some

positive number 𝑡 such that 𝐴 ⊂ 𝑡𝑈 + 𝐶 and 𝐶-compact if any cover of 𝐴 of the form

{𝑈𝛼 + 𝐶 : 𝑈𝛼 are open} admits a finite subcover. 𝐴 ⊂ 𝑌 is said to be bounded if for

each neighborhood 𝑈 of zero in 𝑌 there is some positive number 𝑡 such that 𝐴 ⊂ 𝑡𝑈 .

Suppose that 𝐴,𝐵 ⊂ 𝑌 . By 𝐴 ≤𝐶 𝐵 and 𝐴 ≤𝑖𝑛𝑡𝐶 𝐵 we denote 𝐵 ⊂ 𝐴 + 𝐶 and

𝐵 ⊂ 𝐴+ int𝐶, respectively. Similarly, by 𝐴 ∕≤𝐶 𝐵 and 𝐴 ∕≤𝑖𝑛𝑡𝐶 𝐵 we denote 𝐵 ∕⊂ 𝐴+ 𝐶

and 𝐵 ∕⊂ 𝐴+ int𝐶, respectively.

Assume that 𝐼 : 𝑋 → 2𝑌 is a set-valued mapping with nonempty values at each

point in 𝑋. 𝐼 is said to be bounded (closed, compact, convex, 𝐶-closed, 𝐶-bounded, 𝐶-

compact)-valued if for each 𝑥 ∈ 𝑋, 𝐼(𝑥) is a bounded (closed, compact, convex, 𝐶-closed,

𝐶-bounded, 𝐶-compact) set. 𝐼 is said to be 𝐶-lower semi-continuous iff, for any 𝐴 ⊂ 𝑌 ,

the set {𝑥 ∈ 𝑋 : 𝐼(𝑥) ≤𝐶 𝐴} is closed. 𝐼 is said to be upper semi-continuous (𝑢.𝑠.𝑐. for

short) at 𝑥 ∈ 𝑋 if for any open set 𝑈 ⊃ 𝐼(𝑥), there exists a neighborhood 𝑉 of 𝑥 such

that
∪

𝑥∈𝑉 𝐼(𝑥) := 𝐼(𝑉 ) ⊂ 𝑈 . 𝐼 is said to be 𝑢.𝑠.𝑐. on 𝑋 if 𝐼 is 𝑢.𝑠.𝑐. at every point of

𝑋. 𝐼 is said to be lower semi-continuous (𝑙.𝑠.𝑐. for short) at 𝑥0 ∈ 𝑋 if for any 𝑦0 ∈ 𝐼(𝑥0)

and any neighborhood 𝑈 of 𝑦0, there exists a neighborhood 𝑉 of 𝑥0 such that ∀𝑥 ∈ 𝑉 ,

𝐼(𝑥) ∩ 𝑈 ∕= ∅. 𝐼 is said to be 𝑙.𝑠.𝑐. on 𝑋 if 𝐼 is 𝑙.𝑠.𝑐. at every point of 𝑋. 𝐼 is said to be

continuous, if 𝐼 is both 𝑙.𝑠.𝑐. and 𝑢.𝑠.𝑐. on 𝑋.

Consider the following set optimization problem:

(𝑋, 𝐼) : minimize 𝐼(𝑥), 𝑥 ∈ 𝑋.
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A point 𝑦 ∈ 𝑋 is said to be a minimizer of (𝑋, 𝐼) if and only if ∀𝑥 ∈ 𝑋, 𝐼(𝑥) ≤𝐶 𝐼(𝑦)

implies 𝐼(𝑦) ≤𝐶 𝐼(𝑥), and the set of all minimizers is denoted by argmin(𝑋, 𝐼). A point

𝑦 ∈ 𝑋 is said to be a weak minimizer of (𝑋, 𝐼) if and only if 𝐼(𝑥) ∕≤𝑖𝑛𝑡𝐶 𝐼(𝑦), for all 𝑥 ∈ 𝑋,

and the set of all weak minimizers is denoted by argwmin(𝑋, 𝐼). Clearly, a minimizer of

(𝑋, 𝐼) must be a weak minimizer of (𝑋, 𝐼), but the reverse may not hold. In this paper,

we always assume that argmin(𝑋, 𝐼) ∕= ∅ and argwmin(𝑋, 𝐼) ∕= ∅.
Now we introduce three kinds of well-posedness for set optimization problem (𝑋, 𝐼).

Definition 2.1 (𝑋, 𝐼) is said to be 𝑘0-well-posed at 𝑣 ∈ argmin(𝑋, 𝐼), if for each sequence

{𝑥𝑛}, which satisfies that ∃𝜀𝑛 > 0, 𝜀𝑛 → 0 such that

𝐼(𝑥𝑛) ≤𝐶 𝐼(𝑣) + 𝜀𝑛𝑘0, (1)

it holds that 𝑥𝑛 → 𝑣.

The sequence {𝑥𝑛} as in (1) is called a 𝑘0-minimizing sequence to 𝑣 ∈ argmin(𝑋, 𝐼).

Well-posedness defined in Definition 2.1 is a notion to study the behavior of the func-

tion at one point in argmin(𝑋, 𝐼). The following two definitions investigate the behavior of

the variables when the corresponding objective function values are approached in different

means to the sets of minimizers.

Definition 2.2 (𝑋, 𝐼) is said to be generalized 𝑘0-well-posed, if for each sequence {𝑥𝑛},
which satisfies that ∃𝜀𝑛 > 0, 𝜀𝑛 → 0 and ∃𝑧𝑛 ∈ argmin(𝑋, 𝐼) such that

𝐼(𝑥𝑛) ≤𝐶 𝐼(𝑧𝑛) + 𝜀𝑛𝑘0, (2)

there exist a subsequence {𝑥𝑛𝑘
} ⊂ {𝑥𝑛} and 𝑥∗ ∈ argmin(𝑋, 𝐼) such that 𝑥𝑛𝑘

→ 𝑥∗.

The sequence {𝑥𝑛} as in (2) is called a generalized 𝑘0-minimizing sequence.

Definition 2.3 (𝑋, 𝐼) is said to be extended 𝑘0-well-posed, if for every sequence {𝑥𝑛},
which satisfies that ∃𝜀𝑛 > 0, 𝜀𝑛 → 0, ∀𝑥 ∈ 𝑋,

𝐼(𝑥𝑛) ∕⊂ 𝐼(𝑥) + 𝜀𝑛𝑘0 + int𝐶, (3)

there exist a subsequence {𝑥𝑛𝑘
} ⊂ {𝑥𝑛} and 𝑥∗ ∈ argwmin(𝑋, 𝐼) such that 𝑥𝑛𝑘

→ 𝑥∗.

The sequence {𝑥𝑛} as in (3) is called an extended 𝑘0-minimizing sequence.
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If problem (𝑋, 𝐼) is neither generalized 𝑘0-well-posed nor extended 𝑘0-well-posed, then

it is called 𝑘0-ill-posed.

Let us illustrate these definitions by the following examples.

