692 research outputs found

    Variation in the magnitude of a predator's effect from small to large islands

    Get PDF
    Should the effect of predation be stronger on small islands or on very large islands and mainlands? To make this question precise, we ask here whether the presence/absence of a particular type of predator has greater effects on given types of organisms lower down in the food web, the larger or the smaller the island. To obtain an answer, we used four studies from the same general system, subtropical islands of the Bahamas; here diurnal lizards are the predator, the direct effects are on web spiders (total density, species richness, composite diversity, dominance) and the indirect effects are on herbivory (percent leaf damage) and in part on aerial arthropods (numbers in sticky traps). In two studies, lizards were removed experimentally from enclosures on a very large island; the experiment was performed twice. In a third study, entirely unmanipulated medium-tolarge islands with and without lizards were compared. In a fourth study, lizards were introduced to a set of small-to-medium islands, while two other sets, one naturally with lizards and the other naturally without lizards, served both as controls and as another comparison. Effect magnitude is measured as the ratio of the larger to smaller of the treatment means. An overwhelming tendency exists for lizards to affect spider density, species richness and composite diversity more, the smaller the island; dominance shows little difference. Herbivory is also affected on average more on small islands, but the variation in effect magnitude with island area is less. Aerial arthropods are also affected more on average on small islands, but unlike the other variables the direction of the effect can be negative or positive, and the effect is often very weak. Thus the mainly direct effects of lizards vary more in magnitude than do the mainly indirect effects of lizards. We propose two explanations for effect magnitude to be greater, the smaller the island. First, greater isolation allows less reimmigration of prey on islands, leading to a greater effect magnitude. Second, fewer kinds of predators occur, the smaller the island, implying a greater effect of removing anyone kind.L'efecte de la depredació, hauria d'esser més gran a les illes petites o a les illes molt grans i als continents? Per precisar aquesta questió, al present treball ens demanam si la presència/absència d'un tipus particular de depredador te efectes més grans sobre determinats tipus d'organismes situats més abaix a la xarxa tròfica com mes gran 0 com més petita és l'illa. Per obtenir-ne una resposta, empram quatre estudis dins el mateix sistema general, les illes subtropicals de les Bahamas; les sargantanes diurnes hi són els depredadors, els efectes directes fan damunt les aranyes de tela (densitat total, riquesa d'espècies, diversitat composta, dorninància) i els efectes indirectes són sobre l'herbivoria (percentatge de fulles afectades) i en part sobre els artropodes aeris (nombres a les trampes d'aferrament). A dos estudis, les sargantanes foren substretes experimentalment de tancats a una illa molt gran; l'experiment es va fer dues vegades. A un tercer estudi, varen esser comparades illes mitjanes a grans, sense cap manipulació, amb i sense sargantanes. A un quart estudi, varen esser introduïdes sargantanes a un conjunt d'illes petites a mitjanes, mentre que altres dos conjunts d'illots, un naturalment amb sargantanes i l'altre naturalment sense sargantanes, varen servir com a controls i com a una altra comparació. La magnitud de l'efecte es va mesurar com a la relació entre la major i la menor de les mitjanes del tractament. Es dona una tendència aclaparadora en el sentit que com més petita és l'illa més afecten les sargantanes la densitat d'aranyes, la riquesa d'espècies i la diversitat composta; la dominància d'especies mostra poca diferència. L'herbivoria també està afectada més de mitjana a les illes més petites, però la variació en la magnitud de l'efecte amb l'àrea insular és poca. Eis artropodes aeris també estan afectats més en promig a les illes petites, però, a diferència de les altres variables, la direcció de l'efecte pot esser positiva o negativa, i l'efecte és sovint molt feble. Per això, els efectes principalment directes de les sargantanes varien més en magnitud que els efectes principalment indirectes de les sargantanes. Proposam dues explicacions per al fet que com més petita és l'illa més gran és la magnitud de l'efecte. Primera, un aïllament més gran permet menys reimmigració de les preses, conduïnt a una major magnitud de l'efecte. Segona, a com més petita és l'illa, menys tipus de depredadors hi ha, cosa que implica un efecte més gran quan se'n substreu un qualsevol

