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A stochastic model for landscape patterns of biodiversity
Jayme A. Prevedello,1,3 Nicholas J. Gotelli,2 and Jean Paul Metzger1

1Departamento de Ecologia, Universidade de São Paulo, São Paulo 05508 900 Brazil
2Department of Biology, University of Vermont, Burlington, Vermont 05405 USA

Abstract.   Many factors have been proposed to affect biodiversity patterns across landscapes, 
including patch area, patch isolation, edge distances, and matrix quality, but existing models 
emphasize only one or two of these factors at a time. Here we introduce a synthetic but simple 
individual-based model that generates realistic patterns of species richness and density as a func-
tion of landscape structure. In this model, we simulated the stochastic placement of home ranges 
in landscapes, thus combining features of existing random placement and mid-domain effect 
models. As such, the model allows investigation of whether and how geometric constraints on 
home range placement of individuals scale up to affect species abundance and richness in land-
scapes. The model encompassed a gradient of possible landscapes, from a strictly homogeneous 
landscape to an archipelago of discrete patches. The model incorporated only variation in home 
range size of individuals of different species, with a simple suitability index that controlled 
home  range spread into areas of habitat and areas of inter-habitat matrix. Demographic 
details of birth, death, and migration, as well as effects of species interactions were not included. 
Nevertheless, this simple model generated realistic patterns of biodiversity, including species–
area curves and increases in diversity and abundance with decreasing isolation and increasing 
distance from patch edges. Species–area slopes (z values) generated by the model fell within the 
range observed in empirical studies on both true islands and habitat patches. Isolation and edge 
effects were stronger when the matrix was unsuitable, and became progressively weaker as matrix 
suitability increased, again in accordance with many empirical studies. When applied to a real 
data set on the abundance of 20 small mammal species sampled in forest patches in the Atlantic 
Forest of Brazil, the model predicted increases in abundance and richness with increasing patch 
size, consistent with the general pattern observed with field data. The ability of this simple model 
to reproduce realistic qualitative patterns of biodiversity suggests that such patterns may be 
driven, at least in part, by geometric constraints acting on the placement of individual ranges, 
which ultimately affect biodiversity patterns at the landscape level.

Key words:   edge effects; geometric constraints; habitat fragmentation; island biogeography; matrix; 
mid-domain effect; neutral theory; null model; random placement; species–area relationship.

Introduction

Spatial variation in species diversity across landscapes 
has intrigued ecologists for more than a century, and is 
now considered a central research subject in biogeog-
raphy, macroecology, community ecology, and landscape 
ecology (Brown 1995, Forman 1995, Ewers and Didham 
2006, Lomolino et  al. 2006, Gotelli et  al. 2009). Many 
primary drivers of spatial variation in diversity have been 
identified, four of which have received prominent 
attention: area, isolation, edge effects, and matrix suita-
bility (Ewers and Didham 2006, Fig.  1A). The most 
studied of these effects are area and isolation, which are 
important determinants of species richness in islands, 
habitat patches, or sampling sites (MacArthur and Wilson 
1967, Connor and McCoy 1979, Watling and Donnelly 
2006, Triantis et al. 2012, Fahrig 2013). In heterogeneous 

landscapes in which habitat patches are surrounded by 
matrix habitats (i.e., habitats less permeable and suitable 
for reproduction of the focal species compared to the 
original habitat; Villard and Metzger 2014), many studies 
have also revealed the existence of edge effects: variation 
in abundance and richness related to the proximity of 
habitat–matrix boundaries (Murcia 1995, Ries et al. 2004, 
Banks-Leite et al. 2010). Moreover, matrix suitability, or 
the contrast between the habitat patch and the matrix, 
also affects population abundance and community 
richness within habitat patches and thus can mediate or 
interact with area, isolation, and edge effects (Fig.  1A; 
MacArthur and Wilson 1967, Ricketts 2001, Prevedello 
and Vieira 2010,  Driscoll et  al. 2013). Although the 
overall influences of area, isolation, edge effects, and 
matrix suitability on species abundance and richness are 
well established (Fig. 1A), there is still much debate on 
the  specific causal mechanisms linking such factors to 
patterns of species richness and abundance (Ries et  al. 
2004, Ewers and Didham 2006, Driscoll et al. 2013).

Four major classes of models have been used to inves-
tigate diversity patterns across landscapes (Fig. 1B). These 
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models can be categorized as dynamic vs. static models in 
patchy vs. continuous landscapes. The MacArthur and 
Wilson (1967) equilibrium model of island biogeography 
is an example of a model that is dynamic in a patchy 
(insular) landscape. According to this model, the number 
of species on an island results from a dynamic balance 
between species immigration and extinction, their ratio 
being higher for larger and less isolated islands (MacArthur 
and Wilson 1967). The idea that the number of species 
reflects a dynamic balance between extinction and immi-
gration greatly influenced ecology and conservation 
biology (review in Losos and Ricklefs 2010). However, the 
same idea also proved to be one of the most controversial 
features of the equilibrium model, with many studies ques-
tioning the importance of species extinction and turnover 
in landscapes (Simberloff 1976, Gilbert 1980, Coleman 
et al. 1982, Schoener 2010). This cell (Fig. 1B) may also 
include many formulations of recent metacommunity 
models (Leibold et  al. 2004), which have extended the 
original MacArthur-Wilson (1967) model by incorpo-
rating species interactions and migration among patches.

An example of a dynamic model in a continuous land-
scape is the original version of the neutral model (Fig. 1B; 
Hubbell 2001). In contrast to the equilibrium model, the 
neutral model is an individual-based rather than a 
species-based model that simulates the stochastic birth, 
death, and migration of individuals (Hubbell 2001). 
Another important distinction between these two models 
is that the original neutral model (Hubbell 2001) focused 
on homogeneous landscapes, whereas the equilibrium 
model focused on patchy landscapes (Fig.  1B). More 
recently, the neutral model has been extended to more 
spatially explicit versions applicable to patchy land-
scapes, in which habitat patches are embedded within a 
matrix of lower habitat quality (Campos et  al. 2012, 
Teyssèdre and Robert 2014).

In contrast to these dynamic models, a different class of 
models has shown that gradients in biodiversity may occur 
even when extinction processes or species turnover are not 
explicitly incorporated (Fig.  1B). Such “static” models 
include the random placement model (Coleman 1981, 
Coleman et  al. 1982) and the mid-domain effect model 
(Colwell and Lees 2000). The random placement model 
was developed as a potential statistical explanation for the 
species–area relationship represented as a pure island 
system (Coleman 1981). According to this model, habitat 
patches function as “targets” that accumulate individuals 
passively. Large patches accumulate more individuals and, 
consequently, more species than small patches. Because it 
is based on probabilistic processes, and does not include 
any explicit ecological mechanism, the random placement 
model has been used as a null model for comparing with 
real data and with the predictions of more complex models 
(Coleman et  al. 1982, Gotelli and Graves 1996, Bidwell 
et al. 2014). The mid-domain effect model simulates the 
stochastic origin and spread of species’ geographical 
ranges, and has traditionally been used to investigate var-
iation in species richness at much larger spatial scales 

(whole continents and large elevational gradients), and 
across contiguous rather than patchy landscapes (Fig. 1B; 
Colwell and Lees 2000, Gotelli et al. 2009). Recently, mid-
domain models have also been used to investigate edge 
effects at the scale of habitat patches (Prevedello et  al. 
2013, see also Tiwari et al. 2005). The main contribution of 
mid-domain models was to show that geometric con-
straints, acting on the placement of species’ geographical 
ranges (Colwell and Lees 2000) or individual home ranges 
(Prevedello et al. 2013), can produce gradients in species 
richness or abundance even when historical processes or 
effects of contemporary climate or habitat quality are not 
explicitly incorporated (Colwell et al. 2004, Tiwari et al. 
2005, Gotelli et al. 2009, Prevedello et al. 2013). Like the 
random placement model, the mid-domain effect model 
has been adopted as a null or baseline model (Gotelli and 
Graves 1996, Colwell et al. 2004, Prevedello et al. 2013).

