104 research outputs found

    Recent results from COMPTEL observations of Cygnus X‐1

    Get PDF
    The COMPTEL experiment on the Compton Gamma‐Ray Observatory (CGRO) has now observed Cyg X‐1 on four separate occasions during phase 1 and phase 2 of its orbital mission (April, 1991 to August, 1993). Here we report on the results of the latest analysis of these data, which provide a spectrum extending to energies greater than 2 MeV. A spectral analysis of these data, in the context of a classical Comptonization model, indicates an electron temperature much higher than previous hard X‐ray measurements would suggest (200 keV vs 60–80 keV). This implies either some limitations in the standard Comptonization model and/or the need to incorporate a reflected component in the hard X‐ray spectrum. Although significant variability near 1 MeV has been observed, there is no evidence for any ‘MeV excess.

    Spectral properties of gamma‐ray bursts observed by COMPTEL

    Get PDF
    During the first year of operation, the COMPTEL instrument on board the Compton Gamma Ray Observatory detected 22 γ‐ray bursts within its field of view. Spectra and time histories for the strongest 7 of these bursts have been obtained from both the main instrument (0.75–30 MeV) and the burst modules (0.1–10 MeV). The deconvolved photon spectra for the majority of bursts are fit by a single power law model with spectral index between −1.6 and −2.8. One strong burst, GRB 910814, exhibited significant curvature and could not be fit by a single power law model. A broken power law model with a break in slope at ∼2 MeV is a good fit to the time averaged spectrum of this burst. There is evidence, at the 2.8σ level, for a change in the break energy of GRB 910814, from above 2 MeV to below 1 MeV during the first 9 s of the burst

    COMPTEL all-sky imaging at 2.2 MeV

    Get PDF
    It is now generally accepted that accretion of matter onto a compact object (white dwarf, neutron star or black hole) is one of the most efficient processes in the universe for producing high energy radiations. Measurements of the γ-ray emission will provide a potentially valuable means for furthering our understanding of the accretion process. Here we focus on neutroncapture processes, which can be expected in any situation where energetic neutrons may be produced and where the liberated neutrons will interact with matter before they decay (where they have a chance of undergoing some type of neutron capture). Line emission at 2.2 MeV, resulting from neutron capture on hydrogen, is believed to be the most important neutroncapture emission. Observations of this line in particular would provide a probe of neutronproduction processes (i.e., the energetic particle interactions) within the accretion flow. Here we report on the results of our effort to image the full sky at 2.2 MeV using data from the COMPTELexperiment on the Compton Gamma-Ray Observatory (CGRO)

    Initial results from COMPTEL—an overview

    Get PDF
    COMPTEL is presently completing the first full sky survey in MeV gamma‐ray astronomy (0.7 to 30 MeV). An overview of initial results from the survey is given: among these are the observations of the Crab and Vela pulsars with unprecedented accuracy, the observation of the black hole candidates Cyg X‐1 and Nova Persei 1992, an analysis of the diffuse Galactic continuum emission from the Galactic center region, the broad scale distribution of the 1.8 MeV line from radioactive 2 6Al, upper limits on gamma‐ray line emission from SN 1991T, observations of the three quasars 3C273, 3C279 and PKS 0528+134 and the radio galaxy Cen A, measurements of energy spectra, time histories and locations of a number of cosmic gamma‐ray bursts, and gamma‐ray and neutron emission from solar flares

    A catalogue of dosemeters and dosimetric services within Europe—an update

    Get PDF
    The catalogue of dosemeters and dosimetric services within the European Union (EU) Member States and Switzerland that was issued by EURADOS in the year 2000 has been updated and extended with information on dosimetric services in the new EU Member States and Bulgaria, Croatia, Romania, Serbia and Montenegro, and Ukraine. The total number of dosimetric services in these European countries is now estimated to be about 200. The present catalogue is based on information collected from 90 European dosimetric services, among which 34 questionnaires from 32 services were obtained over the years 2001-2004 for the first time. This article assesses and updates the present use of personal dosemeters and the extent to which occupationally exposed persons in Europe are monitored with dosemeters able to measure the operational quantity—personal dose equivalent, HP(d). The perspective of joining EU by the new countries accelerated the implementation of the EU Basic Safety Standard Directive to their national regulations. As a result, all newly investigated services reported their ability to measure HP(d). The catalogue provides information on the dosemeters, dose calculation and background subtraction algorithms, calibration methods, energy and angular response, and performanc