    Predator-driven natural selection on risk-taking behavior in anole lizards

    Get PDF
    Biologists have long debated the role of behavior in evolution, yet understanding of its role as a driver of adaptation is hampered by the scarcity of experimental studies of natural selection on behavior in nature. After showing that individual Anolis sagrei lizards vary consistently in risk-taking behaviors, we experimentally established populations on eight small islands either with or without Leiocephalus carinatus, a major ground predator. We found that selection predictably favors different risk-taking behaviors under different treatments: Exploratory behavior is favored in the absence of predators, whereas avoidance of the ground is favored in their presence. On predator islands, selection on behavior is stronger than selection on morphology, whereas the opposite holds on islands without predators. Our field experiment demonstrates that selection can shape behavioral traits, paving the way toward adaptation to varying environmental contexts

    Ecological release from interspecific competition leads to decoupled changes in population and individual niche width

    Get PDF
    A species's niche width reflects a balance between the diversifying effects of intraspecific competition and the constraining effects of interspecific competition. This balance shifts when a species from a competitive environment invades a depauperate habitat where interspecific competition is reduced. The resulting ecological release permits population niche expansion, via increased individual niche widths and/or increased among-individual variation. We report an experimental test of the theory of ecological release in three-spine stickleback (Gasterosteus aculeatus). We factorially manipulated the presence or absence of two interspecific competitors: juvenile cut-throat trout (Oncorhynchus clarki) and prickly sculpin (Cottus asper). Consistent with the classic niche variation hypothesis, release from trout competition increased stickleback population niche width via increased among-individual variation, while individual niche widths remained unchanged. In contrast, release from sculpin competition had no effect on population niche width, because increased individual niche widths were offset by decreased between-individual variation. Our results confirm that ecological release from interspecific competition can lead to increases in niche width, and that these changes can occur on behavioural time scales. Importantly, we find that changes in population niche width are decoupled from changes in the niche widths of individuals within the population

    A stochastic model for landscape patterns of biodiversity

    Get PDF
    Many factors have been proposed to affect biodiversity patterns across landscapes, including patch area, patch isolation, edge distances, and matrix quality, but existing models emphasize only one or two of these factors at a time. Here we introduce a synthetic but simple individual-based model that generates realistic patterns of species richness and density as a function of landscape structure. In this model, we simulated the stochastic placement of home ranges in landscapes, thus combining features of existing random placement and mid-domain effect models. As such, the model allows investigation of whether and how geometric constraints on home range placement of individuals scale up to affect species abundance and richness in landscapes. The model encompassed a gradient of possible landscapes, from a strictly homogeneous landscape to an archipelago of discrete patches. The model incorporated only variation in home range size of individuals of different species, with a simple suitability index that controlled home range spread into areas of habitat and areas of inter-habitat matrix. Demographic details of birth, death, and migration, as well as effects of species interactions were not included. Nevertheless, this simple model generated realistic patterns of biodiversity, including species-area curves and increases in diversity and abundance with decreasing isolation and increasing distance from patch edges. Species-area slopes (z values) generated by the model fell within the range observed in empirical studies on both true islands and habitat patches. Isolation and edge effects were stronger when the matrix was unsuitable, and became progressively weaker as matrix suitability increased, again in accordance with many empirical studies. When applied to a real data set on the abundance of 20 small mammal species sampled in forest patches in the Atlantic Forest of Brazil, the model predicted increases in abundance and richness with increasing patch size, consistent with the general pattern observed with field data. The ability of this simple model to reproduce realistic qualitative patterns of biodiversity suggests that such patterns may be driven, at least in part, by geometric constraints acting on the placement of individual ranges, which ultimately affect biodiversity patterns at the landscape level

    A biogeographic reversal in sexual size dimorphism along a continental temperature gradient

