292 research outputs found
Influence of tumour size on hypoxic fraction and therapeutic sensitivity of Lewis lung tumour.
Radiation survival curves for Lewis lung tumours in the lungs ranging in size from 0-5 to 20 mm3 have been obtained, and a size-dependent variation in hypoxic fraction was found. Cell-survival studies following treatment of various sizes of s.c. tumours indicated that the effects of 60Co gamma-rays and the chemotherapeutic agents 1,3-bas(2-chloroethyl)-1-nitrosourea (BCNU) and cyclophosphamide are all size-dependent. Large pulmonary nodules which had regressed but had not been cured by cyclophosphamide regrew with a radiosensitivity that was characteristic of previously untreated tumours. The results give additional experimental support to the clinical interest in early adjuvant therapy of micrometastases, and sequential combined modality therapy for larger tumours
Tiger sharks support the characterization of the world’s largest seagrass ecosystem
Seagrass conservation is critical for mitigating climate change due to the large stocks of carbon they sequester in the seafloor. However, effective conservation and its potential to provide nature-based solutions to climate change is hindered by major uncertainties regarding seagrass extent and distribution. Here, we describe the characterization of the world’s largest seagrass ecosystem, located in The Bahamas. We integrate existing spatial estimates with an updated empirical remote sensing product and perform extensive ground-truthing of seafloor with 2,542 diver surveys across remote sensing tiles. We also leverage seafloor assessments and movement data obtained from instrument-equipped tiger sharks, which have strong fidelity to seagrass ecosystems, to augment and further validate predictions. We report a consensus area of at least 66,000 km and up to 92,000 km of seagrass habitat across The Bahamas Banks. Sediment core analysis of stored organic carbon further confirmed the global relevance of the blue carbon stock in this ecosystem. Data from tiger sharks proved important in supporting mapping and ground-truthing remote sensing estimates. This work provides evidence of major knowledge gaps in the ocean ecosystem, the benefits in partnering with marine animals to address these gaps, and underscores support for rapid protection of oceanic carbon sinks
Systematically missing confounders in individual participant data meta-analysis of observational cohort studies.
One difficulty in performing meta-analyses of observational cohort studies is that the availability of confounders may vary between cohorts, so that some cohorts provide fully adjusted analyses while others only provide partially adjusted analyses. Commonly, analyses of the association between an exposure and disease either are restricted to cohorts with full confounder information, or use all cohorts but do not fully adjust for confounding. We propose using a bivariate random-effects meta-analysis model to use information from all available cohorts while still adjusting for all the potential confounders. Our method uses both the fully adjusted and the partially adjusted estimated effects in the cohorts with full confounder information, together with an estimate of their within-cohort correlation. The method is applied to estimate the association between fibrinogen level and coronary heart disease incidence using data from 154,012 participants in 31 cohort
TRY plant trait database - enhanced coverage and open access
Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
Early Life Events Carry Over to Influence Pre-Migratory Condition in a Free-Living Songbird
Conditions experienced during development can have long-term consequences for individual success. In migratory songbirds, the proximate mechanisms linking early life events and survival are not well understood because tracking individuals across stages of the annual cycle can be extremely challenging. In this paper, we first use a 13 year dataset to demonstrate a positive relationship between 1st year survival and nestling mass in migratory Savannah sparrows (Passerculus sandwichensis). We also use a brood manipulation experiment to show that nestlings from smaller broods have higher mass in the nest relative to individuals from larger broods. Having established these relationships, we then use three years of field data involving multiple captures of individuals throughout the pre-migratory period and a multi-level path model to examine the hypothesis that conditions during development limit survival during migration by affecting an individual's ability to accumulate sufficient lean tissue and fat mass prior to migration. We found a positive relationship between fat mass during the pre-migratory period (Sept–Oct) and nestling mass and a negative indirect relationship between pre-migratory fat mass and fledging date. Our results provide the first evidence that conditions during development limit survival during migration through their effect on fat stores. These results are particularly important given recent evidence showing that body condition of songbirds at fledging is affected by climate change and anthropogenic changes to landscape structure
Using video modeling to teach complex social sequences to children with autism
