New inelastic neutron scattering experiments have been performed on URu2Si2
with special focus on the response at Q0=(1,0,0), which is a clear signature of
the hidden order (HO) phase of the compound. With polarized inelastic neutron
experiments, it is clearly shown that below the HO temperature (T0 = 17.8 K) a
collective excitation (the magnetic resonance at E0 \approx 1.7 meV) as well as
a magnetic continuum co-exist. Careful measurements of the temperature
dependence of the resonance lead to the observation that its position shifts
abruptly in temperature with an activation law governed by the partial gap
opening and that its integrated intensity has a BCS-type temperature
dependence. Discussion with respect to recent theoretical development is made