Despite the major conceptual contribution of these four 
types of models to the study of biodiversity patterns across 
landscapes, their potential use has been limited for three 
reasons. First, each of these models focuses on an extreme 
landscape pattern, in which the matrix is either completely 
suitable or completely unsuitable to individuals (Fig. 1B). 
Such landscapes are better viewed as the two end points in 
a continuum of landscapes with varying degrees of matrix 
suitability. Indeed, in most terrestrial landscapes, the 
matrix is neither completely hospitable nor completely 
inhospitable to individuals, but instead serves as a sec-
ondary habitat for many species (Gascon et  al. 1999, 
Prevedello and Vieira 2010, Driscoll et al. 2013). A second 
limitation of these models is that they ignore variation in 
animal body size, which is ubiquitous in nature (Peters 
1983) and is known to influence species responses to 
habitat area and isolation (Henle et al. 2004, Ewers and 
Didham 2006, Vetter et  al. 2011). Body size determines 
individuals’ metabolic rates (Brown et al. 2004), which in 
turn affects many individual and population character-
istics, including home range size and population abun-
dance (Damuth 1981, Peters 1983, Kelt and Van Vuren 
2001, Brown et al. 2004). Home range size, in particular, 
has been suggested as an important determinant of species 
responses to habitat area and isolation (Börger et al. 2008, 
Buchmann et al. 2011). Third, the classic models ignore 
much of the variation in the spatial configuration of 
habitat in landscapes, such as the specific location and the 
shape of habitat patches. The spatial configuration of 
habitat may regulate the occurrence and intensity of 
geometric constraints, which in turn may affect home 
range placement, with potentially pervasive impacts on 
species’ occurrence and abundance across the landscape. 
Geometric constraints acting on home range placement 
have been shown recently to occur at the scale of individual 
habitat patches, reducing the abundance of organisms 
near patch boundaries (Prevedello et al. 2013). However, 
the implications of geometric constraints for the distri-
bution of individuals at the landscape level, and therefore 
for community richness and abundance, have not been 
explicitly investigated yet. Due to these limitations, each of 
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previous models allow investigation of only one or two of 
the four main drivers of spatial variation in diversity, but 
not all drivers simultaneously.

Here we show that a simple modification of the random 
placement model that incorporates body size and explicitly 
considers matrix suitability is able to reproduce realistic gra-
dients of spatial variation in species diversity from homoge-
neous to patchy landscapes. This model, hereafter called the 

landscape model, explicitly simulates the stochastic placement 
of home ranges in  landscapes. It is analogous to mid-
domain effect models used in macroecology, which simulate 
the placement of species’ geographical ranges across bioge-
ographical scales (Gotelli et al. 2009). As such, the landscape 
model reveals whether and how geometric constraints, 
acting on home range placement, affect biodiversity pat-
terns in landscapes. The model combines elements of two 

Fig. 1.  (A) Well-supported generalizations on the influence of area, isolation, edge, and matrix effects on abundance and species 
richness (modified from Ewers and Didham 2006). The spatial structure of landscapes can range from patchy to homogeneous, 
according to matrix suitability. In the first case, habitat patches can be clearly defined, whereas in the second no patches exist, only 
sample sites with boundaries arbitrarily defined. Although a “landscape” is often described as a “spatially heterogeneous area” 
(Turner 1989), here we treat a “homogeneous landscape” as an extreme spatial pattern, one of the endpoints of a gradient of relative 
matrix suitability in which matrix and habitat are indistinguishable. The matrix can also mediate area, isolation, and edge effects. 
General patterns of increase or decrease are depicted as linear relationships to simplify, but in reality may take nonlinear forms (e.g., 
exponential, power law). (B) Representation of the main theoretical models used in the study of area, isolation, edge, and matrix 
effects according to the type of landscapes considered (patchy or homogeneous) and the inclusion vs. the exclusion of extinction 
processes (dynamic or static, respectively).
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previous null models, the random placement model and the 
mid-domain effect model, which have been so far considered 
rather separately in the literature. We first explored the 
behavior of the landscape model using simulated mammal 
communities and landscapes. We explored the parameter 
space of this model and evaluated how the distribution of 
body sizes among species and the suitability of the matrix 
affected model outcomes. In addition, we analyzed a real 
data set on small mammal assemblages to illustrate how the 
model can be used in empirical applications. We show that 
the landscape model is able to reproduce empirically 
observed area, isolation, edge, and matrix effects on commu-
nities (as summarized in Fig. 1A), even when species inter-
actions, extinction, and other demographic processes are not 
explicitly incorporated.

Methods

Overview

The landscape model simulates the stochastic origin 
and spread of individual home ranges across a gridded 
landscape analogously to traditional mid-domain effect 
models, which simulate the distribution of geographic 
ranges of species across larger continental scales (Colwell 
et  al. 2004). To explore the behavior of the landscape 
model, we performed simulations using realistic parameter 
estimates for biological communities and landscapes 
(Table 1). Each species in the simulated community had a 
particular body mass derived from an input power-law 
distribution, which was used to estimate its population 
density and home range size based on well-established 
allometric functions. Simulations were run using 
increasing values for the suitability of the matrix, which 

generated a spectrum of artificial landscapes ranging 
from strictly patchy to purely homogeneous.

Landscape construction

Landscapes were created using the modified random 
cluster method (Saura and Martínez-Millán 2000), which 
provides independent parameters controlling the per-
centage and degree of aggregation of suitable habitat in the 
landscape. Each landscape was represented as a grid of 
300 × 300 cells. Each cell represented an area of 50 × 50 m, 
thus the landscape encompassed 225  km2 or 22 ,500  ha, 
large enough for a robust investigation of the main pat-
terns of biodiversity distribution across landscapes 
(Fig. 1A; see Jackson and Fahrig 2014). Each grid cell was 
classified as either habitat or matrix. The proportion of 
habitat cells in the landscape was set to either 10% or 30% 
of the total area of the landscape, based on previous studies 
that suggested that the effects of patch size and isolation 
should be more pronounced around those proportions 
(Andrén 1994, Pardini et  al. 2010, Villard and Metzger 
2014). The degree of aggregation of habitat cells was con-
trolled by the parameter p, with p = 0 resulting in a com-
pletely random distribution and p ≈ 0.593 resulting in a 
completely clumped distribution (see Saura and Martínez-
Millán 2000). We set p to a high, but not extreme, value 
(p = 0.55), which results in realistic landscapes (Saura and 
Martínez-Millán 2000). For comparison, in Appendix S1 
we present model outcomes for a landscape with a very low 
degree of aggregation of habitat cells (p = 0.10). Although 
similar general patterns emerge in landscapes with low and 
high habitat aggregation, there are quantitative differences 
in the predictions, illustrating that the landscape model is 
sensitive to habitat configuration (see Appendix S1).

Table  1.  Parameters used to construct the landscapes and mammal assemblages used in the simulations and sources used to 
support their choices.

