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ABSTRACT

TWO-DIMENSIONAL HEAT LOSS
FROM A BUILDING SLAB INCLUDING CONVECTIVE EFFECTS
IN SATURATED SOIL
¥William W. Rust, III

01d Dominion University, 1991
Director: A. Sidney Roberts, Jr.

The heat loss from a building slab was investigated. The continuity
equation, Darcy’s Law and the energy equation were formulated to include
the temperature dependence of viscosity and demsity of water. The
governing equations and appropriate boundary conditions were transformed
into dimensionless variables. A finite difference numerical scheme was
constructed based on the Gauss-Seidel method by lines and solved
iteratively in alternating directions. A correlation between the
geometrical characteristics of the domain, the convective surface heating
parameters, and the total nondimensional slab heat loss in two dimensions
was discovered. Furthermore, the correlation was extended to three-
dimensional slabs and produced good agreement with analyses by other
workers using different methods. Numerical results were validated by
comparison with a proprietary finite element solver in two dimensions.
Moreover, a scaled laboratory simulation of building slab heat loss was
conducted. The agreement between the numerically predicted heat loss and

the experimental results was good for solid media. For porous media, the
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apparent thermal conductivity for both dry and saturated media was
measured and found to be in consonance with data produced by others. The
observed dye tracer positions in the flow visualization confirmed the
predicted positions. The results of the experiments indicated that: the
volume averaged method of computing apparent thermal conductivity of the
porous media was inadequate and experimentally determined conductivity
should be used; and, the time required for a particle to tramsit a fixed
path in the porous media is independent of the thermal conductivity of
the media. Finally, the numerical model was extended to include surface
evaporation at the earth interface. Surface evaporation increased slab
heat transfer by approximately ten percent compared to a non-evaporating

surface condition.
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NOHENCLATURE

a = Ratio defined by Eq. (5.18) or a slab plan dimension

b = Slab plan dimension

A = Cylinder cross sectional area

Ivoi 4= Average void area in cross section of Reprsentative Elementary

Volume (REV)

Bi = Biot number = hL/}

c = Specific heat

cp = Specific heat at constant pressure

d = Diameter of glass beads

Da = Darcy number

e = Unit vector aligned with force of gravity

g = Gravity acceleration vector

g = Acceleration of gravity

h = Heat transfer or film coefficient

K Fluid Conductance or proportionality constant
k = Permeability, m?, defined by Ergun formula = d2n3/(175(1—n)2)
L = Characteristic length of slab

1 = Length dimension

n = Surface normal vector

n = Porosity

n, = Average areal porosity

xii
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n = Areal porosity

a
P = Pressure
1} = Total heat loss transmitted through media
q = Total heat flux per unit width of Slab transmitted thorough
media = Q/w
Qepyst = Heat Flux (W/m?) released from crust
Uefs = Crustal Flux strength = wqcrustL/AAT
Ay = Volumetric flow rate
. 2
Ra = Rayleigh number = Lkp cfgﬁAT/(Aequ)
r = Cooling factor, defined by Eq. (5.25)
Ste = Stefan number = cpAT/hfg
T = Temperature
t = Time
U = Heat loss coefficient, W/m?-deg K
U = Velocity in X direction
u = Nondimensional velocity in X direction = U/VO
F = Volume
v = Velocity in Y direction
Vp ore =  Volume averaged pore velocity
v = nondimensional velocity in Y direction = V/V,
Vo = reference velocity = A/(pc) L
W = width of slab
X = Horizontal direction
x = Nondimensional horizontal direction = X/L
Y = Vertical direction

xiii
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y = Nondimensional vertical direction = Y/L

z = Datum height
Greek
Ji] = Coefficient of thermal expansion
r = Boundary of region
7 = Specific weight

= Difference
A, = Defined by equation (4.16)
€ = Random Number
0 = Nondimensional temperature

= (T — T3)/(T1-T)
A = Thermal conductivity

eq = Volume averaged thermal conductivity

v = Kinematic viscosity
b = Dynamic viscosity
p = Density
T = Characteristic time
v = Humidity ratio
f = Relative Humidity
d = Pressure potential function
0 = Mechanical potential function
¥ = Streamfunction
German
R = k(prc)fgL/Aqur

xiv
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Subscripts

d = Dynamic

eq = equivalent or apparent
i jo.k = indices

f = fluid

p = periodic

r = reference

S = Static or steady

W = Vater Table

1 = interior temperature
2 = exterior temperaiure
® = Free stream condition

Superscripts

* = Indicates nondimensional variable or operator
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Chapter 1

INTRODUCTION

1.1 Motivation for Building Research

Buildings currently consume thirty-six percent of the annual emergy
production in the United States. Furthermore, building fossil fuel
consumption has placed an annual carbon load of 500 million tons on the
atmosphere (Bevington and Rosenfeld, 1990). The long term effects of
atmospheric carbon on global climatic patterns is cause for concern.

The national economy is very semsitive to fuel shortages. The
fossil fuel supply is limited, and scarcity of fuel supplies has become
more noticeable through the past several decades. By 1970, two percent
of coal reserves and fourteen percent of the world’s petroleum reserves had
been exhausted with demand continuing to climb (File and Considine, 1977).
Moreover, a major source of fuel is located in areas of the world where
political instability is common. By 1990, the United States had
experienced two fuel embargoes, two fuel related recessions, and a fuel
related war.

The conservation of fuel requires a thorough understanding of the
process of building heat loss if meaningful energy reduction is to be
accomplished. For example, the national contribution of building heat
loss in direct earth—contact is estimated to be approximately one to

three quadrillion kilojoules annually (Claridge, 1988). Earth—coupled
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heat loss from a building is an important mode which is frequently
overlooked. However, as architectural and mechanical improvements are
made to the building envelope, the heat lost to the ambient from below
grade will become a larger fraction of the total. The motivation for
this work is, therefore, to gain additional insight into the process of

earth—coupled building heat transfer.
1.2. Thrust and Objectives

The thrust of this study will be to examine building earth-coupled
heat loss under steady conditions, specifically focusing on the slab
type of construction. Since the presence of water in soil has a strong
impact on soil thermal properties (Hart and Couvillion, 1986), the
effects of water and water movement will be included in the analysis.

The main objective is, therefore, to predict the steady heat loss
from a building slab under a variety of physical conditions. To
accomplish this objective, a literature review is performed in Chap. 2,
thus defining the scope of the problem.

The solution of earth—coupled heat loss from a slab is dependent on
the way the problem is cast mathematically. To retain broad
applicability, the interaction of heated surfaces subject to fluctuating
weather conditions at the earth surface is examined in Chap. 3.
Appropriate mathematical modeling simplifications are justified based on
geophysical conditionms.

To capture the essence of the steady heat transfer problem from the
building slab, the porous nature of soil and its ability to conduct

water must be explored. A brief review of porous media literature and
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terminology is introduced in Chap. 4. The governing fields equations
are placed in nondimensional form suitable for numerical computation.

The nonlinear field equations developed in Chap. 4 must be solved
numerically. Chapter 5 examines the numerical methods for solving the
field equations subject to the appropriate boundary conditionms.
Solutions of test cases are compared to other methods of solution. A
Shape Factor method for solving slab heat loss problems is introduced
and developed.

The results of Chap. 5 are verified by experimental simulation in
Chap. 6. The methods used to construct the experiment and to collect
data are presented. Good agreement was obtained between the
experimental and numerical results.

Chapter 7 extends the mathematical model to the more general case
of an earth surface that permits the evaporation of water. Numerical
results for the case under study indicate an increase in heat loss due
to surface evaporation.

Chapter 8 is an overview of findings in this report and concluding

remarks.
1.3 Presentation

To facilitate the presentation of this topic, especially for the
benefit of the reader who is unfamiliar with porous media terminology,
the material is introduced and discussed in a contiguous manner in each
chapter. Detailed supporting calculations are presented in the
appendices. Graphical representations are presented as concisely as
possible, and all units are nondimensional unless otherwise noted.

Horizontal and vertical distances and coordinates of points in the
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computational plane have been normalized with respect to a
characteristic slab dimension (slab length). Mathematical symbols are

defined directly in the text or the list of Nomenclature.
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Chapter 2

THE BUILDING EARTH-COUPLED HEAT LOSS PROBLEM

2.1 Literature Review

In general, the computation of heat transfer to the earth must
include the effects of water. One method often employed is to lump the
thermophysical properties of water into the properties of soil. A
second method is to explicitly include the contribution of the motion of
the water in the soil to the heat transfer process. The second method
is much more complex, especially when water transport as vapor is
modeled. The heat transfer literature that can be applied to
earth—coupling therefore consists of diverse works roughly falling into
three categories: Design Oriented Earth—Coupled Heat Transfer (mo water
motion); Saturated Porous Media Heat Transfer (includes water motion);
and, Partially Saturated Porous Media Heat Transfer (includes diffusion
effects of vapor and air). The relevant literature from these areas
will be reviewed to provide guidance in capturing the features that are
important in modeling heat loss from buildings through the earth. An
archetypical building design condition will be established so that

numerical modeling and simulation is possible.

2.1.1 Design Oriented Farth-Coupled Heat Transfer

The computation of ground or earth—coupled heat loss has been

attempted with varying degrees of success. An extensive review of the
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literature of earth-coupled heat transfer was done by Claridge (1988).
Several methods cited offer a heuristic approach for two general types
of construction, i.e., slab-on-grade or basement construction. Seasonal
heat loss from slabs can be estimated using the formula developed by
Wang (1979) and Bligh et al. (1978) (ASHRAE, 1989) which states that the
heat loss is directly proportional to the temperature difference between
the mean ambient temperature and the room temperature and a loss
coefficient (which is a function of climatic conditions) per unit length
of perimeter. Dubin and Long (1978) state that the heat loss from a
slab is essentially concentrated around the edge of the slab. No method
was suggested for computing the loss. However, a momogram for suspended
floors was presented.

Lachenbruch (1957) used Green’s Functions to solve the
three-dimensional periodic problem for a slab-on-grade by using
graphical techniques. Kusuda et al. (1983) and Kusuda and Bean (1984)
computerized the solution by Lachenbruch but experienced difficulties
with the discontinuity at the wall. Delasante et al., (1983) resolved
the temperature discontinuity at the wall by assuming a linear
temperature profile across the wall. Their results agreed with those of
Kusuda and Bean (1984) when the depth defined to evaluate the heat flux
from the slab was the same depth as Delesante’s (1983) wall thickness
(Claridge, 1988).

Bahnfleth and Pedersen (1990) conducted a three-dimensional
numerical study on an "L" shaped slab. For this set of computationms,
they found that the correct parameter for measuring heat flux was the
ratio of area to perimeter. They also conclude that soil thermal

conductivity and ground surface conditions had a strong influence on
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slab flux, but far field boundary conditions were relatively
unimportant. Bahnfleth and Pedersen (1990) suggest that an arbitrary
three-dimensional plane slab can be modeled by using a two dimensional
slab with the same area/perimeter ratio.

Slab-on-grade heat loss can also be a heat gain in warmer seasons.
Qualitative observations by Cleveland and Akeridge (1990) of a slab on
grade house in Georgia indicate that heat gain through an uninsulated
slab is a significant factor. Thermal Monitoring experiments on a full
scale building simulation in Tennessee are in progress to determine the
effectiveness of edge insulation for slab-on-grade construction
(Christian et al., 1990).

Basements add another element of complexity to the way heat flux
must be calculated. Boilean and Latta (1968) developed a steady state
solution method based on heat flux following approximately circular
paths from basement floors and walls. Mitalas (1982, 1983) used heat
flux computed from a finite element program and constructed shape
factors for basement geometry and used regression coefficients to fit
the computed data (Claridge, 1988).

Krarti et al. (1985) used a convective condition inside the house
and a periodic sinusoidal condition on the ground surface to study
seasonal effects. The solution is decomposed into a steady solution and
a periodic solution determined by physical parameters and a so—called
disturbance depth (Claridge, 1988).

Krarti and Claridge (1988) developed a method of solving basement
problems using the "Interzone Temperature Profile Estimation" (ITPE).
This method consists of representing the soil surface temperature by a

Fourier Series with as many terms as necessary to adequately represent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



actual conditions. The ground coupling configuration is an analytic
expression for the shape of the structure. The ground coupling
configuration (based on physical size and shape of the ground structure)
is chosen and a series of Fourier coefficients are calculated. These
coefficients are used to derive heat loss functions for each harmonic.
This eventually yields the heat loss for the ground structure as a
function of time.

Shen et al. (1988) compute the ground losses by defining the ground
temperature as the sum of a steady state and a periodic temperature.

The heat flux is then the sum of the steady state flux and the periodic
heat flux adjusted by an appropriate phase angle for each point in the
field. Nondimensional thermal quantities were formed using various
combinations of outside temperature, deep ground temperature, and inside
temperature, but this proved to be of little use. Climatic data was
still required for the numerical simulationms.

Buildings clearly lose heat to the enviromment by earth-—coupled
effects. Of the methods described above, each uses the heat conduction
equation to derive a solution for a particular subterranean structure.
The effect of water is recognized a component that strongly influences
the thermal conductivity, density and heat capacity of soil. Yet, on
the whole, the transport of water during the heat transfer process is
neglected. Bahnfleth and Pedersen (1990) cite Eckert and Pfender
(1978), noting that there is weak coupling between heat and mass

transfer in soil under typical conditions near a building.
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2.1.2 Saturated Porous Media Heat Transfer

The general development of the theory of porous media flow can be
traced to experimental work by Darcy (1856) in unconsolidated sand beds.
Darcy’s experimental work was placed on a sound theoretical foundation
by Hubbard (1940). Cheng (1978) traces the continuing work in fluid
flow and geothermal heat transfer as reviewed by Elder (1966), Bear
(1972) and Witherspoon et al. (1975) and Combarnous and Bories (1975).
Fulks et al. (1971) develops the equations for fluid motion in a porous
media. Bear (1972) uses microscopic and macroscopic analysis of porous
media and develops the three conservation equations. Cheng (1978) also
uses a direct application of volume averaging to devise the conservation
equations for porous media. Ene and Polisevski (1987) developed a
method of homogenization whereby initial and boundary value problems for
a domain with periodic structure (porous media) are determined by means
of asymptotic expansions of the governing equations in terms of a small
parameter. This method is applied to saturated media and multiphase
flow.

A large body of work exists studying the flow of saturated fluid in
porous media, particularly when dealing with the stability of a fluid
when heated from below. The onset of convection was originally studied
by Bernard (1900) for a fluid film (Drazin and Reid, 1981). Lapwood
(1948) was the first to apply this analysis to saturated porous media.
Combarnous and Bories (1975) establish the criteria for the onset of
circulation in a porous media. Ene and Polisevski (1987) apply the
homogenization technique to Lapwood’s problem and arrive at his

classical result.
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Other configurations have been considered. Bejan (1987) shows the
results of natural convection in an infinite saturated porous media for
heated horizontal and vertical plane surfaces and cylinders. Gebhart et
al. (1988) present the solution of Cheng and Chang (1976) and employ
similarity methods to solve a semi-infinite natural conmvection problem
in saturated porous media when heated from the top surface.