    Get PDF
    © 2018 The Authors The magnitude and direction of sexual size dimorphism (SSD) varies greatly across the animal kingdom, reflecting differential selection pressures on the reproductive and/or ecological roles of males and females. If the selection pressures and constraints imposed on body size change along environmental gradients, then SSD will vary geographically in a predictable way. Here, we uncover a biogeographical reversal in SSD of lizards from Central and North America: in warm, low latitude environments, males are larger than females, but at colder, high latitudes, females are larger than males. Comparisons to expectations under a Brownian motion model of SSD evolution indicate that this pattern reflects differences in the evolutionary rates and/or trajectories of sex-specific body sizes. The SSD gradient we found is strongly related to mean annual temperature, but is independent of species richness and body size differences among species within grid cells, suggesting that the biogeography of SSD reflects gradients in sexual and/or fecundity selection, rather than intersexual niche divergence to minimize intraspecific competition. We demonstrate that the SSD gradient is driven by stronger variation in male size than in female size and is independent of clutch mass. This suggests that gradients in sexual selection and male–male competition, rather than fecundity selection to maximize reproductive output by females in seasonal environments, are predominantly responsible for the gradient

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Reconstructed Dynamics of Rapid Extinctions of Chaparral-Requiring Birds in Urban Habitat Islands

    Full text link
    The distribution of native, chaparral-requiring bird species was determined for 37 isolated fragments of canyon habitat ranging in size from 0.4 to 104 hectares in coastal, urban San Diego County, California The area of chaparral habitat and canyon age (time since isolation of the habitat fragment) explains most of the variation in the number of chaparral-requiring bird species. In addition, the distribution of native predators may influence species number. There is statistical evidence that coyotes control the populations of smaller predators such as foxes and domestic cats. The absence of coyotes may lead to higher levels of predation by a process of mesopredator release. The distance of canyons from other patches of chaparral habitat does not add significantly to the explained variance in chaparral-requiring species number–probably because of the virtual inability of most chaparral-requiring species to disperse through developed areas and nonscrub habitats. These results and other lines of evidence suggest that chaparral-requiring birds in isolated canyons have very high rates of extinction, in part because of their low vagility. The best predictors of vulnerability of the individual species are their abundances (densities) in undisturbed habitat and their body sizes; together these two variables account for 95 percent of the variation in canyon occupancy. A hypothesis is proposed to account for the similarity between the steep slopes of species-area curves for chaparral-requiring birds and the slopes for some forest birds on small islands or in habitat fragments. The provision of corridors appears to be the most effective design and planning feature for preventing the elimination of chaparral-requiring species in a fragmented landscape.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74761/1/j.1523-1739.1988.tb00337.x.pd

    Noise Pollution Filters Bird Communities Based on Vocal Frequency

    Get PDF
    BACKGROUND: Human-generated noise pollution now permeates natural habitats worldwide, presenting evolutionarily novel acoustic conditions unprecedented to most landscapes. These acoustics not only harm humans, but threaten wildlife, and especially birds, via changes to species densities, foraging behavior, reproductive success, and predator-prey interactions. Explanations for negative effects of noise on birds include disruption of acoustic communication through energetic masking, potentially forcing species that rely upon acoustic communication to abandon otherwise suitable areas. However, this hypothesis has not been adequately tested because confounding stimuli often co-vary with noise and are difficult to separate from noise exposure. METHODOLOGY/PRINCIPAL FINDINGS: Using a natural experiment that controls for confounding stimuli, we evaluate whether species vocal features or urban-tolerance classifications explain their responses to noise measured through habitat use. Two data sets representing nesting and abundance responses reveal that noise filters bird communities nonrandomly. Signal duration and urban tolerance failed to explain species-specific responses, but birds with low-frequency signals that are more susceptible to masking from noise avoided noisy areas and birds with higher frequency vocalizations remained. Signal frequency was also negatively correlated with body mass, suggesting that larger birds may be more sensitive to noise due to the link between body size and vocal frequency. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that acoustic masking by noise may be a strong selective force shaping the ecology of birds worldwide. Larger birds with lower frequency signals may be excluded from noisy areas, whereas smaller species persist via transmission of higher frequency signals. We discuss our findings as they relate to interspecific relationships among body size, vocal amplitude and frequency and suggest that they are immediately relevant to the global problem of increases in noise by providing critical insight as to which species traits influence tolerance of these novel acoustics
    corecore