Parameter Value Explanation Source

Landscape construction
  Landscape size 300 × 300 dimensions of the landscape 

(n cells)
Jackson and Fahrig (2014)

  Habitat cover 0.10, 0.30 proportion of the landscape 
occupied by habitat

Villard and Metzger (2014)

  Habitat aggregation 0.55 probability of aggregation of 
habitat cells

Saura and Martínez-Millán 
(2000)

  Matrix suitability 0, 0.4, 0.8, 1.0 probability of occupancy of 
matrix cells by individuals

Driscoll et al. (2013)

Assemblage construction
  Total species richness 100 number of species in the 

assemblage
Buchmann et al. (2011)

  Body size limits 0.1, 100 minimum and maximum body 
mass (kg)

Buchmann et al. (2011)

  Body size distribution p(M) = k × Mn function to attribute a body 
mass (M) to each species; k 
is a constant

Buchmann et al. (2011)

  Body mass exponent −0.77, −1.10, −1.31 exponent of the previous 
function (n)

Buchmann et al. (2011)

  Density log D = 1.21 − 0.7 (log M) function to calculate density 
(D) from body mass

Silva and Downing (1995)

  Home range size log HR = −2.33 + 1.13 (log M) function to calculate home 
range (HR) from body mass

Kelt and Van Vuren (2001)
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For each percentage of cover, we generated 30 replicate 
landscapes. We present in detail in the main text only the 
results for one landscape with 30% of habitat cover, and 
overall results for the different replicates of landscapes 
with 30% of habitat cover (see Data analysis), because the 
model reproduced the same general patterns for the land-
scape with 10% habitat cover (Appendix S2). Patch sizes 
in the landscape that is illustrated in the main text ranged 
from 1 (0.25 ha) to 3964 grid cells (991 ha), thus spanning 
~3.6 orders of magnitude, which encompasses the range 
of patch sizes used in most studies on patchy landscapes 
(mean ± SD = 2.75 ± 0.08 orders of magnitude; Watling 
and Donnelly 2006). Landscapes were created using the 
package secr 2.6.0 (Efford 2013) in the R 3.2 environment 
(R Core Team 2014).

To evaluate how matrix suitability affected model out-
comes, we varied it from the extreme values of  0 (com-
pletely inhospitable matrix) to 1 (as hospitable as the 
habitat patches). Here, matrix is defined simply as the 
landscape cells that were not set as habitat cells during 
the creation of  the simulated, binary landscapes. In the 
case of  a completely inhospitable matrix, individuals 
could not establish their home ranges in the matrix, as is 
the case in oceanic island systems, and as assumed in the 
random placement model and in the classic equilibrium 
model of  island biogeography (Fig. 1B). In the case of  a 
hospitable matrix, matrix and habitat patches were 
indistinguishable and the landscape was homogenous, 
without any habitat fragmentation, similar to classic 
mid-domain effect and neutral models (Fig. 1B). In this 
scenario, the areas within which abundance and richness 
are measured are not habitat patches but simply sam-
pling areas, with the same shape, size, and location as the 
habitat patches that occur in the same landscape when 
matrix suitability is lower than habitat suitability. We 
also explored intermediate values of  matrix suitability 
(0.4 and 0.8), representative of  many patchy terrestrial 
landscapes, in which individuals can use the matrix as a 
secondary habitat (Prevedello and Vieira 2010, Driscoll 
et al. 2013).

Assemblage construction

We constructed mammal assemblages of 100 species 
each, which encompasses the range of species richness 
found in most local assemblages of mammals (see 
Buchmann et al. 2011). Each species in the assemblage 
was assigned a particular home range size and population 
abundance, estimated from its body mass. Body mass was 
used only as an indirect proxy to estimate abundance and 
home range for each species in the different communities 
simulated. We used mammals as model organisms with 
species’ body masses ranging from 0.1 to 100 kg, because 
the relationships between body mass and home range size 
and population density are well known for this group and 
for this range of body mass (Silva and Downing 1995, 
Kelt and Van Vuren 2001). However, the model may be 
applied for any animal group for which home range size 

and population density estimates are directly available or 
can be estimated from body mass.

To attribute a particular body mass (M) to each species 
in the simulated communities, we used a power-law distri-
bution based on Buchmann et al. (2011), p(M) = k × Mn, 
where k is a constant chosen so that the equation integrates 
to 1. The exponent of the relationship (n) determines how 
uniform the distribution of body masses among species is. 
We constructed communities using three realistic n values, 
−1.31 (more uneven distribution of body masses), −1.10 
(intermediate), and −0.77 (more uniform distribution), 
which correspond to the maximum, intermediate, and 
minimum values measured for real mammal communities 
(Buchmann et al. 2011). In the main text, we present only 
the results for communities with intermediate n values 
(−1.10), because the results were similar for the other com-
munities (see Appendix S3).

Based on the body mass of each species, we calculated 
its total population density (D) as log(D) = 1.21 − 
0.7(log M), following Silva and Downing (1995). Based on 
the calculated density (expressed as number of individuals/
km2) and the total area of the landscape (225 km2), we 
determined how many individuals of the species would be 
placed in the landscape. Model outputs were similar when 
the number of individuals to be placed in the landscape 
was calculated in proportion to matrix suitability 
(Appendix S4). The home range (HR) of each species was 
also estimated as a function of body mass, following Kelt 
and Van Vuren (2001): log(HR) = −2.33 + 1.13 (logM).

Home range placement in the landscape

The landscape model simulates the stochastic origin 
and spread of  individual home ranges within a gridded 
landscape. For each individual, a grid cell is randomly 
chosen to represent the birth of  the individual. The 
probability that a given cell is chosen as the birth cell is 
proportional to its suitability, which is set as 1 for all 
habitat cells and between 0 and 1 for matrix cells. When 
matrix suitability = 0, however, the suitability of  habitat 
cells belonging to patches that are smaller than the home 
range is also set to 0, because the patch would be too 
small to contain even a single home range. Each indi-
vidual then expands its home range by occupying 
adjacent cells, until the final home range size (as deter-
mined from the species’ body mass) is reached. Home 
range expansion follows a modified “spreading dye” 
algorithm (Jetz and Rahbek 2001), used in more recent 
mid-domain effect models that incorporate habitat var-
iation (Storch et al. 2006, Rahbek et al. 2007). In this 
algorithm, the second, third, …, nth cells are chosen 
with a probability proportional to their suitability, but 
only the eight adjacent contiguous cells (Moore neigh-
borhood) are considered as candidate cells. This 
restriction ensures the cohesion of  home ranges while 
allowing for realistic variation in their shape (Prevedello 
et  al. 2013). The model was implemented in R 3.2 (R 
Core Team 2014). The full code used to construct the 
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communities and landscapes, and to place home ranges 
in the landscape, is provided in the Supplement 1.

The landscape model assumes the absence of territorial 
behavior, in the sense that individuals of a same species 
are placed independently in the landscape. To explore the 
consequences of relaxing this assumption, we also ran the 
landscape model considering the extreme case of strict 
territorial behavior, in which the home ranges of indi-
viduals of the same species were not allowed to overlap 
(Appendix S5). Results were robust to the incorporation 
of territorial behavior: the qualitative patterns of abun-
dance and richness among patches and cells were main-
tained, despite quantitative differences in the results 
(Appendix S5).

The landscape model also assumes that individuals do 
not disperse, in the sense that they always settle their 
home ranges in the vicinities of the birth cell. To evaluate 
the sensitivity of the model to this assumption, we tested 
two alternative versions that incorporated simple dis-
persal, as detailed in the Appendix S6. The outcomes of 
these models were almost identical, and in general they 
were also similar to those of the model without dispersal. 
The only important difference was the emergence of mid-
domain effects at the landscape scale in models that 
incorporated dispersal. Such mid-domain effects emerged 
because dispersing individuals tended to concentrate 
more near the center of the landscape (see Appendix S6: 
Fig. S1).

Data analysis

To investigate area, isolation, edge, and matrix effects 
on communities, we recorded total community abun-
dance and richness per grid cell and per habitat patch. We 
then determined how matrix suitability modulated area, 
isolation, and edge effects, graphically comparing pat-
terns generated by the landscape model with the expected 
patterns obtained from empirical studies in real land-
scapes (Fig. 1A). For the graphical analyses, raw abun-
dance and richness per cell and per habitat patch were 
converted to relative values, calculated separately for 
each landscape as: (predicted value)/(maximum predicted 
value). With this transformation, abundance and richness 
always ranged from 0 to 1, facilitating comparisons of 
patterns between these two variables and also across 
landscapes with different matrix suitability.