In another application, ground heat loss from a two dimemsional
solar pond was calculated for uniform ground water motion by Duyer and
Bober (1984). The location of the water table beneath the solar pond

strongly affected the heat loss from the pond.

2.1.3 Partially Saturated Porous Media Heat Transfer

The more general problem of flow of different phases and species in
porous media is extremely complex. Numerous assumptions are required
concerning the behavior of the components in the media to afford even an
attempt at solution. The work on the flow of air and water and the
effects of moisture migration is reviewed by Couvillion and Hartley
(1986). The equations governing the flow of two or more species are
determined by assuming isotropic soil: density of liquid water is
constant but the vapor and gas properties are functions of temperature;
and the mass of water vapor is neglected. These assumptions are based
on previous studies by Philip and De Vries (1957). De Vries (1987)
developed the theory of heat and mass transfer based on the moisture
potential and the hydraulic conductivity of the medium being dependent
on the moisture content and temperature of the media. Also, the thermal
conductivity must be known as a function of moisture content and

temperature. Couvillion and Hartley (1986) applied these criteria to
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earth-counled heat transfer problems, particularly with respect to the
movements of drying fronts, and found qualitative agreement with experi-
mental results. Agreement was improved by choosing correlation coeffi-

cients to tune the predicted results to the data.
2.2 Problem Statement

Based on the literature review of Sec. 2.1, the effect of buoyantly
induced flow in saturated soil on earth-coupled heat transfer needs to
be analyzed. Due to the complexity of the general problem (Claridge,
1988), the physical parameters under consideration will be reduced in
order to focus on the buoyant flow.

Slab-on—grade building construction will be analyzed because this
is type of building is very prevalent. Computationally, a two-dimen—
sional domain will be considered and is depicted in Fig. 2.1. The
remote earth thermal boundaries will be considered to be adiabatic.

Heat transfer at the slab and earth surface air interfaces will obey
Newton’s Law of Cooling, while the interior building and exterior ambi-
ent temperatures will be held constant. Justification for the choice of
thermal boundary conditions will be presented more fully in Chap. 3.

To focus attention on the slab contribution to buoyantly induced
thermal flow and heat transfer, change of phase of water by evaporation
or freezing will be excluded inside the soil mass. Furthermore, all
boundaries in Fig 2.1 will be considered impermeable to the flow of
water. This condition will be relaxed in Chap. 7 to study the effects
of earth surface evaporation on slab heat transfer.

A solution to the building slab earth—coupled heat loss problem

specified above will be sought in the following chapters.
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Fig. 2.1 Boundary conditions for the slab-on-grade heat loss problem.
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Chapter 3

A TREATISE ON THE INTERACTION BETWEEN HEATED SURFACES,
THE EARTH AND THE ENVIRGNMENT

3.1 Introduction

A building may have almost any configuration and is subject to
extremely diverse weather conditions. To begin a systematic
investigation of the problem, simplifications will be made to isolate
the salient characteristics of earth—coupled heat transfer without
unduly limiting the applicability of the solution.

The design configuration chosen for this study of earth—coupled
heat transfer is the slab—on-grade. The is a very common method of
building construction. It is much less expensive than basement
excavation for the same footprint area. The slab is usually reinforced
with a perimeter footing to support the walls. This type of
construction is used extensively for commercial and residential
construction. As a matter of necessity, the slab—on-grade method may be
dictated by the presence of a water table that is close to the ground
surface. A basement constructed under these conditions would be subject
to leakage and therefore impractical.

Having chosen the slab as the archetypal class of construction for
analysis, the problem of how the slab communicates thermally with the

environment remains to be addressed. As a mathematical abstraction, the

13
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boundaries may be considered to be infinite. Although there are certain
analytical advantages in selecting a boundary infinitely far away, this
is a serious limitation for a numerical computation.

Often, the subterranean domain is truncated by selecting an
isothermal boundary, an adiabatic boundary or a boundary that is a
combination of both conditions. The type of boundary and its location
are selected ¢ priori, based upon the judgment of the amalyst. For
example, as previously discussed in Chap. 1, Shen et al. (1988)
experienced difficulty in relating ambient temperature, interior
temperature, and deep ground temperatures to heat flux without using
climatic data. Kusuda and Achenbach (1963) used a symmetry plane and
constant deep ground temperature to numerically compute heat loss from a
fallout shelter. Solar and convective surface heat losses were also
considered. Bahnfleth and Pedersen (1990) noted the imsensitivity of
heat transmission to far field conditions. Surface conditions were
found to be important. An interesting aspect of the Bahnfleth and
Pedersen (1990) study was the examination of the effect of building
shadow on slab heat loss. This effect was usually negligible, but for
some soil conditions (especially including surface evapotramspiration},
building shadow could affect heat transfer from the slab by as much as
twenty per cent. In an experiment by Yoshino et al. (1990), an
unheated, two room house was constructed with windows facing south. The
floor level was 1.3 m below ground level with horizontal insulation
installed on the east side of the house, 1.3 m wide and 0.3 m below the
earth surface. One of the effects noted was that incident solar
radiation at the earth surface had little effect on the interior

conditions.
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Numerical and physical experiments have yielded some interesting
and often puzzling results. To further illuminate the process of heat
transfer from a slab and to lend credence to subsequent model
construction, the following discussion is undertaken to place

assumptions on as firm a footing as possible.
3.2 Discussion

The purpose of this discussion is to establish generalizations for
the behavior of the earth to the extent that this affects the building
slab heat transfer. The method used to perform the analysis will be to
postulate a set of propositions and to show that the propositions are
true. Some propositions are based on hypothesis, but reflect the

current scientific understanding of the subject.

3.2.1 Proposition I

The earth is in a steady periodic condition when viewed from a
geological perspective.

One common test of whether a object exposed to heating conditions
has reached a stationary state is whether sufficient time has elapsed
with respect to the time constant of that object. In fact, the physical
age of the earth is an indication of this. Lord Kelvin first computed
the age of the earth in 1862. He assumed that after the earth
condensed, it originally existed in a homogeneous molten state. His
calculations indicate that the age of the earth was between 20—40
million years (Badash, 1989). The discovery of radioactivity at the
turn of the Twentieth Century and the production of heat by radioactive

decay gave geologists a new method of evaluating geologic age.
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Radioactive dating methods have place the currently accepted age of the
earth at 4.5 billion years (Badash, 1989). This is a huge number
compared to that calculated by Lord Kelvin’s cooling model.

Another indication that the earth is in a steady, periodic
condition is the semsitivity of the planet to changes in surface
conditions. An apparent discontinuity in global weather occurred most
recently at the boundary of the Cretaceous and the Tertiary periods, 65
million years ago. Also known as the K-T Boundary, this period is
important because mass extinction of thousands of species occurred,
including the dinosaurs. Although the exact cause of the K-T Boundary
is under contention, evidence indicates that the time duration is very
short in the geological sense (Alvarez and Asaro, 1990). One may
conclude that the life is very sensitive to abrupt changes in the

environment exceeding the usual seasonal period.

3.2.2 Proposition JI

A rectangular coordinate system will adequately describe the
slab-on-grade problem.

The radius of the earth (6371 km) (Courtillot, 1990) is large
compared to the scale of a building and curvature may be neglected.
Furthermore, the azimuthal component of heat flux is negligible compared
to the radial component. This is true because temperature along the
surface of the earth varies by about 120K at most, while the temperature
difference between the surface and the center of the earth is 5000 K
(Courtillot, 1990).

Carslaw and Jaeger (1959) indicate that a radial geothermal
gradient exists on dry land from between 10 and 50 C/km and 40 C/km
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under water. The average flux to the surface has an average value of
1.2 x 10 cal/cm*sec ( 5.0 x 1072 W/m?).

Based on the above information, the earth is essentially in a
steady periodic state. This condition is used by Shen et al. (1988) to
perform heat loss calculations. Furthermore, the earth may be
considered to be locally one-dimensional and flat. Crustal heat flux is

present which will be considered constant in a particular local area.

3.2.3 Proposition ITI

A building slab may be idealized as a plane on the earth surface.
The two dimensional temperature field resulting from a constant

temperature slab, Eq. (A.1.15), as derived in Appendix A.1 is

y
O(x,y) = —%— arctan ——— (A.1.15)
x%y? - .25

Figure 3.1 is the isothermal map of Eq. (A.1.15) for selected values of

constant temperature.

3.2.4 Proposition IV

There is an adiabatic surface beneath every constant temperature
finite length slab located on a semi—finite plane with constant opposing
heat flux.

The earth gemerates heat by radioactive decay. Heat flux reaching
a particular section on the surface is the result of a source at a
greater depth. The crustal heat flux will be considered to be uniform
near the surface in order to demonstrate that the proposition is valid.

Superposition is used to determine the temperature field

surrounding the slab and is
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Fig. 3.1 Isothermal map for constant temperature slab in a semi —

infinite domain.
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y
x2y? -.25
The derivation of the solution is presented in Appendix A.2.

O(x,y) = —%— arctan + a y (4.2.7)

With Eq. (A.2.7), one may find the equation of isothermal surfaces
and lines of heat flux for the problem as given by Eqs. (A.2.12) and
(A.2.17).

The crustal flux strength may be defined as

Qepg = 74 = chrustL/AAT (3.1)
then Eq. (A.2.17) becomes
2xy -1

g% - 2,2 2,2 2 (3-2)
Qops (X54y™-.25) “4x +(qppg1)y*-25

The lines of flux are determined by solving Eq. (3.2) numerically by
using a Euler explicit marching method. Figure 3.2, a flux map, shows
the position of the flux lines under the slab for a unit crustal flux
strength. Notice that flux lines originating from the slab are turned
back and end at the outside surface (dashed curves). An interface
exists between the crustal lines of flux and slab lines of flux. Since
no lines of flux emanating from the slab cross the interface line, the
interface line effectively represents an adiabatic surface. Therefore,
by considering the interaction of the two fields, a problem with
infinite boundaries may be treated as a finite problem with adiabatic
subterranean boundaries.

There are a multitude of choices for the crustal flux strength.
Each crustal flux strength will yield a unique family of curves that are
solutions to Eq. (3.2). The maximum distance that the heat flux from the

slab can penetrate to the exterior earth surface is determined by the
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crustal flux strength and vise versa. Figure 3.3 shows the relationship
of the maximum horizontal distance that slab heat flux will penetrate to
the outside earth surface as a function of the crustal flux strength.
The computational domain for the problem is uniquely determined by the

crustal flux strength.

3.2.5 Proposition V

A steady state heat flux passing through a two or a
three-dimensional body may be considered as a one-dimensional problem

Suppose an arbitrary shaped body subject to a surface heat flux.
The body may be treated as a control volume with an outward pointing

normal. Then

” (q-n)dh=0 (3.3)
A
Since the control volume is arbitrary, then

q-n=0 (3.4)

A family of surfaces may be constructed satisfying this equation. Two
other families of surfaces that are mutually orthogonal to each other
and the family of surfaces in described by Eq. (3.4) may be determined.

This may be demonstrated from the Gauss’ theorem:

J[J (V-q)dv= JJ (q- ; YdA = 0 (3.5)
Vol A

Again, since the integral is arbitrary, then
V-q=0 (3.6)
The scalar product is commutative, therefore,

~ ~

gq-n=n-4gq (3.7)
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This indicates that the gradient operator in Eq. (3.6) can be expressed
in terms of the direction normal to the family of surfaces satisfying
Eq. (3.4). Any mapping which directs n along the gradient operator may

be considered one-dimensional.

3.2.6 Proposition VI

The net periodic heat flow through any point in a one-dimensional
body is zero.

Subject to the conditions stipulated in Appendix A.3, this
proposition allows for the analysis of steady conditions in terms of
seasonal averages without undue concern for the effects of the periodic

component.
3.3 Final Observations

A constant temperature surface segment is an idealization of the
real building slab of negligible thickness. The constant temperature
surface is not physically attainable because of the thermal
discontinuity at the left and right hand edges. The presence of the
edge discontinuity causes an infinite gradient at the edge point, and
the flux cannot be computed. The total heat transferred across the
surface cannot be computed for the same reason. However, since the
temperature field is continuous and differentiable everywhere else in
the plane, this constant temperature surface can be considered a
limiting case for a convectively heated slab which is the usual
situation in a typical building.

This point is discussed further as the model is developed in Chaps.

4 and 5.
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Chapter 4

FLUID FLOVW AND HEAT TRANSFER IN POROUS HEDIA

4.1 Introduction

Earth-coupled heat loss is an important mode of energy transfer
from a building as discussed in Chaps. 2 and 3. The earth under the
building is usually porous and may contain a substantial amount of
vater. The physics of porous media fluid flow and ground water
hydrology and heat transfer encompasses a large body of literature.
This branch of fluid mechanics is, however, very specialized, and has
developed a terminology that may be unfamiliar to a substantial
percentage of engineers trained in other disciplines. The following
exposition is intended to provide the reader who is not familiar with
porous media fluid flow a brief overview of some important concepts that
are used regularly in the porous media literature. The following

treatment is simplified to accomplish this purpose.
4.2 Background

Henry Darcy made contributions to physics as an investigator in
fluid flow in pipes and the flow of water in sand beds. As an engineer
in the city of Dijon, France, he had need of information about the use
of sand as a filter for the water in the municipal fountain distribution

system. To discover this information, he conducted a series of
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experiments in which he filtered water through a column of sand packed
into an iron pipe. The volume of water discharged in a given amount of
time was recorded for various physical parameters. At the conclusion of
his work, Darcy found that the volumetric flow of water through the sand
bed was directly proportional to the difference in manometer heights
when measured at the inlet and exit of the filter bed, the cross
sectional area of the bed, and inversely proportional to the lemgth of
the filter bed. This was expressed as
Q¢ = —XKA(h2 — hy)/1 (4.1)

where K is the proportionality constant, A is the cross sectional area,
1 is the length of the path of water through the sand and h; and h; are
the manometer heights of the inlet and outlet, respectively (Darcy,
1856). The subscripts, vf (volumetric flow rate), will be used to
distinguish between use of the letter § for volume flow and heat flow
since this symbol has historically been used to represent both
quantities. Darcy also recognized that the relationship was no longer
valid for velocities which exceeded the range of ten centimeters per
second.