Example 2.1 Let 𝑋 = 𝑅, 𝐶 = 𝑅2
+ and 𝑘0 = (1, 1).

(i) Let the mapping 𝐹1 : [0, 4𝜋] → 𝑅2 be defined by

𝐹1(𝑥) =

⎧⎨⎩ (𝑥, 𝑠𝑖𝑛𝑥) + {(𝑦1, 𝑦2) ∣ 𝑦21 + 𝑦22 = 1
9
}, 𝑖𝑓 𝑥 ∈ [0, 2𝜋),

(𝑥, 𝑠𝑖𝑛𝑥) + {(𝑦1, 𝑦2) ∣ 𝑦21 + 𝑦22 = 1
4
}, 𝑖𝑓 𝑥 ∈ [2𝜋, 4𝜋].

Then, set optimization problem (𝑋,𝐹1) is 𝑘0-well-posed at 𝑥 = 3𝜋
2

and 𝑥 = 7𝜋
2
.

(ii) Let the mapping 𝐹2 : [0,+∞) → 𝑅2 be defined by

𝐹2(𝑥) = {𝜆(0, 1) + (1− 𝜆)(𝑥, 0) : 0 ≤ 𝜆 ≤ 1}.

Then set optimization problem (𝑋,𝐹2) is generalized 𝑘0-well-posed.

(iii) Let the mapping 𝐹3 : (0,+∞) → 𝑅2 be defined by

𝐹3(𝑥) = (𝑥− 𝑛, 𝑛) + [0, 1]× [0, 1], 𝑥 ∈ (𝑛, 𝑛+ 1], 𝑛 = 0, 1, . . .

Then, set optimization problem (𝑋,𝐹3) is extended 𝑘0-well-posed.

(iv) Let the mapping 𝐹4 : (−∞, 0] → 𝑅2 be defined by

𝐹4(𝑥) =

⎧⎨⎩ {(0, 𝑢), 0 ≤ 𝑢 ≤ 1}, 𝑖𝑓 𝑥 = 0,

{(2𝑥, 𝑢), 0 ≤ 𝑢 ≤ 1
1−2𝑥

}, 𝑖𝑓 𝑥 ∈ (−∞, 0).

Then, set optimization problem (𝑋,𝐹4) is 𝑘0-ill-posed.

Remark 2.1 (1) It is not difficult to see that 𝑘0-minimizing sequence to 𝑣 ∈ argmin(𝑋, 𝐼)

and generalized 𝑘0-minimizing sequence are always exist. From Proposition 3.1 of

[16], when 𝐼(𝑋) is 𝐶-bounded, extended 𝑘0-minimizing sequence exists.

(2) Suppose that (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣 ∈ argmin(𝑋, 𝐼), then there exists no point

𝑢 ∈ 𝑋, 𝑢 ∕= 𝑣 satisfying both 𝐼(𝑣) ≤𝐶 𝐼(𝑢) and 𝐼(𝑢) ≤𝐶 𝐼(𝑣).

(3) Problem (𝑋, 𝐼) is generalized 𝑘0-well-posed iff argmin(𝑋, 𝐼) is compact and 𝑑(𝑥𝑛,

argmin(𝑋, 𝐼)) → 0 for every generalized 𝑘0-minimizing sequence {𝑥𝑛}. (𝑋, 𝐼) is

extended 𝑘0-well-posed iff argwmin(𝑋, 𝐼) is compact and 𝑑(𝑥𝑛, argwmin(𝑋, 𝐼)) → 0

for every extended 𝑘0-minimizing sequence {𝑥𝑛}.
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(4) Assume that argmin(𝑋, 𝐼) is compact and 𝐼 is continuous. If problem (𝑋, 𝐼) is 𝑘0-

well-posed at y for each 𝑦 ∈ argmin(𝑋, 𝐼), then (𝑋, 𝐼) is generalized 𝑘0-well-posed.

Next we recall the definitions of well-posedness and and generalized well-posedness for

a scalar optimization problem in [19]. Let 𝑓 : 𝑋 → 𝑅 be a real-valued function. Consider

the following scalar optimization problem:

(𝑋, 𝑓) : min
𝑥∈𝑋

𝑓(𝑥).

∙ (𝑋, 𝑓) is called Tykhonov well-posed iff 𝑓 has an unique minimizer on 𝑋 towards which

every sequence 𝑢𝑛 ∈ 𝑋 such that 𝑓(𝑢𝑛) → inf 𝑓(𝑋) converges.

∙ (𝑋, 𝑓) is called generalized well-posed in the scalar sense iff the set of minimizers of

(𝑋, 𝑓) is not empty, and every sequence {𝑢𝑛} ⊂ 𝑋 such that 𝑓(𝑢𝑛) → inf 𝑓(𝑋) has

some subsequence {𝑢𝑛𝑘
} converging to a minimizer of (𝑋, 𝑓).

Remark 2.2 If 𝑌 = 𝑅, 𝐶 = 𝑅+, 𝑘0 = 1 and 𝐼 is single-valued, then 𝑘0-well-posed

at 𝑣 ∈ argmin(𝑋, 𝐼) reduces to the Tykhonov well-posedness in [19]. The generalized

𝑘0-well-posedness and extended 𝑘0-well-posedness for (𝑋, 𝐼) reduce to the generalized well-

posedness in the scalar sense (see [19]).

3 Scalarization and Well-posedness of (𝑋, 𝐼)

In this section, we recall the Gerstewizt’s function studied in [20] and discuss the equivalent

relations of three kinds of well-posedness between set optimization problems and scalar

optimization problems, respectively.

Definition 3.1 ([20]) Let 𝑎 ∈ 𝑌 . It is said that 𝜙𝑒,𝑎 : 𝑌 → 𝑅 defined by

𝜙𝑒,𝑎(𝑦) = min{𝑡 ∈ 𝑅 : 𝑦 ∈ 𝑡𝑒+ 𝑎+ 𝐶}, for 𝑦 ∈ 𝑌,

is the Gerstewizt’s function.

The Gerstewizt’s function is continuous and strictly decreasing on 𝑌 . This function

is also called nonlinear scalarization functional. It plays important roles in many areas.

Based on Definition 3.1, Hern𝑎́ndez and Rodŕıguez-Maŕın (see [17]) introduced a gen-

eralized Gerstewitz’s function as follows.
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Definition 3.2 ([17]) Let the function 𝐺𝑒(⋅, ⋅): 𝒫0𝐶(𝑌 )2 → 𝑅 ∪ {∞} defined by setting

𝐺𝑒(𝐴,𝐵) = sup
𝑏∈𝐵

{𝜙𝑒,𝐴(𝑏)}, for (𝐴,𝐵) ∈ 𝒫0𝐶(𝑌 )2,

where the function 𝜙𝑒,𝐴 : 𝑌 → 𝑅 ∪ {−∞} is defined by

𝜙𝑒,𝐴(𝑦) = inf{𝑡 ∈ 𝑅 : 𝑦 ∈ 𝑡𝑒+ 𝐴+ 𝐶}, for 𝑦 ∈ 𝑌.

