4,284 research outputs found

    Significance Arithmetic for Fortran

    Get PDF
    Significance tracing arithmetic for Fortra

    Severe storm electricity

    Get PDF
    Successful ground truth support of U-2 overflights was been accomplished. Data have been reduced for 4 June 1984 and some of the results have been integrated into some of MSFC's efforts. Staccato lightning (multiply branched, single stroke flash with no continuing current) is prevalent within the rainfree region around the main storm updraft and this is believed to be important, i.e., staccato flashes might be an important indicator of severe storm electrification. Results from data analysis from two stations appear to indicate that charge center heights can be estimated from a combination of intercept data with data from the fixed laboratory at NSSL. An excellent data base has been provided for determining the sight errors and efficiency of NSSL's LLP system. Cloud structures, observable in a low radar reflectivity region and on a scale smaller than is currently resolved by radar, which appear to be related to electrical activity are studied

    The diurnal nature of future extreme precipitation intensification

    Get PDF
    Short‐duration, high‐impact precipitation events in the extratropics are invariably convective in nature, typically occur during the summer, and are projected to intensify under climate change. The occurrence of convective precipitation is strongly regulated by the diurnal convective cycle, peaking in the late afternoon. Here we perform very high resolution (convection‐permitting) regional climate model simulations to study the scaling of extreme precipitation under climate change across the diurnal cycle. We show that the future intensification of extreme precipitation has a strong diurnal signal and that intraday scaling far in excess of overall scaling, and indeed thermodynamic expectations, is possible. We additionally show that, under a strong climate change scenario, the probability maximum for the occurrence of heavy to extreme precipitation may shift from late afternoon to the overnight/morning period. We further identify the thermodynamic and dynamic mechanisms which modify future extreme environments, explaining both the future scaling's diurnal signal and departure from thermodynamic expectations

    Irrigation system performance assessment and diagnosis

    Get PDF
    Performance evaluation / Irrigation programs / Irrigation management / Irrigation systems / Case studies / Hydraulics / Management / Environmental effects / Asia / Africa / South America

    Solar vector magnetograph for Max 1991 programs

    Get PDF
    An instrument for measuring solar magnetic fields is under construction. Key requirements for any solar vector magnetograph are high spatial resolution, high optical throughput, fine spectral selectivity, and ultralow instrumental polarization. An available 25 cm Cassegrain telescope will provide 0.5 arcsec spatial resolution. Spectral selection will be accomplished with a 150 mA filter based on electrically tunable solid Fabry-Perot etalon. Filter and polarization analyzer design concepts for the magnetograph are described in detail. The instrument will be tested at JHU/APL, and then moved to the National Solar Observatory in late 1988. It will be available to support the Max 1991 program

    Two-Dimensional Heat Loss From a Building Slab Including Convective Effects in Saturated Soil

    Get PDF
    The heat loss from a building slab was investigated. The continuity equation, Darcy\u27s Law and the energy equation were formulated to include the temperature dependence of viscosity and density of water. The governing equations and appropriate boundary conditions were transformed into dimensionless variables. A finite difference numerical scheme was constructed based on the Gauss-Seidel method by lines and solved iteratively in alternating directions. A correlation between the geometrical characteristics of the domain, the convective surface heating parameters, and the total nondimensional slab heat loss in two dimensions was discovered. Furthermore, the correlation was extended to three-dimensional slabs and produced good agreement with analyses by other workers using different methods. Numerical results were validated by comparison with a proprietary finite element solver in two dimensions. Moreover, a scaled laboratory simulation of building slab heat loss was conducted. The agreement between the numerically predicted heat loss and the experimental results was good for solid media. For porous media, the apparent thermal conductivity for both dry and saturated media was measured and found to be in consonance with data produced by others. The observed dye tracer positions in the flow visualization confirmed the predicted positions. The results of the experiments indicated that: the volume averaged method of computing apparent thermal conductivity of the porous media was inadequate and experimentally determined conductivity should be used; and, the time required for a particle to transit a fixed path in the porous media is independent of the thermal conductivity of the media. Finally, the numerical model was extended to include surface evaporation at the earth interface. Surface evaporation increased slab heat transfer by approximately ten percent compared to a non-evaporating surface condition

    Non-Stationary Large-Scale Statistics of Precipitation Extremes in Central Europe

    Get PDF
    Extreme precipitation shows non-stationary behavior over time, but also with respect to other large-scale variables. While this effect is often neglected, we propose a model including the influence of North Atlantic Oscillation, time, surface temperature and a blocking index. The model features flexibility to use annual maxima as well as seasonal maxima to be fitted in a generalized extreme value setting. To further increase the efficiency of data usage maxima from different accumulation durations are aggregated so that information for extremes on different time scales can be provided. Our model is trained to individual station data with temporal resolutions ranging from one minute to one day across Germany. The models are selected with a stepwise BIC model selection and verified with a cross-validated quantile skill index. The verification shows that the new model performs better than a reference model without large scale information. Also, the new model enables insights into the effect of large scale variables on extreme precipitation. Results suggest that the probability of extreme precipitation increases with time since 1950 in all seasons. High probabilities of extremes are positively correlated with blocking situations in summer and with temperature in winter. However, they are negatively correlated with blocking situations in winter and temperature in summer

    The Resonance Peak in Sr2_2RuO4_4: Signature of Spin Triplet Pairing

    Full text link
    We study the dynamical spin susceptibility, χ(q,ω)\chi({\bf q}, \omega), in the normal and superconducting state of Sr2_2RuO4_4. In the normal state, we find a peak in the vicinity of Qi(0.72π,0.72π){\bf Q}_i\simeq (0.72\pi,0.72\pi) in agreement with recent inelastic neutron scattering (INS) experiments. We predict that for spin triplet pairing in the superconducting state a {\it resonance peak} appears in the out-of-plane component of χ\chi, but is absent in the in-plane component. In contrast, no resonance peak is expected for spin singlet pairing.Comment: 4 pages, 4 figures, final versio
    corecore