Hubbert (1940) demonstrated that Darcy’s Law can be considered a

special case of

a,¢ = ~(K/g) V (4.2)
where Q¢ is the volumetric flow rate per unit area and
v =gz + [dP/p + v?/2 (4.3)

is the enmergy per unit mass of fluid (also known as the mechanical
energy potential). For ground water flow, v2/2 is negligible and
density is a very weak function of pressure. Consequently, ¢ may be

written as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

p =gz +P/p | (4.4)
In terms of head, y may be written as
p’ =z + Py (4.5)

where 7 is the specific weight of the fluid. In terms of y’, Darcy’s
Law becomes
q,¢ = K Wy’ (4.6)

Fulks et al. (1971), defined for a porous media the porosity and
derives the continuity equation and momentum equation for a fluid
flowing in a porous medium. Bear (1972) extended the amalysis to
include the energy equation in porous media along with the equatioms for
temperature varying demsity and viscosity. Combarnous and Bories (1975)
discuss these equations and also give the criteria for establishing

buoyant flow.
4.3 Discussion of Selected Porous Media Terminology

A porous medium is a solid material that has interconnected voids
interspersed throughout. Although the distribution of the voids within
the solid matrix is arbitrary, the void volumes must be interconnected
in some manner. Otherwise, the fluid would not be able to penetrate the
medium and no flow would be possible.

There are two basic methods employed to solve flow problems through
a porous media. The first method is a microscopic investigation of the
flow of fluid in the pores of the media. Considering the fluid as a
continuum, the equations of fluid motion and the detailed knowledge of
the geometric boundaries of the pores and initial conditions are

required to produce a solution. The scope of this problem is immense.
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Although this is theoretically possible to accomplish, only simple
shapes can be managed (Bear, 1972).

The second method is macroscopic. This technique abandons the
notion that interpore flow can be analyzed. Instead, the local fluid
properties at a point in the matrix are averaged over a small
encapsulating volume of space, and the average value is considered to
act at the particular point. The disadvantage of this method is that
vhen information is averaged, there is a net loss of information about
the properties in the individual pore spaces. The benefit of this
approach is that flow field can be solved by invoking volume averaging.

A volume averaged property, ¥, is an extension of the customary
averaging method and may be expressed as (Cheng, 1978)

Y - %,ij av (4.7)

The porosity of the material is the ratio of the volume of the
voids included in the total volume to the total volume of material. The
porosity of a material can vary as a function of position within the
material. Therefore, it becomes necessary to define porosity at a
point. This is done by selecting a small sample volume of material that
encloses the particular point P, which is large when compared to the
volume of an individual pore space but is small when compared to the
characteristic dimension of the the domain. This is called a
Representative Elementary Volume (REV). The REV has the property that
small changes in the size of the REV do not affect the computed value of
the porosity at point P.

a(P) = Lin Tyosq/7 (4.8)
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where ¥ is the volume of space under consideration and ¥

void 15 the void

volume contained within /.
The areal porosity, n,, can be defined in a similar manner.
n, =44/ 4 (4.9)
This quantity is not very useful because the porosity can vary with the
orientation of the plane one selects for the computation. A more useful
quantity is the average areal porosity, n,, which will be defined as the

average void area, A 0id> to the total cross-sectional area, A, for a

v
cylinder of material of length, s.

Ila = VOid/ A (4.10)
vhere,

{8

S0id = 57 Aoiq 9 (4.11)
Alternately,

Fvoid = Kyoig * 8 (4.12)
and

F=A-s (4.13)
Therefore,

n, =1 (4.14)

The average areal porosity is equal to the volumetric porosity.

The velocity at a point can be treated similarly. The volume
average velocity at a point in the media can be represented in terms of
the average pore velocity in the REV as

V=n vﬁore (4.15)
This follows immediately from the continuity equation since for any

cross—sectional area,
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Qe =V - A=V e A (4.15.1)

VA=V e-n-A (4.15.2)
The permeability of porous media is a property that measures the
ability of the media to conduct a fluid. The permeability of porous
media is analogous to the thermal conductivity or electrical specific

conductivity of the material (Hubbert, 1940).
4.4 Conservation Equations for Porous Media

Deriving the Conservation equations for a fluid in porous media may
be accomplished by summing mass, momentum and energy for a REV. Volume
averaging of properties, Eq. (4.7), is then applied to the conservation
equations to obtain the desired result. The general conservation
equations for porous media include the possibility of a multitude of
different chemical species flowing in the media such as water, air, oil,
or dissolved minerals. Moreover, the porous media properties of
porosity, permeability, and thermal conductivity may be directional
(Bear, 1972). For the problem of heat transfer for a building slab on
saturated soil, only the flow of liquid water will be considered.
Moreover, there is no compelling reason to select a porous media in
which one direction is preferred over any other. Therefore the media
properties will be chosen to be isotropic and homogeneous throughout.
Combarnous and Bories (1975) give the following conservation equations

where the velocities are volume averaged through the media.

Mass:

ng% + V. (pV) =0 (4.16)
Momentum:

(/)Y + (p/n?)(V - W)V = VB + pg /K (4.17)
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Energy:
Ve (gD = ¥ - [(pc)gVT] = gf(pc)eqT (4.18)

Properties with the subscript "eq", i.e., Aeq and (pc)eq, represent an
equivalent property for the REV in which the fluid and porous media have
been lumped together by the volume averaging method to form a composite.

For the steady problem, all time derivatives are zero.
Furthermore, ground water flow velocities are small and terms of the
second degree are neglected. Equation (4.17) reduces to an equivalent

form of Darcy’s Law:

V= —(k/p) (VP - pg) (4.19)
The mass continuity equation becomes
V-(pV) =0 (4.20)

If the specific heat in Eq. (4.18) is considered constant, then the term
V - [(pc)¢VI] in Eq. (4.16) reduces to (pc)¢V-VT and the energy equation
becomes
T = 2
(pc)gV-VT = Aqu T (4.21)
These are the field equations that describe steady flow in a isotropic,

homogeneous porous media with constant thermal conductivity.
4.5 Buoyant Flow in Porous Media

The conservative Eqs. (4.19)—(4.21) must be put into a form that
will facilitate the computation of buoyant flow in the media. Suppose
that a thermal gradient exists in a fluid. A corresponding density
gradient is also created as well as a net imbalance in the gravitational
body force. Elements of the fluid that are less demse will tend to be
displaced by fluid of greater density. A reference state may be

established for some location in the fluid where a static condition
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exists. This may be expressed as a special case of Darcy’s Law.

0 = —(k/u)(VPg - p.8) (4.22)
vhere PS is the static pressure at the reference density. Subtracting
this from Eq. (4.19) yields

V= —(k/u)(V® - P) - (0 - s)8) (4.23)

The conservation equations are not in a form that may readily be
solved. Since the energy equation is nonlinear, an analytic solution is
not possible for most situations. It is necessary to prepare the
equations for numerical treatment. Nondimensionalization of the
governing equations is a very useful method for obtaining a numerical
solution. Scaling will be chosen for the problem of slab earth—coupled
heat loss based on the lenmgth of the slab, L. There is no free stream
velocity in this problem so the reference velocity must be defined in
terms of thermophysical properties. The following nondimensional

quantities are defined:

x = X/L (4.24)

y = Y/L (4.25)

v = V/V, (4.26)
where

Vo = Aeq/(pc)fL (4.27)
Also,

AT=T, - T, (4.28)

© = (T - Tg)/(T1 — T2) (4.29)

Pg=P-P (4.30)
and

“=V.1 (4.31)

Using these expressions to change variables, the continuity equation and
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the energy equation become

Mass:

VF.v=0 (4.32)
Energy:

v - V¥0 = V*%0 (4.33)

Nondimensionalization of Eq. (4.23) yields
v=—(k/p)(Vq - (0 - p.)8)/Va (4.34)
It is helpful to cast this equation into a more suitable form by

normalizing as many variables as possible. By defining the following

quantities
e = g/g (4.35)
p* = plp, (4.36)
P*y = Py/p_ gL (4.37)
v=plp (4.38)
vk =ufv, (4.39)
Eq. (4.34) is expressed as
v = k(p.c) egL(VFP* g — (p* — 1)e)/,\eqy*z/r (4.40)
Let
R = k(prc)fgL/Aequr (4.41)

The governing equations in nondimensional form, after dropping the

asterisk notation for convenience, become

Hass:

V-v=0 (4.42)
Energy:

v - V0 = V%0 (4.43)

Darcy’s Law:

v=-R (Wy - (p-1)e)/v (4.44)
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By taking the divergence of Darcy’s Law, Eq. (4.44), and setting to
zero, the continuity equation is satisfied automatically. For water,
density and viscosity will be considered to be functions of temperature
(Sun Zu-Shung et al., 1970, Kwok and Chen, 1987). The resulting

expression is

9 i
RVBy = - 55 (v - V0) + R & (VO - e) (4.45)
or equivalently,
9
R VB, = - 55 V'O + R ?;/’— (VO - e) (4.46)

Equations (4.43) — (4.46) are the field equations for the flow of

buoyantly induced flow with temperature varying density and viscosity.
4.6 The Stream Function

In two dimensions, a stream function may be defined such that
d i
u=3¥,andv=—-a—f:— (4.47)
These functions identically satisfy the continuity equation. By cross
differentiating Darcy’s Law and using the definitions in Eq. (4.47) one
obtains
dv
V2 = ( - ua— /v + R 5& (4.48)
The flow is fully descrlbed in terms of Pd’ O, and v. Although no
additional information is gained by using the stream function,
streamlines are useful as an aid in visualizing the flow in the porous

media.

4.7 The Boussinesq Approximation and the Rayleigh Number

The fluid and its viscosity and density as functions of temperature

must be known to utilize the porous media field equations. To check the
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validity of the above expressions, the commonly used expressions for
viscosity and density variation may be substituted where appropriate.
Viscosity is usually considered to be constant while density variation
in buoyant flow situations is often described by using the Boussinesq
approximation. The Boussinesq approximation is a first order Taylor
series which describes demsity as a function of temperature. In
nondimensional variables, the approximation is

p=1-pAT(® - O,) (4.49)
where f is the coefficient of thermal expamsion for the liquid.

A coordinate system for Eqs. (4.44) — (4.46) and (4.48) must be
selected. For customary rectangular coordinates with x to the left and
y upwards,

e=—j,andV®-e=—g% (4.50)
Using Eq. (4.50), the density relationship in Eq. (4.49) and the

following relationships

vF=v=1 (4.51)
g0 - — pat (4.52)
e 0 (4.53)
& =R P, (4.54)

and substituting into (4.45) yields
28 - d0 _ file)

Ve = RPAT 3y ° Ra 7y (4.55)
where the Ra is the Rayleigh number.

Ra = k(p c)cgLAAT/Mv (4.56)
Equation (4.55) is equivalent to the expression given by Ene and
Polisevski, 1987.

Substituting the same relations into Eq. (4.48) results in

v = — RoN1SS (4.57)
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or

V2§ = - Ra 22 (4.58)

This agrees with the formulation given by Himasekhar and Bau (1988).

There are several interpretations of the Rayleigh number in porous
media literature. Combarnous and Bories (1975) classify Eq. (4.57) as
the filtration Rayleigh number. Kladas and Prasad (1989) further define
a filtration Rayleigh number in terms of the product of the Darcy number
and the fluid Rayleigh number.

Ra = Da Ra (4.59)
where the Darcy number is the permeability divided by the square of the
pore size. This distinction is helpful when high velocities in porous
media cause wall channeling in the media. In ground water flow induced
by thermal effects, however, this distinction is unnecessary. All

references to the Rayleigh number will refer to the filtration Rayleigh

number, defined by Eq. (4.56).
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Chapter 5

THE COMPUTATIONAL PROBLEX

5.1 A Brief Overview of Method and Results

A basic scientific investigation begins with a hypothesis that is
to be verified or refuted by analysis or experiment. This work
investigates the contribution of liquid water as an agent for the
removal of heat from a building slab. Since a nonlinear amalytic
solution is not expected for even the simple geometry being considered
here, the solution of the above equations must be undertaken by
computer. One inherent drawback of numerical methods is that a vast
amount of information is obtained about a specific case.
Generalizations and behavior trends are detected by parametric study.

After refining the computer algorithm discussed in the following
sections and using the parameters expected in field conditionms,
nondimensional heat flux (q/MAT) calculations clearly indicated that the
presence or absence of water in the media made a negligible difference.
This result appeared to contradict the intuitive conception of the
ability of wet earth to conduct heat. The only way to resolve this
discrepancy was to perform an experiment and determine more information
about the process. Details of the experiment are discussed in Chap. 5.

The experimental results, which agreed qualitatively with those

predicted by the computer solution, were based upon a constant

36
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filtration Rayleigh number (composed of properties of water at an
intermediate reference temperature and a volume averaged thermal
conductivity). Buoyant circulation was evident. The experimentally
determined heat transfer for saturated porous media was approximately an
order of magnitude higher than that of dry porous media and the
numerical porous media flow solution. Also, the fluid velocities were
experimentally observed to be much larger than the computed values. It
was obvious that corrections to the modeling were needed.

The first correction made was to presume that the numerical value
of q/MAT was correct. With this assumption, an experimental value for
porous media thermal conductivity could be found and used in the
Rayleigh number to replace the volume averaged value. When the velocity
field was recomputed, better overall agreement was reached with the
experiment. This was an encouraging result, although not completely
satisfactory.

Water is an anomalous liquid that has a density maximum at 4 C.
Viscosity decreases sharply over the temperature range under study of
between 0 C and 20 C. To examine the effect of the temperature
variation of these properties, reformulation of the governing equations
was necessary. Chapter 4 develops the details of this analysis. Again,
recomputation of the velocity field showed a substantial improvement in
the streamline positions and essentially agreed with the experimental
observations. The magnitude of the velocity field was lower than
observed, however.

Improving the model to allow for temperature variation in the
properties gradually improved the agreement with observations of the

scale model. The porous media (i.e., 1 mm glass beads) average porosity
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was measured by displacement of water and is accurate to within one per
cent. The only remaining property in question is the permeability. The
permeability was determined by use of the Ergun Formula, (see list of
Nomenclature and Chap. 6) which is an empirical formula valid for beds
of randomly packed spherical particles. Correction of the previously
computed value of permeability by the velocity deficit brought the
computed results into consonance with the experimental observations.

The probable cause for this is due to the difference in permeability and
porosity of the media adjacent to the wall of the test cell compared to
the central region of the porous media. The wall effect will be
discussed at greater length in Chap. 6.