Note that when 𝐴 = {𝑎} and 𝐵 = {𝑦}, the function 𝐺𝑒(𝐴,𝐵) reduces to the function

𝜙𝑒,𝑎(𝑦).

From Proposition 3.2, Theorem 3.6 and Theorem 3.9 of [17], we immediately obtain

the following important properties of 𝐺𝑒(⋅, ⋅).

Lemma 3.1 ([17]) Let 𝐴 be a 𝐶-bounded set and 𝐵 ∈ 𝒫0𝐶(𝑌 ). Then 𝐵 is 𝐶-bounded if

and only if 𝐺𝑒(𝐴,𝐵) < ∞.

Lemma 3.2 ([17]) 𝐴 is 𝐶-closed and 𝐵 is 𝐶-bounded. Then the following equality holds:

𝐺𝑒(𝐴,𝐵) = min{𝑟 ∣ 𝐵 ⊂ 𝑟𝑒+ 𝐴+ 𝐶}.

Lemma 3.3 ([17]) Assume that 𝑟 ∈ 𝑅, 𝐴 is 𝐶-closed and 𝐵 is 𝐶-bounded. Then,

(i) 𝐺𝑒(𝐴,𝐵) ≤ 𝑟 ⇔ 𝐵 ⊂ 𝑟𝑒+ 𝐴+ 𝐶;

(ii) If 𝐵1 and 𝐵2 are 𝐶-compact sets and 𝐵2 ≤𝑖𝑛𝑡𝐶 𝐵1, then 𝐺𝑒(𝐴,𝐵1) < 𝐺𝑒(𝐴,𝐵2);

(iii) 𝐺𝑒(𝐴,𝐴) = 0.

Lemma 3.4 Assume 𝐴,𝐴1, 𝐴2, 𝐵 ∈ 𝒫0𝐶(𝑌 ), 𝑟 ∈ 𝑅, 𝐴,𝐴1, 𝐴2 are 𝐶-closed and 𝐵 is

𝐶-bounded. Then,

(i) 𝐺𝑒(𝐴+ 𝜀𝑘0, 𝐵) = 𝐺𝑒(𝐴,𝐵) + 𝜀, for all 𝜀 ≥ 0;

(ii) 𝐺𝑒(𝐴,𝐵 + 𝜀𝑘0) = 𝐺𝑒(𝐴,𝐵)− 𝜀, for all 𝜀 ≥ 0;

(iii) If 𝐴1 ≤𝐶 𝐴2, then 𝐺𝑒(𝐴1, 𝐵) ≤ 𝐺𝑒(𝐴2, 𝐵);

(iv) 𝐺𝑒(𝐴,𝐵) < 𝑟 ⇔ 𝐵 ⊂ 𝑟𝑒+ 𝐴+ int𝐶.
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Proof. (i) From the properties of the function 𝐺𝑒(⋅, ⋅),

𝐺𝑒(𝐴+ 𝜀𝑘0, 𝐵) = min{𝑟 ∣ 𝐵 ⊂ 𝑟𝑒+ 𝐴+ 𝜀𝑘0 + 𝐶}
= min{𝑟 ∣ 𝐵 ⊂ (𝑟 − 𝜀)𝑒+ 𝐴+ 𝐶}
= min{𝑟 − 𝜀 ∣ 𝐵 ⊂ (𝑟 − 𝜀)𝑒+ 𝐴+ 𝐶}+ 𝜀

= 𝐺𝑒(𝐴,𝐵) + 𝜀.

(ii) From the properties of the function 𝐺𝑒(⋅, ⋅),

𝐺𝑒(𝐴,𝐵 + 𝜀𝑘0) = min{𝑙 ∣ 𝐵 + 𝜀𝑘0 ⊂ 𝑙𝑒+ 𝐴+ 𝐶}
= min{𝑙 ∣ 𝐵 ⊂ (𝑙 + 𝜀)𝑒+ 𝐴+ 𝐶}
= min{𝑙 + 𝜀 ∣ 𝐵 ⊂ (𝑙 + 𝜀)𝑒+ 𝐴+ 𝐶} − 𝜀

= 𝐺𝑒(𝐴,𝐵)− 𝜀.

(iii) Since

𝐺𝑒(𝐴2, 𝐵) = min{𝑟 ∣ 𝐵 ⊂ 𝑟𝑒+ 𝐴2 + 𝐶},
𝐵 ⊂ 𝐺𝑒(𝐴2, 𝐵)𝑒+ 𝐴2 + 𝐶.

Let 𝐴1 ≤𝐶 𝐴2. Then we have

𝐵 ⊂ 𝐺𝑒(𝐴2, 𝐵)𝑒+ 𝐴1 + 𝐶 and 𝐺𝑒(𝐴1, 𝐵) ≤ 𝐺𝑒(𝐴2, 𝐵).

(iv) Suppose 𝐺𝑒(𝐴,𝐵) < 𝑟. Then there exists an 𝜆 < 𝑟 such that 𝐺𝑒(𝐴,𝐵) ≤ 𝜆. It

follows from Lemma 3.3 (i) that

𝐵 ⊂ 𝜆𝑒+ 𝐴+ 𝐶

= (𝜆− 𝑟 + 𝑟)𝑒+ 𝐴+ 𝐶

= 𝑟𝑒+ 𝐴− (𝑟 − 𝜆)𝑒+ 𝐶.

By −(𝑟 − 𝜆)𝑒 ∈ int𝐶, we have 𝐵 ⊂ 𝑟𝑒+ 𝐴+ int𝐶.

Conversely, if 𝐵 ⊂ 𝑟𝑒+𝐴+int𝐶, then for every 𝑏 ∈ 𝐵, there exist 𝑎 ∈ 𝐴 and 𝑐 ∈ int𝐶

such that 𝑏 = 𝑟𝑒+ 𝑎+ 𝑐. Since 𝑌 is a linear topological space, one can find a real number

𝑡 > 0 such that 𝑐+ 𝑡𝑒 ∈ 𝐶. Set 𝜆 := 𝑟 − 𝑡, we get

𝑏 = 𝑟𝑒+ 𝑎+ 𝑐 = (𝑡+ 𝜆)𝑒+ 𝑎+ 𝑐 = 𝜆𝑒+ 𝑎+ 𝑐+ 𝑡𝑒.

Hence 𝑦 ∈ 𝜆𝑒+ 𝑎+𝐶. This implies 𝐵 ⊂ 𝜆𝑒+𝐴+𝐶. Thus, from Lemma 3.3 (i), we have

𝐺𝑒(𝐴,𝐵) ≤ 𝜆 < 𝑟. The proof is complete. □
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Theorem 3.1 Suppose that 𝑣 ∈ argmin(𝑋, 𝐼) and 𝐼 is 𝐶-bounded-valued and 𝐶-closed-

valued. Then,

(i) the problem (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣 if and only if the problem (𝑋,𝐺𝑒(𝐼(⋅), 𝐼(𝑣)))
is Tykhonov well-posed;

(ii) the problem (𝑋, 𝐼) is generalized 𝑘0-well-posed if and only if argmin(𝑋, 𝐼) is compact

and the scalar problem (𝑋, inf𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)𝐺𝑒(𝐼(⋅), 𝐼(𝑣))) is generalized well-posed in

the scalar sense;

(iii) if 𝐼 is 𝐶-compact-valued, the problem (𝑋, 𝐼) is extended 𝑘0-well-posed if and only

if argwmin(𝑋, 𝐼) is compact and the scalar problem (𝑋,− inf𝑥∈𝑋 𝐺𝑒(𝐼(𝑥), 𝐼(⋅))) is

generalized well-posed in the scalar sense.