In addition to the graphical analysis, we extracted the 
slopes of the species–area relationships (z values) from 
the logarithmic form of the power model (S  =  cAz; 
Arrhenius 1921). We also calculated the expected species 
richness (±2 SD), abundance, and density (abundance 
divided by patch size) for each patch as predicted by the 
random placement model, following Coleman (1981), 
and compared them with the values predicted by the 
landscape model.

Isolation was evaluated at the grid cell level using a 
modified version of the similarity index, which provides 
a biologically meaningful measure of effective isolation 

(McGarigal et  al. 2002). This index measures the simi-
larity of the neighborhood of a given focal cell. Because 
the area of each cell was always the same, we calculated 
the index as the sum of the suitability of each cell within 
a search buffer that surrounded the focal cell divided by 
the square of its distance from the focal cell (McGarigal 
et al. 2002). The radius of the search buffer was calculated 
as the average median home range size of all species in the 
community, measured in number of cells, because home 
ranges can assume linear shapes and their size determines 
the potential of an individual reaching a given landscape 
cell in the model.

The similarity index was calculated for all cells in the 
landscape, including both habitat and matrix cells. 
Because the similarity index is negatively related to iso-
lation (McGarigal et al. 2002), we converted it to a direct 
metric of isolation for each cell, by calculating the dif-
ference between the maximum similarity possible for a 
landscape cell and the observed similarity of the focal 
cell. Maximum similarity corresponded to the similarity 
of a cell completely surrounded by habitat cells within the 
search buffer. For both matrix and habitat cells, isolation 
effects were analyzed primarily at the cell rather than the 
patch level following the suggestions of Fahrig (2013). 
Isolation effects at the patch level are presented in 
Appendix S7 for comparison.

Edge effects were quantified by relating the abundance 
and species richness recorded at each habitat cell to the 
average distance from the patch edge, based on the eight 
compass directions of the Moore neighborhood.

Values shown in the figures of the main text were 
recorded after only a single run of the model. To check the 
consistency of such model outcomes across different itera-
tions, we ran the landscape model 30 times, each one with 
a different community and a different landscape. These 
communities and landscapes differed because the model is 
stochastic, but they were constructed using the same 
parameter values (habitat amount in the landscape = 30%, 
aggregation of habitat patches [p] = 0.55, exponent of the 
power law distribution of body mass = −1.10). To sum-
marize model outcomes for each iteration, we calculated 
the slopes of the following relationships (using log-
transformed values to linearize relationships when nec-
essary): (1) abundance vs. patch size; (2) log(density) vs. 
log(patch size); (3) log(species richness) vs. log(patch size); 
(4) abundance vs. pixel isolation; (5) richness vs. pixel iso-
lation; (6) log(abundance) vs. log(distance from edge); 
(7) log(richness) vs. log(distance from edge).

Case study

To illustrate how the model can be fit to empirical data, 
we analyzed a data set on small mammal assemblages 
sampled at 20 forest sites in the Brazilian Atlantic Forest 
(Pardini et al. 2010). This data set has been analyzed in 
previous studies on the effects of habitat loss and frag-
mentation (Pardini et al. 2005, 2010, Banks-Leite et al. 
2014, Püttker et  al. 2015). It is particularly suitable to 
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illustrate the application of our model for a number of 
reasons. First, a previous analysis detected consistent 
patch-area effects on both abundance and species richness 
(Pardini et al. 2010) and another study carried out in the 
same landscape has shown the importance of incorpo-
rating matrix suitability to predict small mammal distri-
bution across habitat patches (Umetsu et  al. 2008). 
Second, the system is representative of many terrestrial, 
fragmented landscapes (Driscoll et al. 2013), with frag-
mented native habitats (forests) embedded in a matrix of 
different human-modified habitats. Third, the habitat 
preferences and home range sizes of the 20 small mammal 
species recorded in this landscape are relatively well 
known (Appendix S8). Finally, a large and standardized 
sampling effort was employed across the 20 forest sites, 
resulting in robust and directly comparable estimates of 
species abundance and richness.

The studied landscape is located in São Paulo state, 
Brazil (23°41′–23°46′  S, 47°03′–47°07′  W), within the 
domain of the Atlantic Forest biodiversity hotspot. The 
landscape is approximately 10 000  ha, 31% of which is 
covered by native forest (see Fig.  9). The dominant 
habitat types surrounding native forest patches are plan-
tations of annual crops (38% of the landscape), rural 
areas with buildings such as houses, greenhouses, and 
storage units (14%), native vegetation in initial stages of 
regeneration (7%), and homogeneous eucalyptus planta-
tions (7%; see Fig. 9 and Umetsu and Pardini 2007 for 
details).

The 20 sampling sites were separated by at least 284 m 
(distance to the nearest surveyed site   = 1,024 ± 700 m 

[mean ± SD]), and located within forest patches that were 
2–374 ha in area. During the summers of 2001–2002 and 
2002–2003, each of the 20 forest sites was surveyed with 
a 100-m array of 11 large pitfall traps, for a total of 32 
trapping days (details in Pardini et al. 2010). Large pitfall 
traps deployed during the wet season each year yielded a 
large number of individuals and species, including rare 
species (Pardini et al. 2010).

To analyze patterns in community abundance and 
richness, we designated the 20 detected mammal species 
in two groups, “generalists” and “specialists,” following 
the original classification of Pardini et  al. (2010). 
Specialist species were those whose geographical distri-
bution is restricted to forested biomes (Atlantic Forest 
and Amazon) and are usually sensitive to the conversion 
of native forest into anthropogenic habitats. Generalist 
species were those whose geographical distribution also 
encompasses the non-forested biomes adjacent to the 
Atlantic forest (Cerrado and Caatinga; Pardini et  al. 
2010). For each species, we compiled from the literature 
empirical estimates of home range sizes and abundances 
in the different land-cover types (Table 2), as detailed in 
the Appendix S8.

For simulations, the landscape map was converted to 
a raster file containing 397 × 291 cells with cell size of 
30 m, matching the extent and resolution of the original 
map. We fit the model to the data of each of the two 
sampling periods separately, and then averaged abun-
dance and richness values across the two periods for 
analysis. Each species and individual was placed in the 
model landscape independently using the model 

Table 2.  Parameter estimates for the empirical case study on small mammals of the Atlantic Forest, Brazil.

Species

Land cover suitability
Home range 

(ha)
Total 

abundanceFor Ini Euc Rur Agr

Specialist species
Marmosops incanus 1.00 0.13 0.00 0.00 0.00 1.4 2464
Brucepattersonius soricinus 1.00 0.50 0.00 0.00 0.50 0.2 1323
Monodelphis scalops/M. americana 1.00 0.00 0.00 0.00 0.00 0.6 698
Delomys sublineatus 1.00 0.50 0.00 0.00 0.00 0.5 1475
Sooretamys angouya 0.75 1.00 0.00 0.00 0.00 2.2 1616
Thaptomys nigrita 1.00 0.50 0.00 0.00 0.50 0.1 70
Gracilinanus microtarsus 1.00 0.00 0.30 0.00 0.00 1.0 430
Juliomys pictipes/J. ossitenuis 1.00 0.50 0.00 0.00 0.10 1.0 67
Euryoryzomys russatus 1.00 0.00 0.00 0.00 0.00 1.6 148
Monodelphis sorex (=M. dimidiata) 1.00 0.00 0.50 0.00 0.50 0.6 50
Phyllomys nigrispinus 1.00 0.00 0.00 0.00 0.00 2.4 81
Oxymycterus dasytrichus 1.00 0.00 0.00 0.00 0.00 1.6 167
Rhagomys rufescens 1.00 0.00 0.00 0.00 0.00 1.0 13