The governing equations for buoyant flow in porous media were
derived in Chap. 4. These equations must be solved in the domain of
interest, which for this problem is the convectively heated
slab-on-grade. This chapter will discuss the methods employed in the
numerical solutions, test special case problems with the code and
compare these results with solutions produced by other means and
finally, perform a parametric study that allows the problem of heat flow
from a two-dimensional slab to be solved without resorting to numerical

methods.
5.2 Boundary Conditioms

The conditions one would expect to find in the interior of a
building is a convectively heated ground floor where heated air is
distributed by an air handler. The outside earth surface is also
subject to an assortment of weather conditions. The primary exchange of

heat is by convection between the air and the earth. Solar radiation is
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of a periodic nature, and the average long term effect on the steady
slab flux may be neglected in accordance with Proposition VI.
Proposition IV allows the selection of a finite, adiabatic subterranean

boundary. The thermal boundary conditions can therefore be written as

~

q-n=h(T-T) on slab or air/earth interface (5.1)
n=0onl elsevhere. (5.2)

q -
When applied to the slab with a constant heat transfer coefficient, the

equations then become

ML - (T - 1)), on slab (5.3)
A%I = hy(T — T2), on earth, and (5.4)
VT - n=0onT elsevhere. (5.5)

These conditions are illustrated in Fig. 5.1. Using the definitions in
Chap. 4, the boundary equations are transformed into nondimensional

variables and become
d0

'3? = B11 (1 - @1) on slab, (5.6)
g—?— = Bis ©7 on earth, and (5.7)
Vo - n=0onTl elsevhere. (5.8)

The boundaries for fluid flow are considered to be impermeable and
correspond to the thermal boundaries. At the lower boundary, this
condition would be characteristic of some strata of rock or clay at a
given depth beneath the surface. An impermeable earth surface
physically represents a membrane or an asphalt covering over the earth
surface. This condition will be relaxed in Chap. 7 to study the effects
of evapotranspiration on slab heat loss.

The vertical surfaces surrounding the slab will also be taken to be

impermeable. This condition could be physically justified based on the
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Boundary conditions for the two—dimensional slab—on-grade.
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fact that most residential structures are situated in a developed area
and symmetry planes will exist between the properties. Thermally
induced fluid flowing from a slab and from its "image" slabs will
circulate in direct opposition to each other. This opposing flow may be
represented by an impermeable surface. Therefore, to study the case of
natural convection induced by the slab, impermeable surfaces will be
considered to exist at all boundaries. This may be expressed as

-~

v-n=0onT. (5.9)
5.3 Difference Equations

The field equations and boundary conditions for the problem may be
approximated by using difference equations instead of differential
equations. The differential equations are valid at all points in the
domain while the difference equations are applied to a select set of
points in the domain and on the boundary. The accuracy of the scheme
depends on how many points are selected and how the differential
equation is approximated. This method is known as the finite difference
method, and the following difference operators are defined (Anderson et

al., 1984):

2 = -
5xui,j = U505 2ui,j+ U5, (5.11)

These difference operators are utilized to form approximations to

derivatives of u; 3 to within the specified accuracy as follows:
?

o= 3,u; /2 + 0(4x?) (5.12)
2
98, = B 5/hx + 0(bx) (5.13)

Derivatives used in boundary conditions were computed using a second
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order accurate polynomial fitting approximation:
9u; 5 = (-Bug 5 +ug,q 5 - Uy, 5)/2x + 0(4x) (5.14)

The central difference Eqs. (5.12) and (5.13) approximate the
derivatives at a point by the values of the point and the surrounding
points. In two dimensions, there are five points involved in the
approximation, thus the term five point molecule is used to describe the
configuration. The problem at hand is steady state, therefore no time
derivatives are necessary. For a given rectangular domain divided into
N equal units in the x direction and M equal units in the y direction,
there are (N+1)(M+1) points requiring solution, which may be specified
by a set of field equations or a boundary condition of interest. The
problem involves two coupled sets of equations which must be solved

simultaneously to account for the transfer of heat and mass.
5.4 Solution of the Finite Difference Equations

One goal of this study to compute the total heat transmitted
through the convectively heated slab. The temperature and pressure
field must be found by an appropriate solving scheme. Once the
temperature field has been computed to within the desired order of
accuracy, the total heat transmission across the plane of the slab is
determined by integrating the surface flux. As a consequence of
performing the integration, the original numerical accuracy of the
approximating method is reduced. This drawback may be overcome by
either increasing the accuracy of the approximating functions or by
using mesh refinement until the required error limit is achieved. The

general approach selected for the slab problem employs a second order
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accurate approximation (Eqs. (5.12) and (5.13)) for the field equation
derivatives. The boundary derivatives are approximated by Eq. (5.14).

A polynomial fitting approximation at the boundary has interesting
properties. The flux component normal to the surface is modeled very
effectively. In a finite difference approximation, however, a flux path
adjacent to the boundary one-half mesh step in width exists that is
neglected by this kinematic approach. The importance of this path and
its contribution to slab heat transfer was investigated by comparing the
kinematic boundary results with the conservation equation boundary
results for the one-half mesh step region.

Comparison of methods and results incorporating the two boundary
approximations were mixed. The conservation equation boundary method
produced closer agreement to the final result with a coarse mesh than
the kinematic boundary condition. However, the kinematic boundary
conditions (used with a Gauss-Seidel method by lines solver) produced a
more robust algorithm that converged for a greater range of parameters
than other schemes using the conservation equation boundaries.
Furthermore, the process of mesh refinement reduced any initial course
mesh accuracy advantage enjoyed by the conservation boundary conditions.
The kinematic boundary was selected for use because it was found to be
effective when applied to porous media flow and heat transfer in the
regime under investigationm.

As previously stated, several numerical solving schemes were
investigated such as explicit and fully implicit. The most effective
method in this application was found to be the Gauss—Seidel by lines

(6SL) with successive over-relaxation. The sweep directions were
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alternated with each line. This method has several advantages over the
fully implicit method or an explicit method, such as:

1. Smaller memory requirements. The fully implicit method
requires simultaneous solution of an (N+1)(M+1) set of points. By
taking maximum advantage of the banded nature of the matrix for the five
point molecule, the storage requirements are proportional to a fraction
of ((N+1)(M+1))2. The GSL method casts the governing equations into
tridiagonal form. The boundary points are not tridiagonal, but may be
reduced to tridiagonal by one additional step. Memory requirements are
reduced to four times the maximum of N or M.

2. Rapid transport of boundary information through the domain.
The fully explicit method solves for the value at a point in terms of
the surrounding points. The GSL method solves for the values along an
entire line in terms of the conditions of the adjacent lines and the
boundary conditions. By alternating the direction of the lines, the
latest boundary information is transmitted into the domain and is
available for the next iterative step.

3. Stability of the algorithm is enhanced. The tridiagonal system
is diagonally dominant and inherently stable. The mesh size may be
selected to be coarse for the initial estimate of the solution.
Naturally, for any fixed point iterative scheme, the value of the
parameters will determine whether the procedure will converge.
Divergence is easily corrected by decreasing the initial mesh size.
Once a tentative solution is found, mesh refinement by linear
interpolation is employed to improve accuracy. Appendix B-1 gives a
detailed derivation of the difference equations. Appendix B-2 is a

discussion of the logic flow chart and presents the code used to
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calculate the earth-coupled porous media heat transfer problem specified
by Eqs. (4.43), (4.44), (4.45), and Egs. (5.6)—(5.8). For brevity, the

code will be referred to as "SLAB" in the following discussion.
5.5 Comparison of Results and Error Analysis

Numerical solution of partial differential equations is an exercise
in cost-to-benefit ratio optimization. The desired solution should be
produced with the lowest computational cost to within the degree of
accuracy that is required. The primary concern here is slab heat
transfer under convective conditions where the thermophysical properties
must be estimated or averaged. A numerical solution to within two
percent of the exact value is acceptably accurate for this amalysis.
However, if the exact solution was known, then an approximate solution
would be unnecessary. In general, the exact solution is not known, but
for the special cases with known solutions, the algorithm may be tested
and compared for accuracy. The presumption is that if the algorithm
converges to the exact solution for the known case, then by inductive
reasoning, it will converge to a solution where the exact solution is
not known.

The following comparisons are made to determine the accuracy of
SLAB. To illustrate the solution dependence on mesh size, Case I
compares the SLAB constant surface heat flux conduction solution to the
exact solution at various locations along the surface. To demonstrate
the apparent insensitivity of surface temperatures to flow in the porous
media, Case IT compares the constant flux exact solution to the porous
media constant flux solution produced by "FIDAP", a commercially

prepared code. Finally, Case III is a surface temperature comparison of
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the finite element method and the finite difference method. Case III
solutions generated by SLAB and FIDAP are produced for the porous media
problem with a constant convection condition at the surface. All of
these comparisons are for the same domain with insulated lower
boundaries as shown in Fig. 5.1. All temperatures and positions in the

following discussion have been normalized.

5.5.1 Case I (Comparison with Exact Solution)

A two—dimensional square, solid plate insulated on sides and bottom
is subjected to a unit heat flux at the upper surface. Flux is absorbed
along the left half of the plate (0.0 < x < 0.5), and rejected along the
right half of the plate (0.5 < x < 1.0). The value of the total heat
(q/MAT) flowing through the plate is exactly 0.500. The conduction

temperature profile along the upper surface (0.0 < x < 1.0) is given by
®
4 1 .
Osurface = —2 2 52 sin(nr/2)cos(nrx) (5.15)
n=1
where the zero reference temperature is chosen at the point x = 0.5.

Table 5.1 compares surface temperature values calculated by Eq. (5.15)
and SLAB for a 16 X 16 mesh and a 32 X 32 mesh. The geometric mean
error ratio is 1.0254 for 16 X 16 points and 1.0108 for the 32 X 32
point mesh when iterations were halted at a maximum successive

difference of 2E-5 at all points in the temperature field.

5.5.2 Case IT (Comparison of Porous Media FIDAP and Exact)

FIDAP (Version 4.5) is an all purpose incompressible fluid
mechanics and heat transfer code developed by Fluid Dynamics

International, Inc., 1600 Orrington Avenue, Suite 400, Evanston Illinois
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60201. This code employs a fully implicit, finite element scheme and is
capable of computing porous media flow using the Darcy’s Law as the
momentum field equation. Two cases were solved with FIDAP and compared
with SLAB for constant heat flux of unity.

FIDAP performed the computation for the porous media problem very
effectively. For the constant flux case, the FIDAP surface temperatures
were not directly comparable with the solution found above because the
temperatures were computed based on a reference temperature of zero.
Adjusting the temperature profile to the same reference temperature for
a 16 X 16 mesh produced an average difference of 0.035 percent between
FIDAP porous media solution and the solid media theoretical solution.
Table 5.2 compares the solid plate theoretical surface temperatures with
the porous media solution produced by FIDAP. Again, the comparable

results are insensitive to the nature of the nature of the media.

5.5.3 (Case III (Comparison of Porous Media SLAB and FIDAP Solutions)

For a constant Biot number of thirty across the top surface, a
comparison of FIDAP and SLAB for 16 X 16 mesh showed good agreement at
the exterior points but differed slightly on alternate sides of the
midpoint of the hot and cold regions. Figure 5.2 compares the surface
temperature profiles produced by FIDAP and SLAB.

Proceeding to employ the SLAB code, the porous media internmal field
patterns for a convectively heated slab, Bi = 30, are calculated.

Figure 5.3 compares the streamline patterns in the media for the case of
constant viscosity and the Boussinesq density approximations with the
streamline pattern for the case where a second degree polynomial was

used to describe the density and viscosity of water. Figure 5.4 is a
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Table 5.1 Temperature comparison of exact constant flux conduction
solution with SLAB solution for two mesh sizes

Node Distance Temperature
X Exact 16 X 16 32 X 32
0 .0000 .3712 L3757 .3741
1 .0625 .3673 .3718 .3702
2 .1250 .3554 .3599 .3582
3 L1875 .3350 .3396 .3376
4 .2500 .3051 .3099 .3076
5 .3125 .2641 .2696 .2665
6 .3750 .2088 2157 .2113
7 .4375 1321 .1433 .1356
8 .5000 6E-8 .0000 .0000

Table 5.2 Temperature comparison of exact comstant flux solution
with FIDAP porous media solution

Node Distance Temperature
X Exact 16 X 16
0 0 .3712 .3725
1 .0625 .3673 .3708
2 .1250 .3554 .3571
3 .1875 .3350 .3349
4 .2500 .3051 .3099
5 .3125 .2641 .2648
6 .3750 .2088 .2068
7 .4375 .1321 .1282
8 .5000 6E-8 —-.0085

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Temperature
©o o o o o ©
R R N B o RN

o

| 1

0.0 ' ' ' ' ' '
0.8 09 1.0

0.0 0.1 0.2 03

0.4 05 0.6 0.7

X Direction

Fig. 5.2 Top surface Sy = 1) temperature profile comﬁarison for SLAB
: and FIDAP codes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49



1.0
!
0.8 -
0.7 -
0.6
!

0.4 r

Y Direction

0.3t
0.2

01r

0.0

——— Polynomial
- -~- Boussinesq

1 1 ] " ] 1 ] 1 ! 1 i

0.0

Fig. 5.3

0.1 0.2 0.3 0.4 05 06 0.7 08 09 1.0
X Direction

Streamline comparison between polynomial fit density and
viscosity and Boussinesq density approximation and constant
viscosity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50



1.0
09k _—
0.8

0.7

0.6 E }

0.5 F i

Y Direction

0.4 r ’

0.500

0.3F

0.2F

0.1 . Bi=30

O'O ! 1 L 1 ) ) L 1 1 1 Il L} Il | 1 1 L 1 1
0.0 0.1 0.2 03 04 05 06 0.7 08 09 1.0

X Direction

Fig. 5.4 Isothermal map of polynomial fit density and viscosity for
streamline pattern shown in Fig. 5.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51



52

map of the position of the corresponding isotherms for temperature
dependent viscosity and density. This map is essentially

indistinguishable from the Boussinesq model solution.
5.6 Total Heat Transfer

Total heat transfer must be determined by integrating the local
flux across the slab surface. Numerical experimentation has shown that
saturated porous media and dry media yield the same value of heat flux
for similar boundary conditions. The numerical experimentation has also
shown that integrating a second order accurate solver results in a first
order accurate integral. Mesh size reduction is one possible method
that may be used to improve accuracy of heat flow computations. The
sequential reduction of mesh size throughout the domain resulted in a
sequence of approximate total heat transfer solutions. The sequence
appeared to resemble a geometric series. Using the geometric aspect of
the approximate heat flux solutions could improve the overall estimate
of the total heat flux from the surface without exhaustive computation.

Table 5.3 is a summary of the total heat flux (q/AAT); and the
successive differences (A;) for the unit heat flux problem of Sec. 5.5.1
as a function of mesh size. The successive difference is defined as

A; = (q/AAT)i - (q/AAT)i__1 (5.16)
where i the index of the number of mesh reductions (mesh size halvings).

Presume that the mext term in the mesh reduction series would be
represented by the following term

(Q/AMT);,, = (a/MT), 4 + b, + 5 (5.17)
vhere

a=h; /b (5.18)
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The nth term in the series would be
k=n
(a/MT) = (¢/MT), , +4.) o' (5.19)
q n- U i-1 84 .
k=1

This series converges when a > 1 and n increases without bound. The

limit of the series is

(¢/MT)_ = (a/MT); 4 + Aitagfy (5.20)

The following examples are chosen to illustrate the approximation

applied to specific data.
5.6.1 Constant Flux Problem

For the constant flux problem of Sec. 5.5.1, the exact solution is
0.500. The following values are chosen from Table 5.3 for i = 3:
(a/AAT); 4 = (a/MT), = 0.48974
A3 = 0.00531
a = (0.01058)/(0.00531) = 1.99242
(q/AAT)m = 0.50040
This is a much better estimate of the exact answer than (q/AAT), =

0.49505.