    The MeV spectrum of Cygnus X-1 as observed with COMPTEL

    Get PDF
    The COMPTEL experiment on the Compton Gamma-Ray Observatory (CGRO) has observed the Cygnus region on several occasions since launch. These data represent the most sensitive observations to date of Cygnus X-1 in the 0.75–30 MeV range. The spectrum shows significant evidence for emission extending out to several MeV. These data alone suggest a need to modify the thermal Comptonization models or to incorporate some type of non-thermal emission mechanism. Here we report on the results of an analysis of selected COMPTEL data collected during the first three years of the CGRO mission. These data are then compared with contemporaneous data from both BATSE-EBOP and OSSE. Given a lack of consistency between the OSSE and BATSE-EBOP spectra, it is difficult to draw firm conclusions regarding the exact shape of the spectrum near 1 MeV. A few general conclusions can, however, be drawn from these data

    Precise study of the resonance at Q0=(1,0,0) in URu2Si2

    Full text link
    New inelastic neutron scattering experiments have been performed on URu2Si2 with special focus on the response at Q0=(1,0,0), which is a clear signature of the hidden order (HO) phase of the compound. With polarized inelastic neutron experiments, it is clearly shown that below the HO temperature (T0 = 17.8 K) a collective excitation (the magnetic resonance at E0 \approx 1.7 meV) as well as a magnetic continuum co-exist. Careful measurements of the temperature dependence of the resonance lead to the observation that its position shifts abruptly in temperature with an activation law governed by the partial gap opening and that its integrated intensity has a BCS-type temperature dependence. Discussion with respect to recent theoretical development is made

    COMPTEL measurements of the gamma-ray burst GRB 930131

    Get PDF
    On 1993 January 31 at 1857:12 Universal Time (UT), the Imaging Compton Telescope COMPTEL onboard the Compton Gamma Ray Observatory (CGRO) detected the cosmic gamma-ray burst GRB 930131. COMPTEL\u27s MeV imaging capability was employed to locate the source to better than 2 deg (1 sigma error radius) within 7 hr of the event, initiating a world-wide search for an optical and radio counterpart. The maximum likelihood position of the burst from the COMPTEL data is alpha2000 = 12h 18m, delta2000 = -9 deg 42 min, consistent with independent CGRO-Burst and Transient Source Experiment (CGRO-BATSE) and Energetic Gamma Ray Experiment Telescope (EGRET) locations as well as with the triangulation annulus constructed using BATSE and Ulysses timing data. The combined COMPTEL and EGRET burst data yield a better estimate of the burst location: alpha2000 = 12h 18m and delta2000 = -10 deg 21 min, with a 1 sigma error radius of 32 min. In COMPTEL\u27s energy range, this burst was short, consisting of two separate spikes occurring within a approximately 1 s interval with a low intensity tail for approximately 1 s after the second spike. No statistically significant flux is present for a 30 s period after the main part of the burst. This is consistent with the EGRET data. The COMPTEL telescope events indicate a hard, power-law emission extending to beyond 10 MeV with a spectral index of -1.8 +/- 0.4. The rapid fluctuations and high intensities of the gamma-ray flux greater than 10 MeV place the burst object no farther than 250 pc if the burst emission is not beamed

    COMPTEL detections of the quasars 3C 273 and 3C 279

    Get PDF
    The COMPTEL experiment aboard the Compton Gamma Ray Observatory, sensitive in the energy range from about 0.7 to 30 MeV, observed the high-latitude region containing 3C 273 and 3C 279 during a 2-week period in June, 1991. A search for sources using a maximum likelihood analysis revealed two statistically significant point-like excesses, the positions of which are consistent with those of 3C 273 and 3C 279. These sources are the first QSOs detected at MeV energies. In the COMPTEL energy domain their spectra appear to be greatly different. A comparison with earlier and simultaneous measurements in neighboring energy ranges indicates that 3C 273 reaches its maximum luminosity at a few MeV while 3C 279 remains at tis maximum level from about 10 MeV up to a few GeV
    corecore