Proof. First, we prove that for 𝑣 ∈ argmin(𝑋, 𝐼) and every 𝑥 ∈ 𝑋, 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≥ 0.

On a contrary, suppose that there exist 𝑥 ∈ 𝑋 and 𝑟 < 0, such that 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) < 𝑟.

From Lemma 3.4 (iv), we have

𝐼(𝑣) ⊂ 𝑟𝑒+ 𝐼(𝑥) + int𝐶 ⊂ 𝐼(𝑥) + int𝐶.

Since 𝑣 is a minimizer of (𝑋, 𝐼), 𝐼(𝑥) ⊂ 𝐼(𝑣) + 𝐶. Therefore, 𝐼(𝑥) ⊂ 𝐼(𝑥) + int𝐶, which

is a contradiction.

Next, we prove that for 𝑥 ∈ 𝑋, 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) = 0 if and only if 𝐼(𝑥) ≤𝐶 𝐼(𝑣) and

𝐼(𝑣) ≤𝐶 𝐼(𝑥). In fact, combining with 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) = 0 and 𝑣 ∈ argmin(𝑋, 𝐼), we have

that

𝐼(𝑣) ⊂ 𝐼(𝑥) + 𝐶 and 𝐼(𝑥) ⊂ 𝐼(𝑣) + 𝐶,

i.e.,

𝐼(𝑥) ≤𝐶 𝐼(𝑣) and 𝐼(𝑣) ≤𝐶 𝐼(𝑥).

Conversely, assume 𝐼(𝑥) ⊂ 𝐼(𝑣) + 𝐶 and 𝐼(𝑣) ⊂ 𝐼(𝑥) + 𝐶. From 𝐼(𝑣) ⊂ 𝐼(𝑥) + 𝐶,

we have 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 0. If 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) < 0, then there exists 𝑟 < 0 such that

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) < 𝑟. From Lemma 3.4 (iv), we have 𝐼(𝑣) ⊂ 𝑟𝑒+ 𝐼(𝑥) + int𝐶. Thus,

𝐼(𝑥) ⊂ 𝐼(𝑣) + 𝐶 ⊂ 𝑟𝑒+ 𝐼(𝑥) + int𝐶 ⊂ 𝐼(𝑥) + int𝐶,

which is a contradiction.

Finally, we prove that (i), (ii) and (iii) hold, respectively.
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(i) Assume that {𝑥𝑛} is a sequence satisfying

𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣)) → min
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) = 0.

It follows from Lemma 3.3 (ii) that we may assume 𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣)) = 𝜀𝑛 ≥ 0 and 𝜀𝑛 → 0,

which implies 𝐼(𝑣) ⊂ 𝜀𝑛𝑒+𝐼(𝑥𝑛)+𝐶. Then, {𝑥𝑛} is a 𝑘0-minimizing sequence to 𝑣. Since

(𝑋, 𝐼) is 𝑘0-well-posed at 𝑣, we have 𝑥𝑛 → 𝑣.

Now we show that 𝑣 is the unique minimizer of the scalar problem (𝑋,𝐺𝑒(𝐼(⋅), 𝐼(𝑣)).
In fact, if there exists 𝑢 ∕= 𝑣 such that 𝐺𝑒(𝐼(𝑢), 𝐼(𝑣)) = 0, we take 𝑥𝑛 = 𝑢 for all 𝑛. Then,

it follows from Lemma 3.3 (i) that {𝑥𝑛} is a 𝑘0-minimizing sequence to 𝑣. So 𝑥𝑛 → 𝑣,

which is a contradiction. Thus, (𝑋,𝐺𝑒(𝐼(⋅), 𝐼(𝑣)) is Tykhonov well-posed.

Conversely, we assume that {𝑥𝑛} is a sequence such that there exists 𝜀𝑛 > 0 with

𝜀𝑛 → 0 satisfying 𝐼(𝑥𝑛) ≤𝐶 𝐼(𝑣) + 𝜀𝑛𝑘0. Then

0 = min
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣)) ≤ 𝐺𝑒(𝐼(𝑣) + 𝜀𝑛𝑘0, 𝐼(𝑣)) = 𝜀𝑛.

Since the scalar problem (𝑋,𝐺𝑒(𝐼(⋅), 𝐼(𝑣))) is well-posed, {𝑥𝑛} converges to 𝑣, i.e., the

problem (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣.

(ii) Assume that {𝑥𝑛} is a sequence satisfying

inf
𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)

𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣)) → inf
𝑥∈𝑋

inf
𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) = 0.

Then there exist 𝜀′𝑛 > 0, 𝜀′𝑛 → 0 and 𝑣𝑥𝑛 ∈ argmin(𝑋, 𝐼) such that

0 ≤ 𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣𝑥𝑛)) = min{𝑟 ∣ 𝐼(𝑣𝑥𝑛) ⊂ 𝑟𝑒+ 𝐼(𝑥𝑛) + 𝐶} < 𝜀′𝑛.

It follows from Lemma 3.3 (ii) that there exists 𝜀𝑛 ∈ [0, 𝜀′𝑛) satisfying 𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣𝑥𝑛)) =

𝜀𝑛, which implies 𝐼(𝑣𝑥𝑛) ⊂ 𝜀𝑛𝑒 + 𝐼(𝑥𝑛) + 𝐶. Since the problem (𝑋, 𝐼) is generalized 𝑘0-

well-posed, {𝑥𝑛} has a subsequence converging to some point 𝑢 ∈ argmin(𝑋, 𝐼). Thus, the

scalar optimization problem (𝑋, inf𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)𝐺𝑒(𝐼(⋅), 𝐼(𝑣))) is generalized well-posed in

the scalar sense.

Conversely, assume that {𝑥𝑛} is a sequence, which satisfies that ∃𝜀𝑛 > 0, 𝜀𝑛 → 0 and

𝑣𝑛 ∈ argmin(𝑋, 𝐼) such that

𝐼(𝑥𝑛) ≤𝐶 𝐼(𝑣𝑛) + 𝜀𝑛𝑘0. (4)

Then, from Lemma 3.4 (iii), we have

0 = inf
𝑥∈𝑋

inf
𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣))
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≤ inf
𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)

𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣))

≤ 𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑣𝑛))

≤ 𝐺𝑒(𝐼(𝑣𝑛) + 𝜀𝑛𝑘0, 𝐼(𝑣𝑛))

= 𝜀𝑛.