5.6.2 Constant Convection Problem (Bi = 10)

Consider the convectively heated rectangular plate with a breadth
to depth ratio (H/D) of 2 that is heated on the upper surface between
0.0 < x < 0.5. and cooled between 0.5 < x < 1.0 with equal heat transfer

coefficients. If the Biot number is set at 10, then the data in Table
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Table 5.3 Total heat flux versus mesh size
for unit surface fiux

i Hesh Size (a/AAT), A,
0 8X8 .45832 —_—
1 16 X 16 .47916 .02084
2 32 X 32 .48974 .01058
3 64 X 64 .49505 .00531

Table 5.4 Heat flux versus Hesh size for comvectively heated surface

(Bi = 10)
Hesh Size (a/AAT), A;
0 8X4 .5518 —
1 16 X 8 .6396 .0877
2 32 X 16 .6907 .0512
3 64 X 32 .7183 .0276
4 128 X 64 . 7326 .0143
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5.4 is generated by SLAB. For the case cited in Table 5.4 and i = 4,
(a/MT)4 = 0.7183
A4 = 0.0143
a =1.930
(a/MT) = 0.747
So, by inductive reasoning, (q/AAT) = 0.747 is closer to the exact
answer than (q/AAT)g = 0.7183.

5.6.3 Constant Convection Problem (Bi = 30)

Figure 5.5 illustrates the total heat flux as a function of mesh
size as calculated by SLAB for the convectively heated surface similar
to the problem in Sec. 5.6.2 except the Biot Number is thirty instead of
ten. This figure graphically illustrates the heat flux asymptotically
approaching a limiting value. The total heat flux q/}AT is computed at
three locations, hot and cold upper surfaces and a plane through the
midpoint of the domain, to check for internal convergence. Although a
slight flux difference exists across the hot and cold surface, this
difference diminishes with decreasing step size. This is due to the

steepness of the temperature gradient at the midpoint.
5.7 The Domain Shape Factor

Proposition V provides the theoretical basis for viewing the
slgb—on—grade problem as a potentially one-dimensional problem if the
correct coordinate transformation is found. For a convectively heated
slab, this computation is not a simple matter. However, an approximate
method may be employed by devising a domain shape factor to investigate

the correlation between the physical and thermal parameters of the
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problem (Rust and Roberts, 1990). The original hypothesis motivating
this method is justified by proposition VI stated in Chap. 3.

Assume a convectively heated half slab is situated on the upper
surface of the domain. The slab half-length is L;. The lower
boundaries are adiabatic. The heat transferred from the slab is carried
away by the ambient convection at the earth surface, which is a distance
L, from the slab wall. The heat transfer coefficients on the slab and
earth surface and the interior and exterior temperatures are h; and hj,
and T, and T, respectively. The heat transmitted through the air—earth
interfaces and a strip of earth a differential thickness wide can be
found by a standard resistance technique. Figure 5.6 shows the slab and
its orientation on the domain. The differential strip is shown with a
length, ¢x, that is proportional to the distance along the slab from x =
0. The proportionality or shape factor, ¢, is to be determined. The
differential heat rate through the elementary strip may be expressed in

terms of the series path for heat flow as

-1

dq = w(Ty - Tp) [ﬁjf— vt eihz] dx (5.21)
where ¢ is defined to be of 0(1),

€ = Ly/Ly (5.22)
Integration of this expression yields

Q/AwAT = q/)T = 1n(1 + ¢Biy/(1+1))/¢ (5.23)
vhere

Biy = hily/A, q = Q/w, and (5.24)

r = Lihy/Lohy (5.25)

The shape factor, ¢, is implicitly defined in terms of known parameters.

The quantity q/AAT may be computed for a specific geometry and a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



£x

Fig. 5.6 Half-slab orientation and differential strip.
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corresponding shape factor determined. Figure 5.7 is a shape factor
parametric study for various rectangular domains and Biot numbers. From
Fig. 5.7, a best fit relationship is found, namely,

¢ = 3.3654 + 2.6102 (1 + r)/Bi (5.26)

The following example will illustrate the use of the shape factor.

5.7.1 Shape Factor Example Problem

A slab—on-grade building is heated to 20 C by forced hot air with
an average heat transfer coefficient of 3 W/m’-deg K. Winter ambient
temperature is —10 C. If the building slab’s short dimension is 10 m
and the soil has a thermal conductivity of 3 W/m-deg K, find the total

heat loss from the building per foot of width.
5.7.2 Solution Method

5.7.2.1 Compute Bi for the half-siab.

- 3 VW/mldegK - 5m _
Bi = hL/} = 53 W/m—deg K =3

5.7.2.2 Geological Data. Since no geological information is stated in
the problem, assume L, is large and

T~0

e

5.7.2.3 Shape Factor. Find the shape factor from Eq. (5.26) or use
Fig. 5.6.
¢ = 3.3654 + 2.6102-(1 + 0)/Bi
¢ = 3.887
5.7.2.4 Heat Flux. Use Eq. (5.23) to calculate the heat flux.
q/MT = 1n (1 + 3.887 - 5)/3.887 = 0.776
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Solving for q yields

q=0.776 - 3 W/m-deg K -30 C = 69.85 ¥/m
For the full length (both sides of the symmetry plane) of the slab, the
total heat lost per unit length of slab is qtotal = 24.

Qiotal = 139.7 W/m....vvnatn Ans.

5.8 Extending the Shape Factor Method to Other Applications

The energy loss from the slab has been determined to be a function
of the conductivity of the soil, the average temperature difference
between the interior and exterior of the structure, and the Biot number
for the slab. This method may be extended to a wider variety of
situations by including additional factors as required. The treatment
of slab insulation, the effect of a water table located in proximity to
the slab, and the extension of the method to three dimensioms are
discussed in the following paragraphs. These extensions are compared to

results obtained by other computational methods found in the literature.
5.8.1 Additional Slab Insulation

Additional slab insulation may be included in the computations by
adjusting the film coefficient, h, to represent a loss coefficient, U,

that includes the thermal characteristics of the insulation.

-1
U=[_111_+ Ax ] (5.27)

A ins
The loss coefficient, U, replaces the film coefficient in the Biot

number.
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5.8.2 Presence of a Water Table

For fully saturated soil, the correction for a water table is not
necessary provided the apparent thermal conductivity of saturated soil
is used. However, for a water table located relatively close to the
slab, two soil zones are present. The effect of the water table on the
slab may be treated as a one-dimensional problem superposed on the
two-dimensional problem. With the soil conductivity known in the
unsaturated region, the heat loss to the water table may be expressed as

Q = U A AT, vhere

-1

_ 1 Ax depthyater table
U= I * _/\_ins ¥ Asoil

This quantity is added to the heat loss to the ambient computed with the
shape factor method.

5.8.3 Extension to Three—dimensional Slabs

Three-dimensional effects of slab heat loss may be computed by
applying the shape factor method. Again, by utilizing the linear
superposition of solutions, the three-dimensional problem is decomposed
into a pair of separate, two-dimensional, mutually orthogonal problems
as outlined below.

Given a slab (a X b) subject to known thermal conditions, find the
heat loss to the ambient.
5.8.3.1 Step 1. Decompose the slab into a pair of
quasi-two-dimensional problems of (lemgth X width) where (a X b) is the
first problem and (b X a) is the second problem.

5.8.3.2 Step 2. Find the heat loss in the "a" direction by finding the
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Biot number for the half-slab, Bi = U(a/2)/A.
5.8.3.3 Step 3. Find the shape factor in the "a" direction from
equation (5.26). Find the heat flux (q/AAT), in the "a" direction from
equation (5.23).
5.8.3.4 Step 4. Repeat Step 2 and 3 using the "b" direction.
5.8.3.5 Step 5. Find the total heat loss in the "a" and "b"
directions.

0, = 2-(a/AT) A(T; - T) -

0y = 2+ (a/MT) A (T, - To)-2
The total heat loss from the slab is the sum

0=0,+8

il

5.8.4 Comparison of Two-dimensional Methods with Slab Insulation and

Water Table

Krarti and Claridge (1988) propose and solve the following time
dependent problem in two dimensions using the ITPE method they
developed. The steady state heat loss solution to this problem will be
found using the shape factor method and compared to the steady state
solution of the ITPE method.
5.8.4.1 Two-dimensional problem and ITPE solution. Compute the
two—dimensional heat loss from a uniformly insulated 8 m X 16 m
slab—on-grade with a U-factor of 0.645 W/m2-deg K. A Water table is
located 5 m below the building foundation at Madison, WI. Soil thermal
conductivity is 1 W/m—deg C. Krarti and Claridge (1988) use the
following data to solve this problem with the ITPE method where "t" is
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time and "v" is angular frequency.
Earth surface Temperature, TS:
T, =7.8 +15.2 cos(wt) (deg C)
Water Table Temperature, Tw:
Tw =11.4C
Building Space Temperature, Ti:
T, =21.0 + 2 cos(wt) (deg C)
The computed total annual heat flux by the ITPE method is
Q(t) = 405 + 78 cos(wt + 1.83) (Watts)
Using these data, the heat loss will be computed using the shape factor
method. In this example, an insulated slab and a water table under the
slab are considered. This problem must be solved by using superposition
of the total heat loss to the ambient with the total heat loss to the
constant temperature water table.
5.8.4.2 Shape factor solution.
5.8.4.2.1 Compute Bi for the half-slab. The U-factor is the combined

surface conductance of the slab and the insulation.

. _0.645 W/m2deg K -4 m _
Bi = UL/} = T W/n-deg X = 2.58
5.8.4.2.2 Find the Shape factor assuming r = 0.
¢ = 3.3654 + 2.6102-(1 + 0)/2.58 = 4.377

5.8.4.2.3 TUse Eq. (5.23) to calculate the heat flux.
q/AAT = In [1 + 2.58-(4.377)]/2.58 = 0.5732
5.8.4.2.4 Solve for the total flux from the slab.

0, = 2qAAT-w (v is width of the slab)
0, = 2-(0.5732)- (1 W/n-deg K)- (16 m)- (21 - 11.4)(C)
Q1 = 242.1 ¥V to ambient.
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5.8.4.2.5 Compute Heat loss to ground water table assuming a linear

path.
-1
% = | 57685 W/mtdeg K * 1 nder® | (2 - 1140
Qg = 1.465 W/m?
9, = qof = (1.465 ¥/m?)-(8 m - 16 m) = 187.6 W to water
table.

5.8.4.2.6 The total average heat flux is the sum of the solutions.
Q=0 +0,=42.7V¥

The shape factor value is six percent higher than the value given by

Krarti and Claridge (1988) using a transient method. The cooling

factor, r, cannot be determined from the information given in the

published problem, which if known would probably improve agreement.

5.8.5 A Three-dimensional Comparison

Krarti et al. (1990) extended the ITPE method to three-dimensionms.
Average heat loss per unit area for a variety of slab-on-grade
rectangular geometries were computed and tabulated along with the
results from Mitalas (1987). For the sake of comparison, the following
data were used:

) = 0.9 W/mdeg C (soil thermal conductivity)

U = 0.45 W/m>deg C (combined surface conductance)

Ty
T

20 C (inside temperature)

10 C (outside surface temperature)
These data will be used to compute the slab heat loss per unit area
as outlined in Sec. 5.8.3. Table 5.5 is a comparison of the ITPE slab

loss method computed by Krarti et al. (1990) and the shape factor method
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for a unit area of surface. The shape factor method is within the band
of difference of the results of Mitalas quoted by Krarti et al. (1990)
and the ITPE method cited in Table 5.5.

5.9 Closure

The two-dimensional, steady heat transfer from a building slab has
been computed by the SLAB code developed for this purpose. A comparison
of output data from this code with a commercially developed code and the
exact solution has shown good agreement within the required accuracy. A
shape factor method has been developed to predict heat loss from a
convectively heated slab that produces accurate results over a wide
range of conditions.

The SLAB code, suitably modified for the experimental model, will
be employed in Chap. 6 to predict heat transfer and flow conditions in
porous media. The suitability of the approximations embedded in the
governing equations and the numerical approximations will be examined in

the light of experimental measurements.
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Table 5.5 Slab heat loss comparison using ITPE method
and shape factor method

Dimension Heat Loss Difference
(m X m) (V/m?) (%)
ITPE Shape Factor
2 X2 3.725 3.493 —6.2
4X4 2.700 2.925 +8.3
6 X6 2.500 2.536 +1.4
4 X 10 2.525 2.470 2.2
10 X 10 2.030 2.030 0.0
10 X 20 1.850 1.748 -5.5
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Chapter 6

POROUS MEDIA HEAT TRANSFER EXPERIHENT

6.1 Introduction

Heat transfer has been computed subject to the approximations
employed in the formulation of the governing equations and subsequent
numerical approximations. Several features of slab heat transfer were
revealed, especially the apparent insensitivity of total heat tramsfer,
q/MT, to the saturation state of the media. To validate this result
requires that measurements be performed by experiment.

The experiment was designed to emulate as much as possible a
steady, two-dimensional slab on grade over a saturated soil. A scaled
down experiment was deemed most appropriate because: steady conditions
could be maintained; two-dimensional effects and adiabatic boundaries
could be achieved more easily; flow visualization was possible without
environmental hazard; response time was in hours instead of years; and
finally, the cost of a small scale experiment was realistic.

There are certain sacrifices that must be made when performing
scaled experiments. In some cases, similitude in thermal and dynamic
parameters cannot be achieved simultaneously. For porous media, scaling
accentuates the wall effects where the media contacts the container.
The thickness of the media is limited to a few centimeters because flow

visualization requires a relatively thin section so that tracer dye may
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be seen. Moreover, physical construction was required which would allow
for aspect ratios to be changed if desired.

The following sections will discuss the design and construction of
the experimental apparatus, the procedures followed to measure total
heat transfer and the resolution of discrepancies in the porous media

thermal conductivity, porosity and permeability.
6.2 Experimental Apparatus

Heat transfer is emergy crossing a boundary by means of a tempera—
ture difference, and for the analysis herein, will be considered to be a
linear rate process. To measure heat transfer by conduction, a tempera-
ture gradient must be detected in some way. In a scaled model, this is
not easy to obtain with accuracy. Heat transfer may be measured by
phase change which occurs isothermally at atmospheric pressure. Ice is
an ideal candidate for a phase change substance because the temperature
range between the ice point and room temperature is the approximate
temperature range experienced by a typical slab exposed to winter con-
ditions. The experimental apparatus takes advantage of melting ice as a
measure of slab heat transfer. The apparatus was made of plexiglas to
observe the flow field and designed to be free of mechanical penetra—
tions that disturb the flow field.