Generalist species
Akodon montensis 0.08 1.00 0.39 0.10 0.05 1.0 6774
Oligoryzomys nigripes 0.04 0.60 1.00 0.08 0.20 0.6 32 523
Calomys tener 0.10 0.10 0.00 0.27 1.00 0.2 942
Necromys lasiurus 0.10 0.10 0.00 0.50 1.00 0.9 190
Nectomys squamipes 1.00 1.00 0.00 0.00 0.00 2.8 9
Bibimys labiosus 0.10 0.10 0.10 0.10 1.00 0.2 269
Lutreolina crassicaudata 1.00 1.00 1.00 1.00 1.00 3.6 46

Notes: Land cover suitability varied from 0 (unsuitable for the species) to 1 (maximum suitability). For, native forest; Ini, native 
vegetation in initial stages of regeneration; Euc, Eucalyptus plantations; Rur, rural areas with buildings; Agr, areas of agriculture. 
Total abundance is the estimated total number of individuals in the entire landscape.
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algorithms, assuming absence of strict territoriality, 
which is unlikely to occur in most of these species (Reis 
et al. 2011, Prevedello et al. 2013). We ran 100 iterations 
of the model for data of each sampling period, recording 
for each iteration the abundance and occurrence 
(presence/absence) of each species in each landscape cell.

We also fit Coleman’s (1981) random placement model 
for comparison. To incorporate the assumptions of the 
Coleman model, we set the following parameters for all 
species: home range size = 1 cell, forest suitability = 1, and 
the suitability of all matrix types = 0. After 100 iterations, 
we recorded the total abundance and richness for each 
landscape cell, separately for specialist and generalist 
species.

For both abundance and species richness, we calcu-
lated the Pearson’s coefficient of determination (r2) 
between the observed value in each forest site and the 
average of the model prediction from 100 iterations. In 
addition, we tested whether the intercept differed signifi-
cantly from 0, and whether the slope differed significantly 
from 1. If the data are perfectly predicted by the model, 
a regression of observed vs. predicted values will yield 
r2 = 1.00, slope = 1.00, and intercept = 0.00. To analyze 
patch-area effects, we also correlated observed and pre-
dicted abundances and richness with log(forest patch 
size), as in the original study of Pardini et al. (2010).

Results

Matrix effects on general model outcomes

For both abundance and species richness, differ-
ences within and among habitat patches were more 

pronounced when the matrix was completely unsuitable 
to individuals (Fig. 2). In this case, larger patches accu-
mulated substantially more individuals and species 
than did smaller patches. In addition, abundance was 
visibly higher at the center of the patches compared to 
their edges, yielding a mid-domain effect at the scale of 
individual patches, which was less clear for species 
richness. As matrix suitability increased, differences 
within and among patches became progressively less 
conspicuous, disappearing when the landscape was 
homogenous (Fig. 2). In this case, there was no con-
sistent difference in abundance or richness between 
habitat and matrix pixels, despite some random vari-
ation among pixels reflecting the stochastic nature of 
the model.

Area effects

Abundance always increased with the size of the 
habitat patch (or sample area in the case of the homoge-
neous landscape), but this relationship departed from the 
linear (1:1) relationship predicted by the random 
placement model for all but the largest patches (>2,000 
cells). The deviation from predictions of the classic 
random placement model was especially evident in 
patches with fewer than 100 cells (Fig. 3A). Abundance 
in these smaller patches was slightly lower than predicted 
by the random placement model when the matrix was 
unsuitable, but higher than predicted in all other cases 
(Fig.  3A). Slopes of the abundance-area relationships 
decreased as matrix suitability increased (slopes = 25.35, 
13.68, 9.74, and 8.61, for matrix suitability = 0, 0.4, 0.8, 
and 1.0, respectively).

Fig. 2.  General outputs of the landscape model for different matrix suitability values. Predicted abundance (A) and species 
richness per grid cell are shown as proportional values, calculated separately for each matrix suitability value as (predicted value)/
(maximum (B) predicted value).
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Population density varied with the size of the patch (or 
sample area) in all degrees of matrix suitability (Fig. 3B). 
This is in contrast to the underlying assumption of the 
random placement model, which is a constant density for 
all patch sizes or sample areas. The density–area rela-
tionship was positive when the matrix was completely 
unsuitable, but negative in all other cases (Fig. 3B).

Species richness also increased with the size of the 
habitat patch (or sample area; Fig.  3C). Very large 
patches (≥ 2,000 grid cells) always contained all species 
(100 species), regardless of the degree of matrix suita-
bility. On the other hand, variation in matrix suitability 
affected the number of species in patches with fewer than 
2000 cells: they had fewer species than predicted by the 
random placement model when the matrix was com-
pletely unsuitable, but otherwise had more species than 
predicted (Fig. 3C). Slopes of the species–area relation-
ships decreased as matrix suitability increased from 0 to 
0.4 (z = 0.40 and 0.13, respectively), and remained low for 
greater increases in matrix suitability (z = 0.14 for matrix 
suitability = 0.8 or 1.0).

Isolation effects

Abundance and richness within habitat cells generally 
decreased as cell effective isolation increased (Fig. 4B, C). 
This relationship was steeper when the matrix was 
unsuitable, and became progressively shallower as matrix 
suitability increased to 1. For matrix cells, richness and 
abundance were obviously 0 when matrix suitability was 
0. In all other cases, abundance and richness were nega-
tively related to effective isolation, and this relationship 
again became shallower as the matrix suitability increased. 
Matrix and habitat grid cells became progressively more 
similar in abundance and richness as the matrix suita-
bility increased (Fig. 4B, C).

Edge effects

When the matrix was unsuitable, abundance and 
richness increased as the distance from the surrounding 
edges increased (Fig.  5). This relationship was more 
linear for abundance, but, for richness, the maximum 
values were constrained to 100 species. For both richness 
and abundance, the relationship became shallower as the 
matrix suitability increased and disappeared when the 
matrix was completely suitable.

Fig. 3.  Area effects on (A) abundance, (B) density, and (C) 
species richness for different matrix suitability values, as 
predicted by the landscape model. Predicted abundance, 
density, and species richness are shown as proportional values, 
calculated separately for each matrix suitability value as 
(predicted value)/(maximum predicted value). Insets highlight 
the results for the smallest patches or sample sites (<100 grid 
cells). Continuous lines indicate predictions (mean + 2 SD) of 
the random placement model.
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Consistency of model outcomes across different 
iterations

Across the 30 iterations of the model, slopes of the 
abundance–area relationships were always positive, and 
decreased as matrix suitability increased (Fig. 6A). Slopes 
of the density–area relationships were always positive 
when the matrix was completely unsuitable, but negative 
(reaching similar values) in all other cases (Fig.  6B). 
Slopes of the species–area relationships were always pos-
itive, and consistently higher when the matrix was com-
pletely unsuitable, reaching similarly lower values when 
matrix suitability was ≥0.4 (Fig. 6C).

For habitat cells, slopes of the abundance–isolation 
and richness–isolation relationships were always neg-
ative, and consistently higher (more negative) when the 
matrix was unsuitable, reaching similarly lower values 
when matrix suitability was ≥0.4 (Fig.  7). For matrix 

cells, richness and abundance were obviously 0 when 
matrix suitability was 0. In all other cases, slopes of the 
abundance–isolation and richness–isolation relation-
ships were always negative, with similar values for 
different matrix suitability values (Fig. 7).

Slopes of the relationships between abundance or 
richness with the distance from the surrounding 
edges were higher and positive when the matrix was com-
pletely unsuitable (Fig.  8). Slopes decreased as matrix 
suitability increased, reaching 0 when the matrix was 
completely suitable (Fig. 8).