Since inf𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)𝐺𝑒(𝐼(⋅), 𝐼(𝑣)) is generalized well-posed in the scalar sense, {𝑥𝑛} has

some subsequence converging to some point 𝑢 ∈ argmin(𝑋, 𝐼).

(iii) Firstly, we assume that {𝑥𝑛} is a sequence, which satisfies 𝐼(𝑥𝑛) ∕⊂ 𝐼(𝑥) + 𝜀𝑛𝑘0 +

int𝐶, for all 𝑥 ∈ 𝑋. Then, from Lemma 3.4 (iv), we have

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛)) ≥ −𝜀𝑛, ∀𝑥 ∈ 𝑋,

i.e.

− inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛)) ≤ 𝜀𝑛.

If there exists a subsequence {𝑥𝑛𝑘
} ⊂ {𝑥𝑛} such that − inf𝑥∈𝑋 𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛𝑘

)) < 0,

then

∀𝑥 ∈ 𝑋, 𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛𝑘
)) > 0,

which means that

𝐼(𝑥𝑛𝑘
) ∕⊂ 𝐼(𝑥) + int𝐶, ∀𝑥 ∈ 𝑋.

Thus, 𝑥𝑛𝑘
, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , are the weak minimizers of (𝑋, 𝐼). From the compactness of

argwmin(𝑋, 𝐼), there exists a subsequence of {𝑥𝑛𝑘
} converging to a point in argwmin(𝑋, 𝐼).

If there exists no subsequence {𝑥𝑛𝑘
} ⊂ {𝑥𝑛} such that

− inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛𝑘
)) < 0,

then, there is a subsequence {𝑥′
𝑛𝑘
} ⊂ {𝑥𝑛} such that

0 ≤ − inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥
′
𝑛𝑘
)) ≤ 𝜀𝑛𝑘

.

Since for all 𝑣 ∈ argwmin(𝑋, 𝐼), inf𝑥∈𝑋 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) = 0 and (𝑋,− inf𝑥∈𝑋 𝐺𝑒(𝐼(𝑥), 𝐼(⋅)))
is well-posed, there exists a subsequence of {𝑥′

𝑛𝑘
} converging to a point of argwmin(𝑋, 𝐼).

Therefore, the problem (𝑋, 𝐼) is extended 𝑘0-well-posed.

Conversely, suppose that {𝑥𝑛} is a sequence, which satisfies that ∃𝜀𝑛 ≥ 0 with 𝜀𝑛 → 0

such that

− inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛)) ≤ inf
𝑣∈𝑋

[− inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣))] + 2𝜀𝑛.
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So for all 𝑣 ∈ 𝑋, we have

inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛)) ≥ inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣))− 2𝜀𝑛.

Then, for any 𝑣 ∈ 𝑋 and 𝑛, there exists a point 𝑦𝑛,𝑣 ∈ 𝑋 such that

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥𝑛)) ≥ 𝐺𝑒(𝐼(𝑦𝑛,𝑣), 𝐼(𝑣))− 𝜀𝑛,∀𝑥 ∈ 𝑋.

Especially, taking 𝑥 = 𝑦𝑛,𝑣, we have

𝐺𝑒(𝐼(𝑦𝑛,𝑣), 𝐼(𝑥𝑛)) ≥ 𝐺𝑒(𝐼(𝑦𝑛,𝑣), 𝐼(𝑣))− 𝜀𝑛.

It follows from Lemma 3.3 (ii) and Lemma 3.4 (ii) that

𝐼(𝑥𝑛) ∕⊂ 𝐼(𝑣) + 𝜀𝑛𝑘0 + int𝐶.

By the arbitrariness of 𝑣 and 𝑛, we get

𝐼(𝑥𝑛) ∕⊂ 𝐼(𝑣) + 𝜀𝑛𝑘0 + int𝐶,∀𝑣 ∈ 𝑋 and 𝑛.

Since (𝑋, 𝐼) is extended 𝑘0-well-posed, there exists a subsequence of {𝑥𝑛} converging to

a point 𝑥0 ∈ argwmin(𝑋, 𝐼).

Now we show 𝑥0 ∈ argmin(𝑋,− inf𝑥∈𝑋 𝐺𝑒(𝐼(𝑥), 𝐼(⋅))). In fact, from 𝑥0 ∈ argwmin(𝑋, 𝐼),

we have that for every 𝑥 ∈ 𝑋, 𝐺𝑒(𝐼(𝑥), 𝐼(𝑥0)) ≥ 0. Arbitrarily choosing 𝑦 ∈ 𝑋, we obtain

inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥0)) ≥ 𝐺𝑒(𝐼(𝑦), 𝐼(𝑦))

by Lemma 3.3 (iii). Then, for every 𝑦 ∈ 𝑋,

− inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑦)) ≥ − inf
𝑥∈𝑋

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥0)),

i.e., 𝑥0 ∈ argmin(𝑋,− inf𝑥∈𝑋 𝐺𝑒(𝐼(𝑥), 𝐼(⋅))). Thus, the scalar problem (𝑋,− inf𝑥∈𝑋
𝐺𝑒(𝐼(𝑥), 𝐼(⋅))) is generalized well-posed in the scalar sense. This completes the proof.

□

Corollary 3.1 Let 𝑋 be a compact space, 𝐼 be a 𝐶-bounded and 𝐶-lower semi-continuous

mapping defined on 𝑋. Suppose that for every 𝑣 ∈ argmin(𝑋, 𝐼), there exists no point

𝑢 ∈ 𝑋, 𝑢 ∕= 𝑣 satisfying both 𝐼(𝑣) ≤𝐶 𝐼(𝑢) and 𝐼(𝑢) ≤𝐶 𝐼(𝑣). Then, (𝑋, 𝐼) is 𝑘0-well-

posed at 𝑣.
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Proof. Naturally, for any real number 𝛼,

{𝑥 ∈ 𝑋 : 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 𝛼} = {𝑥 ∈ 𝑋 : 𝐼(𝑣) ⊂ 𝛼𝑒+ 𝐼(𝑥) + 𝐶}.

From the closedness of the set {𝑥 ∈ 𝑋 : 𝐴 ⊂ 𝐼(𝑥) + 𝐶, ∀𝐴 ⊂ 𝑌 }, we have that the set

{𝑥 ∈ 𝑋 : 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 𝛼}

is also closed for any 𝛼. So, 𝐺𝑒(𝐼(⋅), 𝐼(𝑣)) is lower semi-continuous on 𝑋. From the

compactness of 𝑋 and Example 6 of [19, p.3], the scalar problem (𝑋,𝐺𝑒(𝐼(⋅), 𝐼(𝑣))) is

Tykhonov well-posed. Thus, by Theorem 3.1 (i), we get that (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣.