Figure 6.1 is a schematic of a 1/100 scale model of the two dimen—
sional half-slab apparatus. The section designated as the test cell is
essentially a tank with inside dimensions of 100 mm X 100 mm X 12.5 mm
and made of 6 mm thick, clear plexiglas. A machined brass fitting was
mounted in both vertical end walls of the test cell so that plastic

tubing could be attached to fill the test cell with liquid or to inject
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dye as required. The fittings were designed to minimize the protrusion
into the porous media flow field. The test cell upper surface was made
sufficiently flat to accommodate a gasket seal.

The upper section of the apparatus consists of one assembly which
provides the heating and cooling required to induce circulation in the
porous medium test cell. The upper assembly consists of two chambers:
one chamber is to contain ice and the other chamber is to contain room
temperature water. The outer walls of the upper assembly were also
constructed of 6 mm plexiglas. The central partition between the cham-—
bers was constructed of a double thickness of 6 mm plexiglas with a 1.6
mn brass vent tube (not shown) inserted vertically on the centerline.
The floor of the ice chamber and the warm water chamber were identical.
Bach floor consisted of a brass plate, approximately 110 mm X 25 mm X
1.2 mm, with thermocouples soldered into the plate along the centerline.
The ice chamber was also equipped with a spill tube in the outside wall
which was attached to the plexiglas by means of a brass fitting.

The heating assembly and the test cell filled with porous media
were placed in a clamping device. The position of the test cell with
respect to the upper heating assembly could be adjusted to vary the
ratio of the cooling and heating surface areas exposed to the fluid
circulating in the porous media. Solid media could be easily substi-
tuted for the porous media test cell by merely replacing the test cell
with a specimen of the desired material.

After the upper heating assembly and the test cell were clamped
together and checked for leaks, the entire assembly was leveled and

insulated with styrofoam panels. Auxiliary plexiglas draft shields were
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placed on both sides of the test cells so that heat gain from the ambi-
ent would be reduced while visually observing or photographing the flow
pattern.

The cooling effect was produced by manually placing crushed ice at
-12 C in the ice chamber, the floor of the ice chamber being at the top
of the test cell. Room temperature water was circulated from storage
tanks to the adjacent heating chamber by siphon tubes. The head needed
to power the siphon tubes was provided by small 30 W in-line reciprocat—
ing pump which maintained a differential of about 75 mm of water. An
interesting feature of this arrangement was that the water level in the
heating chamber always remained fixed at the average level of the two
storage tanks, provided that the siphon tubing was matched by length and
diameter. This eliminated the need for level control in the heating
chamber.

The sub-surface soil was simulated in the experiment by using one
mm diameter glass beads. This size was chosen because the permeability
of the bead pack and dimensions of the model produced similitude with
common soils and a full scale slab through the parameter R (Eq. (4.41))
or the Rayleigh number (Eq. (4.56)). The Rayleigh number for typical
soil and thermal conditions found in practice has a magnitude that is

within the range of validity of Darcy’s Law (Bear, 1972).
6.3 Procedure

Water serves as an excellent substance for detecting heat gain by
phase change. Ice at -12 C is loaded manually into the ice chamber and
is removed as water at the cold plate temperature by careful siphoning.

The rate of heat absorption is measured by collecting the water from the
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ice chamber as a function of time. Since the enthalpy of water is known
at the plate temperature (T ), the heat transferred is

Q=m (th'— h_y9a), where (6.1)
h o0 —hg + cpme(o - 12)(C)
and Q is the total rate of heat absorbed by the ice, m is the mass rate
of discharge of water, and h is the enthalpy of water in the solid or
liquid phase at the designated temperature, provided that steady condi-
tions are present. Steady conditions are determined by monitoring
temperatures and discharge rate. These data may be collected for a
variety of materials and compared with the theoretical predictions if
the heat flow through the material can be isolated from the ambient
gain. The method of isolating the desired quantity is discussed below.

The total heat gain is the sum of the individual contributions from

all sources. This may also be thought of as a linear combination of
terms in the form

0=Y 0 =) GAT, (6.2)
where the subscript designates the source of the heat gain. TFor the
experimental apparatus, steady-state heat is gained from the ambient
through the insulation around the ice chamber, from the warm chamber to
cold chamber flowing through the plexiglas partition, and from the media
directly to the cold plate.

0 = Qwanl + Oplexiglas + Qmedia (6.3)
Supposing that the media heat loss coefficient is known, then the un-
known coefficients may be found. This is accomplished by clamping a
block of insulation of known conductivity in place of the test media.
Furthermore, two independent sets of data may be obtained if the warm

chamber is filled with ice in one instance and ambient temperature water
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in the other. Thus,

ATU=9-Q, (6.4)
where bold indicates a matrix quantity. Solving for U,

U= AT (0 -Gy (6.5)
The U coefficients will remain constant provided that the apparatus
insulation configuration and the method of loading the ice chamber is
not changed. Various material of known and unknown thermal conductivity
may be tested in the apparatus and the results compared with the comput-
ed values of q/JAT. The SLAB code was adapted to the experiment by
setting the slab and earth surface temperatures to the corresponding
experimentally observed plate temperatures. The partition wall between
the hot and cold chamber was represented as a nondimensional wall of
thickness 1/8 and centered at the slab/earth interface. A linear tem-
perature profile was imposed across the wall. Repeating the procedure
developed in Chap. 5 for the constant temperature surface with linear
wall resulted in the total integrated heat flux of:

q/AT = 1.035 (6.6)
This is the net total heat transfer from the warm plate through the
media to the cold plate for the specific dimensions of the test appara-

tus.
6.4 Apparatus Characteristics

An experimental apparatus should be sensitive to changes in the
controlled variables but minimize the intrusive effects when measuring
the desired quantities. After experience was gained conducting the
porous media heat transfer experiments, several equipment characteris—

tics became apparent that were not foreseen in the design of the
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apparatus. Before proceeding with the discussion of results of the
experiment, these characteristics will be discussed as well as the

measures used to overcome ambiguities or difficulties.

6.4.1 Measuring Instruments

Various instruments were required to conduct this experiment. Mass
was measured with a triple beam balance to within +0.05 grams. Volume
was measured with a 250 milliliter graduated cylinder to within + 1 ml.
Temperature was measured with three devices: a Fluke type K thermocou-
ple reader accurate to = 0.5 F or £ 0.5 C; a Supco PT-200 type J dual
probe thermometer accurate to within + 0.5 F or £ 0.5 C; and an alcohol
thermometer accurate to + 1 F. Critical distances were measured to *
0.1 mm or 0.001 inch with micrometers or calipers. Where a choice of
measurement scale was offered, selection was based on the most accurate.
For temperature, all measurements are in degrees Fahremheit. To mini-
mize chance of error, all data will be reported in the units in which
they were measured. Intermediate calculations will be performed in
measured units and converted to be consistent with the SI units at the

last step.

6.4.2 Temperature Measurement

The conditions being measured are valid assuming that a steady
periodic state is maintained, and therefore the periodic component will
not affect the steady value (see Chap. 3). The manual stirring of the
ice was performed at regular time intervals thus emulating the steady
periodic condition. The exact amount of agitation during any particular

interval is essentially random. How random agitation of the ice chamber
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and the #1/2 deg F sensitivity of the thermocouple reader affects exper—
imental accuracy is discussed below.
The ice chamber agitation and measuring process was simulated by a

computer model. The average value of two series of numbers were compar—
ed

23

- L3 T (6.7)

Tavg q 1

[

T 1
avg,exact ~ n

Ll o B

-1 Ti,exact (6.8)

such that each term obeys this rule:

| T; - Ti,exact | < 1/2, where (6.9)
Ti,exact =T; +¢, and
¢ = random number, -1/2 < € < 1/2 (6.10)

The result of several simulations indicate that rounding accuracy im—
proves as the number of samples increases as indicated in Table 6.1.
The averaging process provides a means of increasing accuracy that will

be taken advantage of in the following analysis.

6.4.3 Improvements to the Apparatus and Data Corrections

As experience was gained collecting data, it became obvious that
improvements were needed to increase accuracy. The spill tube discharge
was erratic and the temperature of the discharge water was not precisely
known because no thermocouples were located at the tube inlet (see Fig.
6.1). This defect was corrected by fabricating a siphon tube with slots
cut along the perimeter of the suction end so that ice would not block
the flow. The slotted end of the tube rested directly on the cold plate

in the ice chamber, and the other end was placed in a jig so that the
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Fig. 6.1 Schematic diagram of test apparatus.
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discharge end of the tube would remain fixed at a preset height relative
to the cold plate elevation. This increased the uniformity of the
discharge and assured that the water temperature was exactly that of the
cold plate. A correction to discharge temperature data measured previ-
ously with the spill tube is taken to be the average of the cold plate
and the ice point, 32 F.

Additional insulation over the clamping device was found to be
necessary to reduce heat gain to the ice chamber. Adding extra insula—
tion reduced the number of intrusions into the ice chamber needed to
maintain steady conditions. A correction was found for data taken
before the added insulation was installed.

The water storage tank was intended to act as a thermal reservoir
and was expected to remain in thermal equilibrium with the room. This
was not the case, however. The in-line pump acted as a small heat
source and created a nmew tank equilibrium temperature that was slightly
different than the average room temperature. The analysis of heat
gained by the ice chamber required that ambient room and tank tempera—

tures be taken into account.

6.4.4 The Thermal Conductivity of Glass

Although glass is a common material, it exhibits a wide range of
thermal properties as shown in Appendix C. The use of solid glass as a
test specimen was desirable because the test porous media was composed
of glass spheres. The comparison of solid media and porous media prop-
erties in the saturated and dry condition would be informative. This

required that the thermal properties of the glass specimen be verified.
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The following transient thermal comparison test was devised to find the
correct values of thermal conductivity.

Step 1. Two identical, rectangular shapes were fabricated from
plexiglas and glass. The physical and thermal properties of the plexi-
glas were known from published data and would serve as the standard.
Each material was imbedded in idemtical blocks of styrofoam so that the
exposed surface was flush with the styrofoam. Thermocouples were at—
tached to opposite sides of the plastic and glass with equal amounts of
aluminum tape so that the temperature of the exposed surface and the
insulated surface could be measured.

Step 2. Each test unit was in turn chilled to a uniform tempera—
ture of —10 C along with a dummy block of styrofoam. The dummy block of
styrofoam was used to cover the exposed test unit surface so the unit
could be removed from the freezer without undue heating. The dummy
block of styrofoam was removed from the test unit at time zero thus
creating a step change in temperature at the exposed surface. The
change in the difference in temperature between the exposed surface and
the insulated surface were recorded as a function of time.

Step 3. The one-dimensional transient heat equation

8o, . &9, (6.11)
subject to

© = (T - 7(1,0))/(T, - T(1,0)) (6.12)

O(x*,0) = 0 (6.13)

© =0,t<0 (6.14)

© =1,t20 (6.15)

0, - —e),x=0 (6.16)
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=0, x* =1 (6.17)
was solved numerically where I is the ambient temperature, x* = x/v (w
is thickness of material), t* = t/r (t is time), and 7 = pcw?/A. Other
symbols are defined in the nomenclature.

Step 4. Using the plexiglas as the standard, Eqs. (6.11)—(6.17)
were solved to match the measured temperature-time function. These data
produced the film coefficient, h. The film coefficient was used with
various thermal data for glass listed in Appendix C. Equations
(6.11)—(6.17) were solved using the properties of glass listed in Appen—
dix C until a match was found with the measured transient response. The
values given by Hodgman et al. (1963) fit the overall measured response
data within two percent. Other property data for glass differed signif—
icantly from the measured response data. The agreement with Hodgman et
al. (1963) is sufficient to conclude that the thermal conductivity of
the glass specimen is 1.046 W/m-deg K.

6.5 Solid Media Results

Temperature data fields are averaged as described in Sec. 6.4.2.
Mass discharge rate is found from the least squares fit of the cumula-
tive sum of the discharge as a function of time. Table 6.2 is a summary
of reduced observations for data collected on three separate occasions.
These data are averaged from field observations and will carry an extra
digit of precision which will later be rounded to the appropriate
experimental accuracy.

Applying the corrections stated in the previous section, loss
coefficients were desired that would best satisfy all the observed data

within the range of uncertainty. Table C.2 in Appendix C lists the raw
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Sample Size Accuracy
1 £0.5
25 +0.13
50 £0.03
500 £0.01

Table 6.2 Temperature-discharge Data for solid media

Material Discharge, To, Ttank, Date
gm/hr of of

Glass 36.95 36.62 68.62 67.29 3 Mar 90

Glass 35.40 37.67 67.31 65.89 4 Mar 90

Plexiglas 34.74 34.60 68.17 66.50 8 Mar 90
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calibration data measured in this experiment. Assuming the computed
value, q/AAT = 1.035, the initial loss coefficients (heat gain) for the
ice chamber walls and the inter—chamber partition were estimated using
the temperature of the warm bath (loaded with ice) at 35.5F.

Uy = 0.2471 BTU/hr—deg F

U, = 0.0786 BTU/hr—deg F
By refining the initial estimate iteratively, the following coefficients
were found that best described the aggregate data. By correcting the
warm bath temperature (while loaded with ice) to 38.0 F and using the
data from Table 6.2,

Uy

)

0.2423 BIU/hr-deg F

1]

Uz = 0.0888 BTU/hr—deg F
Applying a correction for the less well-insulated apparatus data,
Uy’ = 0.2850 BTU/hr—deg T
Uz = 0.0888 BIU/hr—deg F
Vith these values in Table 6.2, the thermal conductivity is comput—

ed using q/MT = 1.035 from Eq. (6.6) to be

A = .19 W/m—deg K, for plexiglas medium data of 8 Mar 1990,
) = 1.09 W/m-deg K for glass medium data of 3 Mar 1990, and
A = 1.06 W/m-deg K for glass medium data of 4 Mar 1990.

6.6 Porous Media Results

In the previous sections, the experimental method was discussed
that would verify the numerical computations. The expression q/MAT =
1.035 for the test geometry appears to be correct for the solid media

based on the thermal conductivity measurements of Sec. 6.5. The purpose

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

of this section will be to carry forward this technique to the porous
media.

There is a dearth of information on thermal properties of porous
media. This precludes a direct test. However, the apparent thermal
conductivity of the porous media can be measured in the test apparatus
and the results used to calculate the velocity field. Agreement of
computed and observed velocity fields would indicate that the apparent
thermal conductivity was correct. The apparent thermal conductivity
will be computed in this section and the velocity field comparisons will
be made in Sec. 6.7. The data in Table 6.3 were recorded for the porous
media tests.

To illustrate the calculation procedure, the thermal conductivity
for the dry porous media (consisting of 1 mm glass beads) is computed.
The total heat gain is measured by the mass of water discharged per unit
of time multiplied by the change in enthalpy for water between -12 C and
the corrected discharge temperature. From this total is deducted the
heat gain from the ambient and the warm tank. Moreover, the walls of
the test cell are plexiglas and the heat gain from the warm plate to the
cold plate through the walls must also be deducted from the total. The
thermal conductivity is found by dividing the remaining heat rate per
unit width (v) by (1.035 X AT).