Case study

For specialist small mammal species, observed abun-
dance and richness increased significantly with patch 
size (abundance r2 = 0.59, P < 0.001; richness r2 = 0.44, 
P  =  0.001). Similarly, the landscape model predicted 

Fig. 4.  Isolation effects. (A) Distribution of cell isolation values across the landscape for different matrix suitability values. 
Isolation was quantified as the complement of the similarity index (maximum similarity − observed similarity), using a search buffer 
of 18 cells (900 m). Higher values indicate higher effective isolations. (B) Isolation effects on abundance per grid cell, as predicted 
by the landscape model. (C) Isolation effects on species richness per grid cell, as predicted by the landscape model. Abundance and 
species richness are shown as proportional values, calculated separately for each matrix suitability value as (predicted value)/
(maximum predicted value). Within each panel of B and C, habitat cells are shown in black and matrix cells in gray.
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consistent increases in abundance and richness with 
patch size (abundance r2  =  0.69, P  <  0.001; richness 
r2 = 0.68, P < 0.001; Fig. 9E, F). Observed and predicted 
abundance and richness values were significantly corre-
lated (abundance r2 = 0.33, P = 0.008; richness r2 = 0.34, 
P = 0.007; Fig. 9I, J). The intercepts of the relationships 
between predicted and observed values differed signifi-
cantly from 0, for both abundance (5.42 ± 1.91 [mean ± 
SE], t  =  2.80, P  =  0.01) and richness (2.29  ±  0.82, 
t  =  2.80, P  =  0.01). The slopes of these relationships 
differed significantly from 1 (abundance  0.39  ±  0.13, 
t = −4.61, P < 0.001; richness 0.50 ± 0.16, t = −3.02, 
P = 0.007).

For specialist species, predictions of Coleman’s model 
were significantly correlated with observed values, but 
the fit (as judged from r2 values) was lower than the fit 
between our model and observed values, for both abun-
dance (r2  =  0.24, P  =  0.03) and richness (r2  =  0.25, 
P  =  0.02). The intercepts of the relationships between 
predicted and observed values differed significantly from 
0, for both abundance (8.31 ± 1.42, t = 5.85, P < 0.001) 
and richness (3.53 ± 0.65, t = 5.45, P < 0.001). The slopes 
of these relationships differed significantly from 1, for 
both abundance (0.24 ± 0.10, t = −7.90, P < 0.001) and 
richness (0.33 ± 0.13, t = −5.11, P < 0.001).

For generalist species, observed abundance and 
richness did not vary significantly with patch size (abun-
dance r2 = 0.07, P = 0.27; richness r2 = 0.004, P = 0.77). 
In contrast, the model predicted a reduction in both 
abundance and richness with increasing patch size 

(abundance r2  =  0.48, P  <  0.001; richness r2  =  0.58, 
P < 0.001; Fig. 9G, H). Observed values and values pre-
dicted by the model were positively but nonsignificantly 
correlated for both abundance (r2  =  0.11, P  =  0.15; 
Fig. 9K) and richness (r2 = 0.02, P = 0.51; Fig. 9L). The 
intercepts of the relationships between predicted and 
observed values differed significantly from 0 (abundance 
7.35  ±  3.06, t  =  2.40, P  =  0.03; richness 2.09  ±  0.15, 
t = 13.46, P < 0.001), and the slopes differed significantly 
from 1 (abundance  0.39  ±  0.26, t  =  −2.30, P  =  0.03; 
richness 0.05 ± 0.07, t = −12.81, P < 0.001).

For generalist species, predictions of Coleman’s model 
were negatively but nonsignificantly related to observed 
values, for both abundance (r2  =  0.11, P  =  0.15) and 
richness (r2 = 0.02, P = 0.51). The intercepts of the rela-
tionships between predicted and observed values differed 
significantly from 0 (abundance 10.25 ± 1.06, t = 9.69, 
P < 0.001; richness 2.33 ± 0.18, t = 13.16, P < 0.001). The 
slopes where negative and differed significantly from 1 
(abundance  −0.13  ±  0.09, t  =  −12.46, P  <  0.001; 
richness −0.06 ± 0.08, t = −12.44, P < 0.001).

Discussion

Despite its simplicity and minimal assumptions, the 
landscape model produced realistic gradients of species 
abundance and richness across both simulated and real 
landscapes. More specifically, the model was able to 
generate realistic area, isolation, edge, and matrix 
effects in communities. Such outcomes were robust to 

Fig. 5.  Edge effects on (A) abundance and (B) species richness per habitat grid cell for different matrix suitability values, as 
predicted by the landscape model. Abundance and species richness are shown as proportional values, calculated separately for each 
matrix suitability value as (predicted value)/(maximum predicted value). The mean distance (in number of cells) of each cell from 
the border of the patch (or sample site) was quantified by considering the eight main directions surrounding each cell.
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variations in habitat cover (10% and 30%), habitat con-
figuration, home range size distribution, population 
sizes, and in the degree of intraspecific territorialism (see 
Appendices S1–S6). Variation in home range sizes 
incorporated the assumption that an individuals’ occu-
pation of the landscape is subject to geometric con-
straints, with consequences for community abundance 
and richness, which have been so far largely neglected in 
the literature. Variation in matrix suitability confirmed 
that the matrix mediates area, isolation, and edge 
effects, and provided a common framework to study 
landscapes with different structures, from patchy to 
more homogeneous. To date, patchy and homogeneous 
landscapes have usually been studied rather separately 
by landscape ecologists, biogeographers, and macroe-
cologists. Because the landscape model explicitly 
excludes many ecological processes, such as extinction, 
interspecific interactions, and variation in habitat 
quality within habitat patches, its ability to produce 
realistic gradients of abundance and richness in land-
scapes raises the possibility that such gradients are 
driven, at least in part, by simple probabilistic forces, 

more specifically geometric constraints acting on the 
placement of home ranges across the landscape.

Model outcomes vs. empirical patterns

Although the landscape model is static, it nevertheless 
produced realistic species–area curves (Fig.  3C). This 
result reinforces the premise of the random placement 
model, which is that the species–area relationship may 
result at least in part from probabilistic processes, 
emerging even when extinction processes are not explicitly 
considered (Connor and McCoy 1979, Coleman et  al. 
1982, Bidwell et al. 2014). However, the predictions of the 
landscape model differed from predictions of the tradi-
tional random placement model, especially for small 
habitat patches.

The random placement model assumes that the number 
of individuals is always directly proportional to patch 
size (Coleman 1981), regardless of species’ home range 
sizes or matrix suitability. This model does not consider 
the potential influence of matrix suitability because it was 
originally conceived for application in strictly patchy 

Fig. 7.  Slopes of the relationships between cell isolation and (A) abundance or (B) species richness across 30 iterations of the 
landscape model. Values are shown separately for habitat and matrix cells and for different matrix suitability values. Symbols are the 
median (horizontal line), ±1 SE (box), 95% confidence intervals (vertical lines), and outliers (points) of the slopes across 30 iterations.
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landscapes (island archipelagoes), where the matrix 
(water) is completely inhospitable for organisms. Because 
it ignores home range sizes, when compared to the land-
scape model, Coleman’s (1981) model overestimates 
richness for patches that are too small to harbor the home 
ranges of some large-bodied species when the matrix is 
completely unsuitable to individuals. In contrast, when 
matrix suitability is relatively high (≥0.8), the random 
placement model underestimates richness for small 
patches, because it does not account for the presence of 
individuals whose home ranges are located in the matrix 
but also partially overlap with the habitat patch. Such 
individuals, which may use the matrix as a secondary 
habitat, increase population abundance within the 
patch  (Bowers et al. 1996, Brotons et al. 2003), there - 
by increasing species richness.