□

Corollary 3.2 Let 𝑋 be a locally compact metric space. Assume that 𝑣 ∈ argmin(𝑋, 𝐼), 𝐼

is 𝐶-bounded-valued and 𝐶-closed-valued and {𝑥 ∈ 𝑋 : ∀𝜀 > 0,∃𝑣 ∈ argmin(𝑋, 𝐼), 𝐼(𝑥) ≤𝐶

𝐼(𝑣) + (𝑡+ 𝜀)𝑘0} is connected. Then, the following three assertions are equivalent:

(i) ∃𝑡 > 0, {𝑥 ∈ 𝑋 : ∀𝜀 > 0, ∃𝑣 ∈ argmin(𝑋, 𝐼), 𝐼(𝑥) ≤𝐶 𝐼(𝑣) + (𝑡+ 𝜀)𝑘0} is compact;

(ii) (𝑋, 𝐼) is generalized 𝑘0-well-posed;

(iii) argmin(𝑋, 𝐼) is nonempty and compact.

Proof. We know the set {𝑥 ∈ 𝑋 : inf𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼) 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 𝑡} is equivalent to the

set {𝑥 ∈ 𝑋 : ∀𝜀 > 0, ∃𝑣 ∈ argmin(𝑋, 𝐼), 𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 𝑡+ 𝜀}, which is also equivalent

to the set {𝑥 ∈ 𝑋 : ∀𝜀 > 0,∃𝑣 ∈ argmin(𝑋, 𝐼), 𝐼(𝑥) ≤𝐶 𝐼(𝑣)+ (𝑡+ 𝜀)𝑘0}. So, assumption

(i) is equivalent to the conclusion that

{𝑥 ∈ 𝑋 : inf
𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)

𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) ≤ 𝑡}

is compact for some 𝑡 > inf𝑥∈𝑋 inf𝑣∈𝑎𝑟𝑔𝑚𝑖𝑛(𝑋,𝐼)𝐺𝑒(𝐼(𝑥), 𝐼(𝑣)) = 0. From Proposition 37 of

[19, p.25] and Theorem 3.1 (ii), we conclude that (i), (ii) and (iii) are equivalent. □

Remark 3.1 When 𝐼 is scalar-valued, 𝐶 = 𝑅+ and 𝑘0 = 1, Corollary 3.1 reduces to

Example 6 of [19, p.3] and Corollary 3.2 reduces to Proposition 37 of [19, p.25].

As [19], we introduce a function 𝑐 : 𝑅+ → 𝑅, which is called a generalized forcing

function if and only if 𝑐(𝑡) ≥ 0, 𝑐(0) = 0 and

𝑡𝑛 ≥ 0, 𝑐(𝑡𝑛) → 0 ⇒ ∃{𝑡𝑛𝑘
} ⊂ {𝑡𝑛} such that 𝑡𝑛𝑘

→ 0 (𝑘 → ∞). (5)
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Theorem 3.2 Assume that 𝑋 is a metric space and 𝐼 is 𝐶-bounded-valued and 𝐶-closed-

valued. Then,

(i) if (𝑋, 𝐼) is generalized 𝑘0-well-posed, for any fixed 𝑥 ∈ 𝑋, there exists some generalized

forcing function 𝑐 satisfying, for all 𝑥′ ∈ argmin(𝑋, 𝐼),

𝐼(𝑥′) ∕⊂ 𝐼(𝑥) + 𝑐(𝑑(𝑥, argmin(𝑋, 𝐼))𝑒+ int𝐶. (6)

Conversely, if argmin(𝑋, 𝐼) ∕= ∅ and argmin(𝑋, 𝐼) is compact, (6) holds for some 𝑐

satisfying (5), then (𝑋, 𝐼) is generalized 𝑘0-well-posed;

(ii) (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣 ∈ argmin(𝑋, 𝐼) if and only if there exists a generalized

forcing function 𝑐 satisfying 𝐼(𝑣) ∕⊂ 𝐼(𝑥) + 𝑐(𝑑(𝑥, 𝑣))𝑒+ int𝐶.

Proof. (i) Let (𝑋, 𝐼) be generalized 𝑘0-well-posed. Define

𝑐(𝑡) =inf{𝐺𝑒(𝐼(𝑥), 𝐼(𝑥
′)) : 𝑑(𝑥, argmin(𝑋, 𝐼)) = 𝑡, 𝑥′ ∈ argmin(𝑋, 𝐼)}.

It is easy to see that 𝑐(𝑡) ≥ 0. We conclude that 𝑐(0) = 0 since argmin(𝑋, 𝐼) is compact.

Now let 𝑡𝑛 ≥ 0 with 𝑐(𝑡𝑛) → 0. Then ∃𝑥𝑛 ∈ 𝑋, 𝑥′
𝑛 ∈ argmin(𝑋, 𝐼), 𝜀𝑛 > 0 with

𝜀𝑛 → 0 such that

𝑑(𝑥𝑛, argmin(𝑋, 𝐼)) = 𝑡𝑛

and

𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑥′
𝑛)) ≤ 𝜀𝑛.

Thus, we have

𝐼(𝑥′
𝑛) ⊂ 𝜀𝑛𝑒+ 𝐼(𝑥𝑛) + 𝐶.

From the definition of generalized 𝑘0-well-posedness, we have that there exists a subse-

quence {𝑥𝑛𝑘
} such that 𝑑(𝑥𝑛𝑘

, argmin(𝑋, 𝐼)) → 0, namely, there exists a subsequence

{𝑡𝑛𝑘
} of {𝑡𝑛} such that 𝑡𝑛𝑘

→ 0.

In addition, by the definition of 𝑐(𝑡), we have ∀𝑥′ ∈ argmin(𝑋, 𝐼), such that

𝐺𝑒(𝐼(𝑥), 𝐼(𝑥
′)) ≥ 𝑐(𝑑(𝑥, argmin(𝑋, 𝐼)),

which implies

𝐼(𝑥′) ∕⊂ 𝐼(𝑥) + 𝑐(𝑑(𝑥, argmin(𝑋, 𝐼))𝑒+ int𝐶.

Conversely, if for 𝑥𝑛 ∈ 𝑋, 𝜀𝑛 > 0 with 𝜀𝑛 → 0, ∃𝑥′
𝑛 ∈ argmin(𝑋, 𝐼), such that

𝐼(𝑥′
𝑛) ⊂ 𝐼(𝑥𝑛) + 𝜀𝑛𝑒+ 𝐶,
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then we have

𝜀𝑛 ≥ 𝐺𝑒(𝐼(𝑥𝑛), 𝐼(𝑥
′
𝑛)) ≥ 𝑐(𝑑(𝑥𝑛, argmin(𝑋, 𝐼)).

So,

𝑑(𝑥𝑛, argmin(𝑋, 𝐼)) → 0.

From the compactness of argmin(𝑋, 𝐼), we conclude that (𝑋, 𝐼) is generalized 𝑘0-well-

posed.

(ii) The proof of (ii) is similar to that of (i). So we omit it. □

4 Criteria and Characterizations of Well-Posedness

Now we consider some characterizations and criteria of well-posedness for set optimiza-

tion problems. For every bounded set 𝐴 ⊂ 𝑋, we recall the Kuratowski measure of

noncompactness of 𝐴 (see [2]):

𝛼(𝐴) = inf{𝑘 > 0 : 𝐴 ℎ𝑎𝑠 𝑎 𝑓𝑖𝑛𝑖𝑡𝑒 𝑐𝑜𝑣𝑒𝑟 𝑜𝑓 𝑠𝑒𝑡𝑠 𝑤𝑖𝑡ℎ 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟 < 𝑘}.

The generalized 𝑘0-well-posedness (extended 𝑘0-well-posedness) can be characterized

by the behavior of 𝜀− argmin(𝑋, 𝐼) (𝜀− argmin′(𝑋, 𝐼)) as 𝜀 → 0, which is defined as

𝜀− argmin(𝑋, 𝐼) = {𝑥 ∈ 𝑋 ∣ 𝐼(𝑧) + 𝜀𝑘0 ⊂ 𝐼(𝑥) + 𝐶,∃𝑧 ∈ argmin(𝑋, 𝐼)}

(𝜀− argmin′(𝑋, 𝐼) = {𝑥 ∈ 𝑋 ∣ 𝐼(𝑧) + 𝜀𝑘0 ∕≤𝑖𝑛𝑡𝐶 𝐼(𝑥), ∀𝑧 ∈ 𝑋}).
It is clear that 𝜀−argmin(𝑋, 𝐼) ∕= ∅, and if 𝐼(𝑋) is 𝐶-bounded, then 𝜀−argmin′(𝑋, 𝐼) ∕= ∅.

Proposition 4.1 Suppose that 𝐼 : 𝑋 → 2𝑌 is compact-valued and 𝜀 − argmin(𝑋, 𝐼) is

closed. Then the problem (𝑋, 𝐼) is generalized 𝑘0-well-posed (extended 𝑘0-well-posed) and

argmin(𝑋, 𝐼) (argmin′(𝑋, 𝐼)) is compact if and only if

𝛼[𝜀− argmin(𝑋, 𝐼)] → 0 (𝛼[𝜀− argmin′(𝑋, 𝐼)] → 0)

as 𝜀 → 0.

Proof. Put

𝐿(𝜀) = 𝜀− argmin(𝑋, 𝐼).

Similar to Theorem 3.2 in [2], we only need to verify argmin(𝑋, 𝐼) = ∩𝜀>0𝐿(𝜀).
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Let 𝑥1 ∈ ∩
𝜀>0 𝐿(𝜀) and take any 𝜀 > 0. Then there exists 𝑧0 ∈ argmin(𝑋, 𝐼) such that

𝐼(𝑧0) + 𝜀𝑘0 ⊂ 𝐼(𝑥1) + 𝐶.

Let 𝜀 → 0. Since 𝐼 is compact-valued, we have

𝐼(𝑧0) ⊂ 𝐼(𝑥1) + 𝐶.

By virtue of 𝑧0 ∈ argmin(𝑋, 𝐼), we deduce that the point 𝑥1 must be in argmin(𝑋, 𝐼).

Thus,
∩

𝜀>0 𝐿(𝜀) ⊂ argmin(𝑋, 𝐼). On the other hand, it is clear that

argmin(𝑋, 𝐼) ⊂ ∩
𝜀>0

𝐿(𝜀).

So, we have proved that argmin(𝑋, 𝐼) =
∩

𝜀>0 𝐿(𝜀).

Similarly, let 𝐿′(𝜀) = 𝜀− argmin′(𝑋, 𝐼). We only need to verify

argwmin(𝑋, 𝐼) = ∩𝜀>0𝐿
′(𝜀).

The inclusion relation argwmin(𝑋, 𝐼) ⊂ ∩𝜀>0𝐿
′(𝜀) holds obviously. Now we show that

∩𝜀>0𝐿
′(𝜀) ⊂ argwmin(𝑋, 𝐼). In fact, if 𝑥 ∈ ∩𝜀>0𝐿

′(𝜀) but 𝑥 ∕∈ argwmin(𝑋, 𝐼), then there

exist 𝑧0 ∈ 𝑋, 𝜀𝑛 → 0+ and 𝑦𝑛 ∈ 𝐼(𝑥) such that

𝐼(𝑥) ⊂ 𝐼(𝑧0) + int𝐶, (7)

and

𝑦𝑛 ∕∈ 𝐼(𝑧0) + 𝜀𝑛𝑘0 + int𝐶.

Since 𝐼 is compact-valued, without loss of generality, we may assume that 𝑦𝑛 → 𝑦0 ∈ 𝐼(𝑥).

So, 𝑦0 ∕∈ 𝐼(𝑧0) + int𝐶, which contradicts (7). The proof is complete. □

Let

𝐿(𝑣, 𝛼) := {𝑥 ∈ 𝑋 ∣ 𝐼(𝑥) ≤𝐶 𝐼(𝑣) + 𝛼𝑘0}.

Proposition 4.2 Assume 𝐼 : 𝑋 → 2𝑌 is compact-valued. Then, the set optimization

problem (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣 ∈ argmin(𝑋, 𝐼) if and only if inf
𝛼
diam𝐿(𝑣, 𝛼) = 0.

Proof. The proof is similar to that of Theorem 11 [19, p.5]. So it is omitted. □

Let 𝑋∗ be the topological dual space of 𝑋 and 𝐶∗ = {𝑏 ∈ 𝑋∗ ∣ 𝑏(𝑐) ≥ 0,∀𝑐 ∈ 𝐶}. We

define the function 𝐼𝜀 = 𝐼 + 𝜀𝑑(⋅, 𝑣)𝑘0, where 𝑣 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑋, 𝐼) and 𝜀 > 0. Obviously,

𝑣 ∈ argmin(𝑋, 𝐼𝜀).
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Theorem 4.1 Assume that 𝐼 : 𝑋 → 2𝑌 is convex-valued, compact-valued and bounded

valued. Then the set optimization problem (𝑋, 𝐼𝜀) is 𝑘0-well-posed at 𝑣 ∈ argmin(𝑋, 𝐼).

Proof. From Proposition 4.2, we only need to prove that there exists a constant 𝑑, which

is independent of 𝛼, such that

𝐿𝜀(𝑣, 𝛼) := {𝑥 ∈ 𝑋 ∣ 𝐼𝜀(𝑥) ≤𝐶 𝐼(𝑣) + 𝛼𝑘0} ⊂ 𝐵(𝑣, 𝛼𝑑),

where 𝐵(𝑣, 𝛼𝑑) is a ball at 𝑣 with radius 𝛼𝑑. Let 𝑥 ∈ 𝐿(𝑣, 𝛼) with 𝑥 ∕= 𝑣.

If 𝐼(𝑥) ∕≤𝐶 𝐼(𝑣), then there exists 𝑦 ∈ 𝐼(𝑣) such that 𝑦 ∩ (𝐼(𝑥) + 𝐶) = ∅. Especially,

we have 𝑦 ∩ 𝐼(𝑥) = ∅. Since 𝐼 is convex valued, there exists an 𝑏 ∈ 𝐶∗ such that for all

𝑦1 ∈ 𝐼(𝑥),

𝑏(𝑦) < 𝑏(𝑦1).

Then,

min 𝑏(𝐼(𝑣)) < min 𝑏(𝐼(𝑥)).

