924 research outputs found

    The analysis of spectra of novae taken near maximum

    Get PDF
    A project to analyze ultraviolet spectra of novae obtained at or near maximum optical light is presented. These spectra are characterized by a relatively cool continuum with superimposed permitted emission lines from ions such as Fe II, Mg II, and Si II. Spectra obtained late in the outburst show only emission lines from highly ionized species and in many cases these are forbidden lines. The ultraviolet data will be used with calculations of spherical, expanding, stellar atmospheres for novae to determine elemental abundances by spectral line synthesis. This method is extremely sensitive to the abundances and completely independent of the nebular analyses usually used to obtain novae abundances

    Observations and simulations of nova Vul 1984 no. 2: A nova with ejecta rich in oxygen, neon, and magnesium

    Get PDF
    Nova Vul 1984 no. 2 was observed with IUE from Dec. 1984 through Nov. 1987. The spectra are characterized by strong lines from Mg, Ne, C, Si, O, N, and other elements. Data obtained in the ultraviolet, infrared, and optical show that this nova is ejecting material rich in oxygen, neon, and magnesium

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure

    Toward a Manifold Encoding Neural Responses

    Get PDF
    Understanding circuit properties from physiological data presents two challenges: (i) recordings do not reveal connectivity, and (ii) stimuli only exercise circuits to a limited extent. We address these challenges for the mouse visual system with a novel neural manifold obtained using unsupervised algorithms. Each point in our manifold is a neuron; nearby neurons respond similarly in time to similar parts of a stimulus ensemble. This ensemble includes drifting gratings and flows, i.e., patterns resembling what a mouse would “see” running through fields. Regarding (i), our manifold differs from the standard practice in computational neuroscience: embedding trials in neural coordinates. Topology matters: we infer that, if the circuit consists of separate components, the manifold is discontinuous (illustrated with retinal data). If there is significant overlap between circuits, the manifold is nearly-continuous (cortical data). Regarding (ii), most of the cortical manifold is not activated with conventional gratings, despite their prominence in laboratory settings. Our manifold suggests organizing cortical circuitry by a few specialized circuits for specific members of the stimulus ensemble, together with circuits involving ‘multi-stimuli’-responding neurons. To approach real circuits, local neighborhoods in the manifold are identified with actual circuit components. For retinal data, we show these components correspond to distinct ganglion cell types by their mosaic-like receptive field organization, while for cortical data, neighborhoods organize neurons by type (excitatory/inhibitory) and anatomical layer. In summary: the topology of neural organization reflects well the underlying anatomy and physiology of the retina and the visual cortex

    ‘Get yourself some nice, neat, matching box files’: research administrators and occupational identity work

    Get PDF
    To date, qualitative research into occupational groups and cultures within academia has been relatively scarce, with an almost exclusive concentration upon teaching staff within universities and colleges. This article seeks to address this lacuna and applies the interactionist concept of ‘identity work’ in order to examine one specific group to date under-researched: graduate research administrators. This occupational group is of sociological interest as many of its members appear to span the putative divide between ‘academic’ and ‘administrative’ occupational worlds within higher education. An exploratory, qualitative research project was undertaken, based upon interviews with 27 research administrators. The study analyses how research administrators utilise various forms of identity work to sustain credible occupational identities, often in the face of considerable challenge from their academic colleagues

    Using self-definition to predict the influence of procedural justice on organizational, interpersonal, and job/task-oriented citizenship behaviors

    Get PDF
    An integrative self-definition model is proposed to improve our understanding of how procedural justice affects different outcome modalities in organizational behavior. Specifically, it is examined whether the strength of different levels of self-definition (collective, relational, and individual) each uniquely interact with procedural justice to predict organizational, interpersonal, and job/task-oriented citizenship behaviors, respectively. Results from experimental and (both single and multisource) field data consistently revealed stronger procedural justice effects (1) on organizational-oriented citizenship behavior among those who define themselves strongly in terms of organizational characteristics, (2) on interpersonal-oriented citizenship behavior among those who define themselves strongly in terms of their interpersonal relationships, and (3) on job/task-oriented citizenship behavior among those who define themselves weakly in terms of their distinctiveness or uniqueness. We discuss the relevance of these results with respect to how employees can be motivated most effectively in organizational settings

    Blue Straggler Stars: Early Observations that Failed to Solve the Problem

    Full text link
    In this chapter, I describe early ideas on blue stragglers, and various observations (some published, some not) that promised but failed to resolve the question of their origin. I review the data and ideas that were circulating from Allan Sandage's original discovery in 1953 of "anomalous blue stars" in the globular cluster M3, up until about 1992, when what seems to have been the only previous meeting devoted to Blue Straggler Stars (BSSs) was held at the Space Telescope Science Institute.Comment: Chapter 2, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe

    The Blue Straggler Population in Dwarf Galaxies

    Full text link
    In this chapter I review the recent developments regarding the study of Blue Stragglers (BSS) in dwarf galaxies. The loose density environment of dwarf galaxies resembles that of the Galactic Halo, hence it is natural to compare their common BSS properties. At the same time, it is unescapable to compare with the BSS properties in Galactic Globular clusters, which constitute the reference point for BSS studies. Admittedly, the literature on BSS in dwarf galaxies is not plentiful. The limitation is mostly due to the large distance to even the closest dwarf galaxies. Nevertheless, recent studies have allowed a deeper insight on the BSS photometric properties that are worth examining.Comment: Chapter 6, in Ecology of Blue Straggler Stars, H.M.J. Boffin, G. Carraro & G. Beccari (Eds), Astrophysics and Space Science Library, Springe
    corecore