For the same reasons, the landscape model and the 
random placement model differ in their predictions 
regarding density–area relationships. Whereas the 
random placement model predicts uniformity in popu-
lation density across patches, the landscape model can 
generate negative or positive density–area relationships, 
depending on matrix suitability. Indeed, for mammals, 
both positive and negative density–area relationships 
have been documented in the literature (Bowers and 
Matter 1997, Connor et  al. 2000, Brotons et  al. 2003). 
Evidence compiled by Bowers and Matter (1997) and 
Brotons et al. (2003) suggest that these relationships tend 
to be positive for more isolated habitat patches, such as 
true islands, but negative or neutral for less isolated 
patches, in agreement with the landscape model.

The landscape model generated realistic species–area 
slopes (z values) that fell within the range observed in 
empirical studies. In a comprehensive review, Triantis 
et al. (2012) showed that z values known for islands range 
from 0.06 to 1.31, with a mean of z = 0.32, close to the 
values produced by the landscape model (z = 0.40) for 
landscapes with unsuitable matrix. For terrestrial 
patches, Watling and Donnelly (2006) documented mean 

z values of 0.18, close to the values produced by the land-
scape model for landscapes with matrix suitability >0 
(z = 0.14).

Additionally, z values decreased as matrix suitability 
increased, in accordance with many empirical studies 
documenting higher z values for true islands compared 
to areas within terrestrial landscapes (MacArthur and 
Wilson 1967, Connor and McCoy 1979, Fahrig 2013). 
The higher z values for islands compared to habitat 
patches in terrestrial landscapes (the island effect; 
Fahrig 2013) have usually been attributed to a lower 
immigration rate on islands, due to their relative iso-
lation (Connor and McCoy 1979, Watling and Donnelly 
2006, Fahrig 2013). According to this hypothesis, in ter-
restrial landscapes, the more favorable matrix would 
allow higher immigration rates, increasing richness 
especially in small patches, both by increasing the 
number of transient species (MacArthur and Wilson 
1967) and by decreasing extinction rates due to the 
rescue effect (Brown and Kodric-Brown 1977). In 
addition, a more favorable matrix is supposed to 
decrease species extinctions in small fragments by pro-
viding species with supplementary or complementary 
resources (Dunning et al. 1992, Gascon et al. 1999). In 
the landscape model, which is static, variation in 
z  values  was not caused by variation in extinction or 
immigration rates, but simply by variation in the prob-
ability of occupancy of the small habitat patches by 
individuals. The decrease in z values with the increase in 
matrix suitability is another realistic feature of the land-
scape model that is not predicted by the random 
placement model, which ignores variation in home 
range sizes and does not account for matrix suitability.

Effective isolation, as measured through the modified 
similarity index, had a negative effect on the abundance 
and richness of landscape cells, in accordance with an 
extensive empirical literature (see Fig.  1; Ewers and 
Didham 2006). When the matrix was at least partially 
suitable to individuals (suitability >0), this effect occurred 
for both habitat and matrix cells. This result provides 
support for the “habitat amount hypothesis” (Fahrig 
2013), which posits that species abundance and richness 
in a given point of the landscape should increase with the 
total amount of habitat in the local surroundings, even 
when this habitat is embedded in a low-quality matrix.

Isolation effects were stronger when matrix suitability 
was lower, and became progressively weaker as matrix 
suitability increased and landscape became more homo-
geneous, again in accordance with empirical studies 
(Bender and Fahrig 2005, Prevedello and Vieira 2010, 
Kennedy et al. 2011, Driscoll et al. 2013). The mediating 
role of the matrix on isolation effects is usually attributed 
to its effect on movement and dispersal of organisms, 
which are believed to affect immigration and extinction 
probabilities (Bender and Fahrig 2005, Kennedy et al. 
2011, Driscoll et al. 2013). In the landscape model, iso-
lation effects reflect simple probabilistic processes: the 
larger the number of cells of high suitability in the 

Fig. 8.  Slopes of the relationships between the distance of 
each habitat cell from the borders of the patch and (A) 
abundance or (B) species richness, across 30 iterations of the 
landscape model. The mean distance from the borders was 
quantified by considering the eight main directions surrounding 
each cell. Symbols are the median (horizontal line), ±1 SE (box), 
95% confidence intervals (vertical lines), and outliers (points) of 
the slopes across 30 iterations of the model.
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neighborhood of a given focal cell, the higher is the 
probability of that focal cell being reached and occupied 
as a part of individuals’ home ranges (see Fig. 4A). This 
explains why isolation effects emerged from the land-
scape model even when the landscape was homogeneous 
(see Fig. 4, column “matrix = 1.0”). In this case, cells 
located near the edges of the landscape had fewer 
neighbor cells than cells located at more central por-
tions of the landscape and, as a consequence, had 
slightly lower abundance and richness. This is clearly 
another manifestation of the mid-domain effect (Colwell 
and Lees 2000), which therefore can have a role in medi-
ating isolation effects if landscapes are surrounded by 
unsuitable areas (see, e.g., Tiwari et al. 2005). However, 
if this is not the case, researchers applying the model to 
real data should ensure that the landscape maps used in 
simulations are larger than the landscape area sampled, 
to avoid interference of this mid-domain effect on model 
predictions.

Although isolation had a clear effect on abundance and 
species richness at the scale of individual landscape cells, it 
had weaker effects at the scale of habitat patches (see 
Appendix S7). At this scale, isolation effects were obscured 
by variation in patch sizes, which were much more important 
determinants of abundance and species richness. When the 
analysis was restricted to equal-sized patches, isolation 
effects appeared, but were again relatively weak (see 
Appendix S7). The relative importance of patch isolation, 
especially as compared to patch size, has been the subject of 
debate in the literature (Beier et al. 2002, Fahrig 2003, 2013, 
Boscolo and Metzger 2011). In a comprehensive meta-
analysis, Watling and Donnelly (2006) showed that patch 
size has consistent, positive effects on species richness, 
whereas isolation effects are much weaker. They suggested 
that this pattern could reflect the narrow range in patch iso-
lation included in the original studies, and that isolation 
effects would be stronger if patch isolation was more var-
iable. Accordingly, for real islands, isolation effects are 

Fig. 9.  Results of the application of the landscape model to small mammals of the Atlantic Forest, Brazil. The studied landscape 
is shown on the left. (A–D) Predicted abundance and species richness per grid cell for specialist and generalist species. (E–H) 
Variation of observed (points) and predicted (mean ± 2 SD across 100 iterations, shaded area) abundance and species richness per 
sampling site with forest patch size. (I–L) Correlation between observed and predicted (mean across 100 iterations) abundance and 
richness per sampling site (r2 = coefficient of determination). The dotted line depicts the 1:1 relationship.
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known to be stronger when different archipelagos located at 
different distances from mainland are compared, whereas 
isolation usually has little impacts on richness variation 
within a single archipelago (Connor and McCoy 1979, 
Triantis et al. 2012). It is possible that more consistent iso-
lation effects would emerge from the landscape model if it 
were applied to very large landscapes encompassing a 
broader range of variation in patch isolation. On the other 
hand, it is also possible that isolation effects observed in real 
systems are in fact the result of a balance between immi-
gration and extinction processes, as assumed by the equi-
librium model and the neutral model, but ignored by the 
landscape model.