This study comprised of two experiments was designed to teach complex social sequences to children with autism. Experimental control was achieved by collecting data using means of within-system design methodology. Across a number of conditions children were taken to a room to view one of the four short videos of two people engaging in a simple sequence of activities. Then, each child’s behavior was assessed in the same room. Results showed that this video modeling procedure enhanced the social initiation skills of all children. It also facilitated reciprocal play engagement and imitative responding of a sequence of behaviors, in which social initiation was not included. These behavior changes generalized across peers and maintained after a 1- and 2-month follow-up period
Surface Energy Budgets of Arctic Tundra During Growing Season
This study analyzed summer observations of diurnal and seasonal surface energy budgets across several monitoring sites within the Arctic tundra underlain by permafrost. In these areas, latent and sensible heat fluxes have comparable magnitudes, and ground heat flux enters the subsurface during short summer intervals of the growing period, leading to seasonal thaw. The maximum entropy production (MEP) model was tested as an input and parameter parsimonious model of surface heat fluxes for the simulation of energy budgets of these permafrost‐underlain environments. Using net radiation, surface temperature, and a single parameter characterizing the thermal inertia of the heat exchanging surface, the MEP model estimates latent, sensible, and ground heat fluxes that agree closely with observations at five sites for which detailed flux data are available. The MEP potential evapotranspiration model reproduces estimates of the Penman‐Monteith potential evapotranspiration model that requires at least five input meteorological variables (net radiation, ground heat flux, air temperature, air humidity, and wind speed) and empirical parameters of surface resistance. The potential and challenges of MEP model application in sparsely monitored areas of the Arctic are discussed, highlighting the need for accurate measurements and constraints of ground heat flux.Plain Language SummaryGrowing season latent and sensible heat fluxes are nearly equal over the Arctic permafrost tundra regions. Persistent ground heat flux into the subsurface layer leads to seasonal thaw of the top permafrost layer. The maximum energy production model accurately estimates the latent, sensible, and ground heat flux of the surface energy budget of the Arctic permafrost regions.Key PointThe MEP model is parsimonious and well suited to modeling surface energy budget in data‐sparse permafrost environmentsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/150560/1/jgrd55584.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/150560/2/jgrd55584_am.pd
Extent, intensity and drivers of mammal defaunation:a continental-scale analysis across the Neotropics
Neotropical mammal diversity is currently threatened by several chronic human-induced pressures. We compiled 1,029 contemporary mammal assemblages surveyed across the Neotropics to quantify the continental-scale extent and intensity of defaunation and understand their determinants based on environmental covariates. We calculated a local defaunation index for all assemblages—adjusted by a false-absence ratio—which was examined using structural equation models. We propose a hunting index based on socioenvironmental co-variables that either intensify or inhibit hunting, which we used as an additional predictor of defaunation. Mammal defaunation intensity across the Neotropics on average erased 56.5% of the local source fauna, with ungulates comprising the most ubiquitous losses. The extent of defaunation is widespread, but more incipient in hitherto relatively intact major biomes that are rapidly succumbing to encroaching deforestation frontiers. Assemblage-wide mammal body mass distribution was greatly reduced from a historical 95th-percentile of ~ 14 kg to only ~ 4 kg in modern assemblages. Defaunation and depletion of large-bodied species were primarily driven by hunting pressure and remaining habitat area. Our findings can inform guidelines to design transnational conservation policies to safeguard native vertebrates, and ensure that the “empty ecosystem” syndrome will be deterred from reaching much of the New World tropics
Interoception in anxiety and depression
We review the literature on interoception as it relates to depression and anxiety, with a focus on belief, and alliesthesia. The connection between increased but noisy afferent interoceptive input, self-referential and belief-based states, and top-down modulation of poorly predictive signals is integrated into a neuroanatomical and processing model for depression and anxiety. The advantage of this conceptualization is the ability to specifically examine the interface between basic interoception, self-referential belief-based states, and enhanced top-down modulation to attenuate poor predictability. We conclude that depression and anxiety are not simply interoceptive disorders but are altered interoceptive states as a consequence of noisily amplified self-referential interoceptive predictive belief states
- …