Step 1. Compute total heat rate. (see Eq. 6.1))

Q = mAh = (44.25 gm/hr)-(.34873 BIU/gm at 36 F)
§ = 15.4318 BTU/hr

Step 2. Compute individual gains.

0; = Uy(Troom — 32) = (.2850 BIU/hr—deg F)-(71.72 — 32)F
0; = 11.3222 BTU/hr

il
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Q:
Q2

Uy- (Teank — 32) = (.0888 BTU/hr-deg F)-(70.22 — 32)F
3.3939 BTU/hr

"

1.035wAAT = 1.035-(.472 in.)(ft/12 in.)
- (.11 BTU/hr—deg F)- (67.69 — 40.02) F
0.1239 BTU/hr

Oca11

Uvall
Step 3. Compute the net heat gain.

Qnet = Q - Ql - Q2 - qwa,ll
0.5839 BIU/hr

1l

Qnet
Step 4. Compute the thermal conductivity.

k = 0. /WMT = (0.5839 BTU/hr)/[(.5 in.)(ft/12 in.)
+(1.035) - (67.69 — 40.02) F]
k = 0.49 BTU/hr-ft—deg F or 0.85 W/m-deg K.

Experimental measurements of apparent thermal conductivity of 2.38
mm spherical bead packs composed of different materials and interstitial
gases present in the media were performed by Duncan et al. (1989).
Several interesting observations were noted as follows: that the series
and parallel thermal resistance techniques investigated for computing
apparent thermal conductivity of the gas—saturated media were inappro—
priate in predicting the measured conductivities; and, that the presence
of the gas environment affected the apparent thermal conductivity sig—
nificantly. Using an entirely different apparatus, bead size, thermal
configuration and gases than those reported here, Duncan et al. (1989)
measured the thermal conductivity of the bead pack under vacuum to be
0.47 W/m—-deg K; under nitrogen at 100 KPa to be 0.81 W/m-deg K and 0.72
W/m—deg K for argon at 100 KPa. The apparent thermal conductivity with
air in the porous media of 0.85 W/m-deg K compares favorably with that

of Duncan et al. (1989) for nitrogen gas in the media.
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The saturated porous media results follow the idemtical procedure
as the dry media except that the siphon tube and additional insulation
was used while conducting the experiments. One additional fact must be
considered while analyzing the data. The properties of water are refer—
enced to 10 C in the nondimensional property polynomials (Eqs. (C.1) and
(C.2)). To achieve an accurate representation of the velocity field,
the correct plate temperatures (referenced to 10 C) must be used. In
other words, at a cold plate temperature of 0 C (32 F) and a hot plate
temperature of 20 C (68 F) the nondimensional plate temperatures are 0.0
and 1.0 for the cold and hot plates respectively. In this case q/MAT =
1.035. For these experiments, the cold plate and hot plate are not
necessarily 0 C and 20 C respectively. This is not a serious obstacle,
however. For example, plate temperatures of 5 C (39 F) and 15 C (59 F)
are equivalent to the nondimensional temperatures are 0.25 and 0.75 for
the respective plates. The numerical computation yields q/AAT = 0.5175
= 1.035- (.75 — .25). The correct temperature relationships must be
maintained for the properties of water

q/MT = 1.035-(0; — ©,) (6.18)

Repeating the calculations for saturated porous media data in Table

6.3 yields
A = 2.86 BTU/hr-ft-deg F or 4.95 ¥W/m-deg K for saturated
porous media test of 11 April 1990.
A = 2.81 BIU/hr—ft-deg F or 4.86 W/m-deg K for saturated
porous media test of 24 April 1990.
A = 2.85 BTU/hr—ft-deg F or 4.93 W/m-deg K for saturated
porous media test of 25 April 1990.
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= 3.73 BTU/hr-ft-deg F or 6.45 W/m-deg K of 75/ saturated
porous media test of 25 April 1990.

Hart and Couvillion (1986) have displayed measured soil thermal
conductivity for granular soils with densities between 1600-1900 Kg/m®
to be within the following ranges: for dry soil, 0.39-0.81 W/m—deg K;
and for saturated soil, 3.46-7.0 W/m-deg K. The glass beads in the test
cell have a density of 1850 Kg/m® with the thermal conductivities 0.85
and 4.94 W/m—deg K and are within the range given by Hart and Couvillion
(1986) .

The behavior of the 75% saturated soil is surprising in that A is
larger, and needs further investigation. It is presumed that the effect
is created by the tremendous difference between the enthalpy of liquid

and vapor water similar to the principle of the heat pipe.
6.7 Photographic Streaklines and the Velocity Field

The purpose of the velocity field investigation is to verify the
computed values of temperature and velocity by the SLAB code and the
appropriateness of using the measured apparent thermal conductivity. In
conjunction with the calorimetric experiments described previously, flow
visualization was desired. This was accomplished by injecting a small
quantity of bromothymol blue dye into the bead pack and photographing
the position of the dye as it circulated with the fluid. That the fluid
circulated can be seen from the sequence of representative photographs
shown in Fig. 6.2. The initial position of the dye is shown in Photo-
graph 6.1. The nondimensional temperature for the warm plate was 0.920
and for the cold plate was 0.263. Photograph 6.2 was taken after 1.20

hours had elapsed. Photograph 6.3 was taken after 2.42 hours had
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elapsed and also shows the injection of a second dye tracer. Photograph
6.4 is taken after a total elapsed time of 9.25 hours. The leading edge
of the initial dye trace has been displaced to the upper corner of the
cell vhile the leading edge of the second dye tracer has overtaken and
merged with the trailing edge of the initial imjectiom.

The visual observations of the dye trace displacement qualitatively
agree with the expected results. It is presumed that the flow field is
uniquely determined for a given set of physical parameters, and that if
the physical parameters are kmown, then quantitative agreement between
the predicted and observed displacements may be achieved.

The nondimensional velocity field has been computed and is a func—
tion of position. By following the displacement of a particle of dye,

the velocity may be computed as

ds
vV = a-f (6-19)
where s(x,y) is the displacement of a particle of flowing fluid measured
along its path, s(x,y). Conversely, the transit time between two points

s(xl,yl) and s(xz,y2) is specified in terms of a known velocity field as

S(xzaY2)
At = J [ 1/]v(x,y)| ]ds (6.20)
S(x1aY1)

For a velocity field that is known at discrete points, P(i,j), with
magnitudes, v(i,j), and direction angles, e(i,j), with the horizontal
axis, a first order approximation for the transit time along a small

incremental path length, As, yields
At = min{dy/|v(i,j)sin(e(i,i)|, Ax/|v(i,i)cos(a(i,i)|} (6.21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



87

ST v

Photograph 6.1 Initial dye injection.

Photograph 6.2 Buoyancy induced dye motion.
Elapsed time: 1.2 hours.

Fig. 6.2.1 Sequential photographs of dye injected intc 1 mm glass
bead porous medium heated and cooled from the top.
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Photograph 6.3 Buoyancy induced dye motion, second injection.
Elapsed time: 2.42 hours.

N 4

Photograph 6.4 Buoyancy induced dye motion.
Elapsed time: 9.25 hours.

Fig. 6.2.2 Sequential photographs of dye injected into 1 mm glass
bead porous medium heated and cooled from the top.
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The position of a particle located at Py(i,j) with the above velocity
vill move to a new location Py(i+d, j+6y) in time At. The nearest
neighboring point to P, is chosen as the starting point to compute the
next increment of time. Thus the position of the particle may be calcu-
lated as a function of time.

In principle, the observed positions of the dye particle with time
should match the computed positions with time by taking smaller and
smaller increments of distance. There are practical considerations,
however. A dye particle is impossible to see in a porous medium so the
amount of dye used must be large enough to be visible. This presents a
problem as to which particle in the dye streak should be selected to
monitor because no particle may be identified specifically. Further-
more, the finite quantity of dye is subject to dispersion and diffusion
due to concentration gradients. To minimize these effects, the apparent
centroid of the dye tracer was found graphically and used as the refer—
ence point for the following analysis.

Although the average porosity of the bed was expected to determine
the transit time of the dye, closer examination inveighed against this
hypothesis because the predicted transit times were found to be much too
long.

For porous media in a container, the porosity and permeability of
the bed varies with the distance from the wall. For instance, Khan and
Beasley (1989) give porosity of a bead pack as function of ratio of the
bed thickness to the particle diameter as

n = .4272 - 4.515E-3(dy 4/d) + 7.881E-5(dy 4/d)” (6.22)
1< (dbed/d) < 28, and
n=.3625 for (d;.4/d) > 28
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The test cell bed to bead diameter ratio of 12.25 yields a porosity of
0.384. The actual, measured porosity for the bead pack was 0.39 prior
to packing with extra beads. Additional beads forced into the bed
reduced the average porosity to 0.36.

The walls, however must be treated as a different problem. Khan
and Beasley (1989) note that flow of liquid in randomly packed beds of
uniform spheres is highly preferential near the container wall. This is
true because a perfect 5ed of body—centered or face-centered spheres
tangent to a wall produce an average porosity of 0.47. Randomly located
voids will increase this value.

The photographic record made of these experiments actually captured
the fluid activity near the wall of the test cell. The camera was
focused at the interface of the plexiglas wall and the outermost layer
or beads. In spite of the relative "thinness" of the cross section, the
interior dye position is concealed from view. The dye trace photographs
therefore are of a high porosity area.

Another key factor in the motion of the fluid in the porous media
is the permeability of the media. The Ergun equation for the permeabil-
ity of spherical beds is given by Renken and Poulikakos (1989) as

k = d’n3/(175(1-n)?) (6.23)
This is strongly dependent on porosity and will be assumed valid in the
wall region for this analysis.

Equation (4.41) defines R as

R = k(prc)fgL/Aqur
The experimental values of all of the parameters composing R are con—
stant except for the permeability of the media. The measured thermal

conductivity is known from the previous section is taken to be 4.94
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W/m-deg K from the last section. The permeability, k, therefore, is the
only value not well known in this problem. The goal will be to find a
value of porosity such that the photographic data may be matched to the
computed velocity field.

A correlation between the mathematical problem in nondimensional
form and the real problem is needed. This is done as follows:

In dimensional form the transit time At through some small path is
Ax

Atg—v,or

L - Ax*
AtgA};vO_%Og‘—,%—-'r,or
At v AT* . 7

The quantity A7* is the nondimensional time interval computed from the
mathematical solution to the porous media problem and depends on fR.
The characteristic time, 7, depends on model and fluid properties. The
quantity V0 is a volume averaged reference velocity. The pore velocity
is that which is physically observed and is related by Eq. (4.15).

Yo,pore * Vo/n
R is defined when selected values of porosity are chosen: i.e.,

R(.36) = 412; R(.47) = 1337; R(.54) = 2569; and R(.56) = 3211.

In the process of searching for a suitable value of 2R, the follow-
ing relationship was discovered to within the accuracy of the numerical
approximations:

Rid7*¥ = Rol7o* (6.24)
vhere A7* is the nondimensional time required to cross a specified
distance in the nondimensional domain.

Figure 6.3 illustrates the streamline pattern produced by the SLAB

code for R = 3211. Superposed on the streamline pattern is the outline
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of the successive dye positions, and these are numbered sequentially.
These dye positions are extracted from the same series of photographs
depicted in Fig. 6.2. The streamlines appear to conform to the position
of the dye.

The values in Table 6.4, Dye position versus computed and measured
time, correspond to the sequence of positions shown in Fig. 6.3. The
coordinates listed are for the centroid of the dye trace. The agreement
is within an average of seven minutes of the predicted and observed
times. Seven minutes uncertainty in time is equivalent to 3 mm uncer—
tainty in displacement. The porosity for these data, 0.56, was
chosen in order to give the best fit.

As a consequence of Eq. (6.24), the transit time for a fluid in the
media is independent of interstitial fluid properties except viscosity
and depends only on the media permeability, porosity and temperature
difference driving the fluid. This can be shown by supposing two
identical configurations in every respect except that the media thermal
conductivities are different.

Ry = C/A;, and
MRy = C/)2

"

The transit time for the first conductivity is
Aty = At *-7y
Aty* = Ato* (/M) = Ato*- (A1/A2)
Since 7 = nL/V0 » and Vo = Ay/pcL, then

I

Ata*- (A1/Ay)- i

pcL

Aty

Aty

Ato*e79 = Aty
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Table 6.3 Temperature-discharge data for porous media

Condition Discharge, T., Ty, Trooms Ttank, Date
gm/hr oF of oF of

Dry 44,25 40.02 67.69 71.72 70.22 28 Nov 89

Saturated 46.85 40.19 70.00 73.27 71.95 11 Apr 90

Saturated 52.76 39.17 73.00 77.48 73.67 24 Apr 90

Saturated 54.37 38.93 74.00 77.76 75.00 25 Apr 90

75% Sat. 55.67 38.79 73.00 76.00 73.36 25 Apr 90

Table 6.4 Dye position versus computed and measured
times for porosity of 0.56

Position Coordinate Computed time, Measured time,
Number (x*,y*) min min

1 90, .67 0.0 0.0

2 91,.58 12.7 18.0

3 90,.44 42.0 42.0

4 88,.33 70.0 72.0

5 74,.14 150.0 135.0

6 54,.10 207.0 195.0
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Fig. 6.3 Superposition of streamline pattern and dye positions shown
in Fig. 6.2.
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This process could be repeated for density, and specific heat as well
with the same result. The presumption that the apparent thermal conduc-

tivity may be deduced by observing the flow field is incorrect.
6.8 Closure

By performing this experiment to validate the numerical code, a
good deal has been learned. The SLAB code does predict the correct
value of total heat tramsfer for a two—dimensional slab if the media
thermal conductivity is known. For Porous media, the apparent thermal
conductivity of the medium must be known. Also, the streamline plot for
the test cell matches the observed pattern. Moreover, if the correct
porosity and permeability are available, then the transit time of a
fluid percolating through the media by buoyant force may be determined.
In the steady state, the transit time is independent of the thermal

conductivity, density and specific heat of the interstitial fluid.
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Chapter 7

THE EFFECTS OF EVAPORATION ON STEADY SLAB HEAT FLUX

7.1 Introduction

In the preceding chapters, the interaction of water on slab heat
transfer has been discussed and developed for the steady problem with an
impervious surface. To extend the applicability of slab heat transfer to
more situations, the impervious surface should be relaxed to allow evap—
oration of water. The goal of this analysis will be to find the steady
contribution of evaporation of water at the earth surface for saturated

soil.
7.2 Surface Conditions in the Steady Problem

In Chap. 3, the groundwork was developed for the analysis of the
problem in terms of a steady problem and a periodic problem. The peri-
odic problem does not contribute to the average heat transfer from the
slab when viewed from the perspective of long time intervals. Therefore,
by following the previous line or reasoning, one hopes to find the essen-—
tial behavior of the steady problem. Since the media remains saturated,
the governing field equations for the problem remain the same. The
boundary equations must be modified.