The landscape model produced clear gradients of abun-
dance and richness from the edges to the interior of habitat 
patches, thus reproducing edge effects. Edge effects are 
usually attributed to variation in resources and conditions 
along the edge-to-interior gradient, such as food, vege-
tation structure, and density of predators (Lidicker 1999, 
Ries et  al. 2004, Villaseñor et  al. 2014). However, edge 
effects may also emerge from neutral community dynamics 
in bounded habitat patches (Rangel and Diniz-Filho 
2005), or from simple geometric constraints acting on the 
placement of individual’s home ranges (Prevedello et al. 
2013). Prevedello et al. (2013) showed that geometric con-
straints tend to reduce abundance and richness near 
habitat boundaries even when habitat quality is homoge-
neous across habitat patches. This geometric edge effect, 
which is analogous to the classical mid-domain effect 
(Colwell and Lees 2000), occurs simply because habitat 
areas located near patch boundaries receive few (or any) 
individuals from the matrix. Prevedello et al. (2013) quan-
tified the geometric edge effect only for habitat patches 
embedded in a completely unsuitable matrix, and sug-
gested that this effect should become weaker as matrix 
suitability increased, a prediction supported by our simu-
lations. The outcomes of the landscape model are also in 
accordance with many empirical studies, which have 
shown that matrix suitability regulates the intensity of 
edge effects (Perfecto and Vandermeeer 2002; Ries et al. 
2004, Villaseñor et  al. 2014). This general agreement 
between model outcomes and expectations shows that the 
well-known influence of matrix suitability on edge effects 
is not necessarily mediated by changes in habitat quality 
near habitat edges, but potentially can result from simple 
geometric constraints.

Case study

Predictions of the landscape model were qualitatively 
in agreement with observed patterns in abundance and 
richness for specialist small mammal species. The model 
predicted consistent increases in abundance and richness 
of these species with increasing patch size, similarly to the 
general pattern observed with field data (Fig. 9E, F; see 
also Fig. 4 in Pardini et al. 2010), resulting in significant 
correlations between predicted and observed values, and 
slopes differing from 0. However, the model accounted 

for only a limited fraction of the variability in observed 
values (r2 = 0.33 for abundance and 0.34 for richness), 
and the intercept and slope differed significantly from 0 
and 1, respectively.

In general, the model overestimated richness and 
abundance in smaller patches, and underestimated 
richness and abundance in larger patches (Fig.  9I–L). 
Such deviations between observed and predicted values 
can be attributed either to inaccuracies in model param-
eterization, i.e., inaccurate estimates of home range sizes, 
total abundance, and habitat suitability, or to the action 
of ecological processes unaccounted for by the model. 
Such processes might include ongoing extinction, which 
would reduce richness especially in smaller patches 
(Pardini et al. 2010) or a greater concentration of critical 
resources in larger patches, which would increase popu-
lation densities as patch sizes increase (Root 1973, 
Connor et al. 2000). These processes could explain why 
the model overestimated richness and abundance in 
smaller patches, and underestimated richness and abun-
dance in larger patches. Other ecological factors, 
including interspecific competition and conspecific 
attraction or aggregation (Püttker et al. 2015), could con-
tribute to variability in observed data unexplained by the 
landscape model.

Although the fit of the landscape model to data was 
only partially satisfactory, it outperformed Coleman’s 
(1981) model by generating predictions that matched 
more closely observed patterns. For specialist species, the 
model fitted the data better than Coleman’s model, as 
judged from the higher r2 values and slopes, and lower 
intercepts. For generalist species, both models performed 
poorly on a quantitative basis, but predictions of the 
landscape model were qualitatively more realistic, at least 
for abundance. The landscape model predicted a decrease 
in abundance with increasing patch size, reproducing the 
tendency observed with field data (Fig.  6G), whereas 
Coleman’s model predicted an increase with patch size, 
resulting in negative correlations between observed and 
predicted values.

Implications and potential applications of the landscape 
model

The main contribution of the landscape model is to 
show that the most common landscape patterns of biodi-
versity may result, at least in part, from simple probabil-
istic processes, more specifically geometric constraints 
acting on home range placement. Such geometric con-
straints affect the likelihood that different portions of the 
landscape are occupied by individual home ranges, gener-
ating predictable gradients in species abundance and 
richness. The potential importance of individual-level 
geometric constraints as a causal mechanism of landscape 
patterns of biodiversity has been largely ignored so far, 
with the exception of recent studies on edge effects 
(Prevedello et al. 2013, Ribeiro et al. 2016). By showing the 
potentially large influence of such geometric constraints, 
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our simulations suggest that area, isolation, edge, and 
matrix effects are to be expected even in the absence of 
strong influences of many ecological factors frequently 
implicated as their causal mechanisms, such as extinction, 
interspecific interactions, and variation in habitat quality 
within habitat patches (Ries et al. 2004, Ewers and Didham 
2006, Triantis et al. 2012, Driscoll et al. 2013).

Geometric constraints have received much attention in 
macroecology and biogeography, in studies investigating 
large-scale patterns in species richness, such as latitudinal 
and altitudinal gradients (Colwell and Lees 2000, Colwell 
et  al. 2004, Gotelli et  al. 2009). The suggestion that 
geometric constraints, acting on the placement of species’ 
geographical ranges, could produce predictable gradients 
in species richness fueled substantial debate among 
researchers, leading to important theoretical and meth-
odological advances in macroecology and biogeography 
(Colwell et al. 2004).

Analogously, we believe the recognition that individual-
level geometric constraints can produce realistic gradients 
at smaller (landscape) scales has important implications 
that may advance substantially knowledge on landscape 
patterns of biodiversity. First, it suggests that individual-
level geometric constraints per se should be acknowledged 
as a potential causal mechanism of area, isolation, edge, 
and matrix effects. Incorporation of geometric constraints 
into explanatory models, in combination with other likely 
causal mechanisms, may assist identifying the true proba-
bilistic and ecological drivers of such effects, helping to 
resolve undergoing debates on the causal mechanisms of 
landscape patterns of biodiversity.

Second, the recognition that individual-level geometric 
constraints may generate predictable gradients contradicts 
an assumption implicit in many tests of area, isolation, 
edge, and matrix effects, namely that species abundance 
and richness should be homogenously distributed within 
and among habitat patches, in the absence of strong influ-
ences of extinction processes, interspecific interactions, 
and variation in habitat quality within patches (e.g., Ries 
et al. 2004, Pardini et al. 2010). Geometric constraints are 
likely to produce gradients in species abundance and 
richness in landscapes, which should be taken into account 
when designing and interpreting statistical tests of area, 
isolation, edge, and matrix effects.

Finally, the recognition that individual-level geometric 
constraints may affect abundance and richness may assist 
predicting the likely impacts of future landscape changes 
on biodiversity. For example, creation of roads, removal 
of particular habitat patches, or changes in the man-
agement of the matrix are all likely to influence the occur-
rence and intensity of geometric constraints, which in 
turn may affect biological communities in somewhat pre-
dictable ways.

Although the qualitative fit of the landscape model to 
general biodiversity patterns observed in the literature (Fig. 
1A; Ewers and Didham 2006) is good, it remains to be seen 
how well it will function when it is fine-tuned to test area, 
isolation, edge, and matrix effects in different assemblages 

and landscapes. As our case study illustrates, the model can 
be parameterized with information on home range, abun-
dance and matrix use from empirical studies, generating 
predictions on a broad range of patterns that can be directly 
compared to real data. For cases in which the landscape 
model fails to predict observed patterns, consistent devia-
tions from the model may provide clues to the mechanisms 
that are in operation, as exemplified by the consistent over- 
and underestimation of richness in small and large patches, 
respectively, in the real landscape we analyzed. Such 
achievements are an important contribution of simple (null) 
models (Gotelli and Graves 1996, Gotelli et  al. 2009), 
including the random placement model and the mid-domain 
effect model (Coleman et al. 1982, Colwell and Lees 2000, 
Bidwell et al. 2014). By encompassing the central assump-
tions of these two models, but still retaining their simplicity, 
the landscape model is likely to provide a more general and 
proper baseline model for the study of landscapes. It may 
also serve to strengthen the conceptual links between land-
scape ecology, macroecology, community ecology, and bio-
geography, which is certainly desirable to achieve a more 
thorough understanding of the variation in biodiversity at 
different spatial scales.
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