Let 𝑏̄ ∈ 𝐶∗ satisfying 𝑏̄(𝑘0) > 0. Since 𝐼 is compact-valued, we may choose an 𝛽 > 0 such

that

min(𝑏+ 𝛽𝑏̄)(𝐼(𝑣)) < min(𝑏+ 𝛽𝑏̄)(𝐼(𝑥)).

It follows from 𝑥 ∈ 𝐿𝜀(𝑣, 𝛼) that

min(𝑏+ 𝛽𝑏̄)(𝐼(𝑥) + 𝜀𝑑(𝑥, 𝑣)𝑘0) ≤ min(𝑏+ 𝛽𝑏̄)(𝐼(𝑣) + 𝜀𝑑(𝑣, 𝑣)𝑘0) + 𝛼(𝑏+ 𝛽𝑏̄)(𝑘0)

< min(𝑏+ 𝛽𝑏̄)(𝐼(𝑥)) + 𝛼(𝑏+ 𝛽𝑏̄)(𝑘0).

Hence, 𝜀𝑑(𝑥, 𝑣)(𝑏+ 𝛽𝑏̄)(𝑘0) < 𝛼(𝑏+ 𝛽𝑏̄)(𝑘0), i.e.,

𝑑(𝑥, 𝑣) ≤ 𝛼/𝜀.

If 𝐼(𝑥) ≤𝐶 𝐼(𝑣), then 𝐼(𝑣) ≤𝐶 𝐼(𝑥). Since 𝑥 ∈ 𝐿(𝑣, 𝛼), we conclude that

𝐼(𝑣) + 𝜀𝑑(𝑥, 𝑣)𝑘0 ≤𝐶 𝐼(𝑥) + 𝜀𝑑(𝑥, 𝑣)𝑘0 = 𝐼𝜀(𝑥) ≤𝐶 𝐼(𝑣) + 𝛼𝑘0,

i.e.,

𝐼(𝑣) + 𝛼𝑘0 ⊂ 𝐼(𝑣) + 𝜀𝑑(𝑥, 𝑣)𝑘0 + 𝐶.

If 𝛼 < 𝜀𝑑(𝑥, 𝑣), then,

𝐼(𝑣) ⊂ 𝐼(𝑣) + (𝜀𝑑(𝑥, 𝑣)− 𝛼)𝑘0 + 𝐶 ⊂ 𝐼(𝑣) + 𝑖𝑛𝑡𝐶,
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which is a contradiction. So, we have that 𝜀𝑑(𝑥, 𝑣) ≤ 𝛼, i.e., 𝑑(𝑥, 𝑣) ≤ 𝛼/𝜀. Let 𝑑 = 1/𝜀.

We conclude that 𝑑(𝑥, 𝑣) ≤ 𝛼𝑑, for each 𝑥 ∈ 𝐿(𝑣, 𝛼). It is said that 𝐿(𝑣, 𝛼) ⊂ 𝐵(𝑣, 𝛼𝑑).

□

For any 𝑘0 ∈ int𝐶, let

𝑀(𝜀) = 𝜀− argmin(𝑋, 𝐼),

𝑀 ′(𝜀, 𝑣) = {𝑥 ∈ 𝑋 ∣ 𝐼(𝑣) + 𝜀𝑘0 ⊂ 𝐼(𝑥) + 𝐶},
𝑀 ′′(𝜀) = 𝜀− argmin′(𝑋, 𝐼).

Proposition 4.3 (i) 𝑀(⋅) is 𝑢.𝑠.𝑐. at 0 and argmin(𝑋, 𝐼) is compact iff the problem

(𝑋, 𝐼) is generalized 𝑘0-well-posed.

(ii) 𝑀 ′(⋅, 𝑣) is 𝑢.𝑠.𝑐. at 0 and 𝑀 ′(0, 𝑣) = {𝑣} iff the problem (𝑋, 𝐼) is 𝑘0-well-posed at 𝑣.

(iii) 𝑀 ′′(⋅) is 𝑢.𝑠.𝑐. at 0 and argwmin(𝑋, 𝐼) ∕= ∅ is compact iff the problem (𝑋, 𝐼) is

extended 𝑘0-well-posed.

Proof. We only prove that (i) holds, since the proofs of (ii) and (iii) are similar to that

of (i).

First of all, it is easy to prove that

𝑀(0) = argmin(𝑋, 𝐼).

Suppose that (𝑋, 𝐼) is generalized 𝑘0-well-posed. It follows from Remark 2.1 that

argmin(𝑋, 𝐼) is compact. So, we only need to prove that 𝑀(⋅) is 𝑢.𝑠.𝑐. at 0. Suppose

𝑀(⋅) is not 𝑢.𝑠.𝑐.. Then there is a neighborhood 𝑁(𝑀(0)) of 𝑀(0), such that for any

neighborhood 𝑈 of 0, there exists 𝜀′ satisfying

{𝑥 ∈ 𝑋 ∣ 𝐼(𝑧) + 𝜀′𝑘0 ⊂ 𝐼(𝑥) + 𝐶, ∃𝑧 ∈ argmin(𝑋, 𝐼)} ∕⊂ 𝑁(𝑀(0)).

Thus, we can choose 𝜀𝑛 → 0 satisfying

∃𝑥𝑛 ∈ 𝑋, 𝑧𝑛 ∈ argmin(𝑋, 𝐼), (8)

such that

𝐼(𝑧𝑛) + 𝜀𝑛𝑘0 ⊂ 𝐼(𝑥𝑛) + 𝐶 and 𝑥𝑛 ∕∈ 𝑁(𝑀(0)). (9)

We deduce from (8) and (9) that {𝑥𝑛} is a generalized 𝑘0-minimizing sequence. There-

fore, there exist a subsequence {𝑥𝑛𝑘
} and 𝑧 ∈ argmin(𝑋, 𝐼) such that 𝑥𝑛𝑘

→ 𝑧. From (9),

𝑥𝑛𝑘
∕∈ 𝑁(𝑀(0)), which is a contradiction.
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Conversely, suppose that ∃ 𝜀𝑛 ≥ 0 with 𝜀𝑛 → 0, 𝑥𝑛 ∈ 𝑋, 𝑧𝑛 ∈ argmin(𝑋, 𝐼) such that

𝐼(𝑧𝑛) + 𝜀𝑛𝑘0 ⊂ 𝐼(𝑥𝑛) + 𝐶.

Since 𝑀(⋅) is 𝑢.𝑠.𝑐. at 0, for any 𝑁(𝑀(0)), when 𝑛 is sufficiently large, we get that

𝑥𝑛 ∈ 𝑁(𝑀(0)). Therefore, for every neighborhood 𝑊 of 0, there exists 𝑛0 ∈ 𝑁 such that

𝑥𝑛 ∈ argmin(𝑋, 𝐼) + 𝑊, ∀𝑛 > 𝑛0. By the compactness of argmin(𝑋, 𝐼), we obtain that

the problem (𝑋, 𝐼) is generalized 𝑘0-well-posed. □
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