The general formulation of the First Law of Thermodynamics for a

control volume may be written as

96
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§-V-= gf Jepdv + % (e + P/p)pV-dA (7.1)
Volume Surface
Applying this to the air-earth boundary of the domain for the ith micro-

scopic REV (control volume for porous media), terms may be eliminated
that are not applicable. Thus,

g; = g%ﬂ (B 5 (7.2)
where ( is the total heat transfer to the element, U is the average
internal energy, m is the mass crossing the boundary (neglecting
storage), and hfg is the heat of vaporization of water at the surface
temperature. All flux terms parallel to the surface will be neglected.

Examining the terms that compose § in this application, there are:
heat conduction into the element; heat convection away from the element;
radiation from the surface into the environment; and the incoming radia—

tion from the sun. For an area element AA,

Ocond = —A%%'AA (7.3)
Qconv = Moyt (T = T2) (7.4)
Orad = 4(TT2) + Qgq5; (7.5)

Linearizing the radiation term and recognizing that Qsolar =0(t), a

function of time, the radiation term becomes

Qpag = = Bopghhs (T - T) + 0(t) (7.6)
Combining these terms and defining h = hoony * hrad’
Q= -A9L4A - heMA-(T - To) + Q(t) (7.7)

Following the prescription in Chap. 3, temperature can be expressed
as the steady contribution and the periodic contribution of all the
terms.

T=Tg+ Tp (7.8)

Using this relationship, the energy Eq. (7.2) may be written for the ith
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REV element as the periodic solution and the steady solution per unit of
surface area as

q(t) - kZp - BT = [(i/AM)he,] ) + peA¥aap (7.9)

oT .

— kgys - h(TS - Tq)= [(m/AA)hfg]S (7.10)
where q(t) is the incident solar radiation per unit area at the earth
surface. Normally, the time derivative of the surface node temperatures
are neglected in Eq. (7.9). Since the behavior of the steady problem is
of interest here, the periodic boundary will not be considered further.
The steady Eq. (7.10) may be made nondimensional using the procedure in
Chap. 5, resulting in

g%s + Bi0 = —L[(i/M)hg] 5/ (AAT) (7.11)

The mass flow from the surface is determined by the ability of the
air over the earth to absorb moisture which is directly related to the
humidity ratio of the air. By using the concept of the mass transfer
coefficient (Threlkeld, 1970), the moisture transport for forced convec—
tion is given by

m/AA = hp(og — vy cons), and (7.12)

h/(thp,air) = .854 (7.13)
where h is the convection film coefficient and hD is the mass transfer
coefficient. Combining these equations and noting that w, ;.. . = 2,
and dropping the subscript s for steady state,

%% + Bi® = ~1.171(Bi/Ste) (v — wa) (7.14)
and v is the humidity ratio of saturated air at the surface of the earth,
wy is the average humidity ratio for the particular locality and will be

assumed to be equivalent to a relative humidity of 50 percent at 2 C for
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comparison purposes. The Stefan number, Ste, is defined as (Zhang and

Nguyen, 1990)
_ Cp,airdT
Ste = —Eﬁa;—— (7.15)

7.3 The Humidity Ratio as a Function of Temperature

The humidity ratio is a function of the wet bulb and dry bulb tem—
peratures at any given time. However, by assumption, the earth surface
is assumed to be in a saturated condition at some infinitesimal distance
avay from the soil. The humidity ratio varies continuously through the
boundary layer until humidity ratio w; is reached. On the saturation
curve of the psychrometric chart, the humidity ratio is a function of the
dry bulb temperature only. Using this fact, the humidity ratio can be
approximated as a polynomial function of temperature. Using a least
squares fit of the psychrometric chart the following expression results

v(©) (x 10%) = 3.85 + 4.3070 + 7.690202 (7.16)
0C<T<21C, and w(X 10%) accurate to = 1%
The ambient humidity ratio should be selected to be the mean coincident
relative humidity, 8, so

g = ﬂg-@(@z) (7.17)
7.4 Mass Flux at the Boundary

Evaporation will remove mass from the domain. For a steady solu—
tion, the amount of water evaporated from the domain must be replaced by
an equal mass of water entering the domain. For the purposes of compari-
son with previous cases, the influx of water will be uniformly distribut-

ed along the boundary excluding the symmetry plane bemeath the slab.
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The mass of water evaporated at each surface element is given by Eq.
(7.12). Setting this equation equal to the flow rate of water entering
each element,

py; - 1= hy (v — w2) (7.18)
After normalizing by the unit velocity, VO, and using the relationship in
Eq. (7.13),

v, - n= 1.171-Bi- (c/c, )+ (v = u2) (7.19)

The influx of water at each element is uniformly distributed. Then

~

_ 1 .
s =5 v; n dx

evaporation
wvhere D is the net linear distance along the boundary, I', through which

Von'l

water is entering.
7.5 Slab Heat Loss With Evaporation

Consider a slab heated by convection at 20 C with a Biot number of
30 and a cooling factor of one (as defined in Chap. 6). Utilizing the
modeling in the preceding sections, a comparison of heat loss for a
permeable surface and an impermeable surface is desired. For the pervi-
ous surface, the ambient temperature of 2 C and a relative humidity of 50
percent will be taken as the atmospheric conditions. The impermeable
surface atmospheric conditions will be identical except that mass flux
terms will be dropped from the computation.

The heat loss for the impermeable surface under the stated condi-
tions was found to be

q/MT = 1.057 (impermeable)

The evaporation process increased the total slab heat loss by 0.095 to

q/MAT = 1.158  (permeable)
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Figure 7.1 is an isothermal map of the domain temperature field for
the permeable surface and is very similar in shape to that of Fig. 4.4
for an impermeable surface.

Figure 7.2 shows the streamline locations for the permeable surface
case with liquid water being admitted from the right hand side of the
domain. The streamlines become very densely packed near the edge of the
slab on the upper surface (0.5, 1.0). The irregular lines near the
surface are due to the temperature varying properties of water especially

near the density maximum of 4 C.
7.6 Closure

The evaporation of water from the saturated earth surface was found
to augment the transfer of heat from the slab by nearly ten percent for
the case under study. The evaporation model also predicts a pronounced
area of atmospheric moisture removal at the outermost edge of the build-
ing slab. With the completion of these outlined calculations, this
chapter will be concluded. Additional remarks are reserved for the final

chapter, Chap. 8.
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Fig. 7.1 Isothermal map of slab on saturated soil exposed to surface
evaporation for Bi = 30, r = 1 and ©; = 0.1.
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Fig. 7.2 Streamlines near slab for thermally induced flow in saturated
soil exposed to surface evaporation for Bi = 30, r = 1 and O,
= 0.1.
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Chapter 8

CONCLUSIONS AND RECOEEENDATIONS

8.1 Conclusions

The problem under investigation was to predict the heat loss by a
convectively heated building slab to the ambient while including the
effects of thermally induced flow in saturated soil. Field and boundary
equations describing the flow of emergy and fluid in porous media were
formulated. The solution of the governing equations subject to the slab
boundary conditions was found using an implicit finite difference
scheme. The resulting numerical solutions were compared to solutions
produced by FIDAP, a finite element fluid mechanics and heat transfer
program. Good agreement was found, indicating that the numerical
procedure could be extended to more complex thermal and fluid
boundaries. For temperature ranges of interest in the building slab
earth—coupling problem, the momentum equation as embodied by Darcy’s Law
(without modification) produced solutions that agreed with experimental
observations.

During the progress of the investigation of earth-coupled heat
transfer phenomena, several gemeral observations were made concerning
the process. These observations are valid for steady-state and are
listed below in no particular order of importance. All are logically

related; therefore, a logical ordering is appropriate.

104
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1. The far field boundary for an object exchanging heat by earth
contact may be treated as adiabatic.

2. It is possible to characterize heat loss from a body in contact
with the earth as one-dimensional.

3. The effects of convection in saturated soil on the transfer of
heat from the slab (q/AAT) was not important. The emergy transferred
from the slab was dependent on the apparent thermal conductivity of the
soil (1) and this is highly dependent on moisture content.

4. The time required for a buoyant fluid to circulate in a closed
region depends on the permeability of the media, the viscosity of fluid,
and the temperature difference driving the flow. The transit time does
not depend on the apparent thermal conductivity of the media.

5. Two-dimensional slab heat transfer with the environment may be
characterized by a shape factor method developed here to relate the
geometrical boundaries and surface convective heating conditions to the
total heat loss from the slab.

6. Three-dimensional heat loss may be characterized as the super—
position of two separate, two—dimensional heat transfer problems which
may be solved by using the shape factor method.

7. Earth surface evaporation increases slab heat loss. For the
nominal case analyzed in Chap. 7, a ten percent increase in total heat

loss was noted with the inclusion of evaporation.

8.2 Recommendations
The formulation of the problem and solution of two-dimensional and

three-dimensional problems by a shape factor method has been developed.
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There are, however, numerous, related areas that need to be addressed
such as:

The ability of water vapor to augment the transport of heat through
the soil by diffusion and phase change,

Insulation selection and placement to optimally retard the flow of
heat from a slab,

Extension of the shape factor method to include basement structural
heat loss and optimal insulation placement,

Effects of the periodic component of the driving weather function
on heat loss by earth coupling, and particularly with respect to the
role of water and water vapor in the process,

Field validation of the computational predictions.

Christian (1989) lists twenty-one broadly defined building founda-
tions research areas in priority order of importance. The second and

third most important items listed are:

2. Simplified Tools—Simplified tools (e.g., charts,
nomographs, or programs for personal computer) that are di-
rectly useful to builders and designers need to be developed.
These tools should clearly show the energy savings and the
economic impact of design decisions. To the greatest extent
possible, they should also show the impact of different de-
signs on other performance factors. . . .

3. Benchmark Research Hodels.—The possibility that a
single mathematical model can be general enough, yet not too
unwieldy, to handle all energy-related issues for all typical
foundations needs to be explored. If such a model were avail-
able and were generally acceptable in the buildings community,
validation research could be focused and, eventually, this
"benchmark" model could provide the simulation data for devel-
opment of simplified tools.

The SLAB code and the shape factor methods have been produced to

answer these priority research questions to the extent discussed in this
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dissertation. By pursuing this problem, insight has been gained that
may eventually be used to conserve the limited natural resources being

consumed by the nation’s buildings.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



108

REFERENCES

Alvarez, V¥., and Asaro, F., 1990, "An Extraterrestrial Impact,"
Scientific American, Vol. 263, No. 4, October, pp. 78-84.

Anderson, D.A., Tannehill, J.C., and Pletcher, R.H., 1984,
Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing
Corporation, Washington, pp. 40-45.

ASHRAE Handbook of Fundamentals, 1989, American Society of Heating
Refrigerating and Air Conditioning Engineers, Inc., Atlanta GA, pp.
25.1-25.10.

Badash, L., 1989, "The Age-of-the-Earth Debate, "Scientific
American, Vol. 261, No 2, August, p. 96.

Bahnfleth, W.P., and Pedersen, C.0., 1990, "A Three-Dimensional
Numerical Study of Slab-On-Grade Heat Transfer,"ASHRAE Transactioms,
Vol. 96, Pt. 2.

Bear, J., 1972, Dynamics of Fluids in Porous Media, American
Elsevier Pub. Co, New York, reprinted by Dover Publications, New York,
1988.

Bejan, A., 1987, "Convective Heat Transfer in Porous Media,"
Handbook of Single Phase Heat Transfer, S Kakac, R.K. Shah, and W. Aung,
eds., John Wiley and Sons, New York, pp. 16.8-16.10.

Bénard, H., 1900, "Les Tourbillons Cellulaires Dans Une Nappe

Liquide," Revue Genenerale de Science Pure et Applique, Vol. 11, pp.
1261-71 and 1309-28.

Bevington, R., and Rosenfeld, A.H., 1990, "Energy for Buildings and
Homes," Scientific American, Vol. 263, No. 3, Sept, pp. 77-84.

Boileau, G.G.. and Latta, J.K., 1968, "Calculation of Basement Heat
Losses," Technical Paper No 292, Division of Building Research, NRC,
Ottawa, Canada.

Bligh, T.P., Shipp, P., and Meixel,G., 1978, "Energy Comparisons
and Where to Insulate Earth Sheltered Buildin%s and Basements," Earth
Covered Settlements, U.S. Dept. of Energy Conference, Fort Worth, TX,
May.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



109

Carslaw, H.S., and Jaeger, J.C., 1959, Conduction of Heat in
Solids, Oxford University Press, London, p. 83.

Cheng, P., 1978, "Heat Transfer in Geothermal Systems," Advances in
Heat Transfer, Vol. 14, Irvine, T.F., and Hartnett, J.P., eds., Academic
Press, New York, p. 3.

Cheng, P., and Chang, I.D., 1976, International Journal of Heat and
Mass Transfer, Vol. 19, p. 1267.

Christian,J.E., 1989, "The Most Needed Building Foundations
Research Products," ASTM STP 1030, American Society for Testing and
Materials, Philadelphia, PA, p. 657.

Christian, J.E., Wasserman, D.M., Graves, R.S., McElroy, D.L.,
Yarbrough, D.¥., Childs, K.¥., and Childs, P.W., 1990, "ORNL
Slab—on-Grade Edge Insulation Experiment: Design, Construction, and

Research Plan," Oak Ridge National Laboratory Report ORNL/CON—280, Oak
Ridge National Laboratory, Oak Ridge TN, March, p. 3.

Claridge, D.E., 1988, "Design Methods for Earth-Contact Heat
Transfer," Advances in Solar Energy, Vol. 4, K.W. Boer, Ed., American
Solar Energy Society, Inc., Boulder, C0 and Plenum Press, New York, pp.
311-337.

Cleveland, J.P., and Akridge, J.M., 1990, "Slab-On-Grade Thermal
Loss in Hot Climates," ASHRAE Transactions, Vol. 96, Pt. 1.

Combarnous, M., and Bories, S., 1975, "Hydrothermal Convection in
Saturated Porous Media," Advances in Hydroscience, Vol. 10, pp.231-307.

Couvillion, R.J., and Hartley, J.G., 1986, "Low Intensity Heat and
Moisture Transfer in Moist Soils — Current Models,”" ASHRAE Transactions,
Vol. 92, pt 1.

Courtillot, V. E., 1990, "A Volcanic Eruption," Scientific
American, Vol. 263, No 4, October, p.92.

Darcy, Henry, 1856, "Les Fountaines Publiques de La Ville De
Dijon," Dalmont, Paris, p. 309.

Delasante, A.E., Stokes, A.N., and Walsh, P.J., 1983, "Application
of Fourier Transform to Periodic Heat Flow into the Ground Under a

Building," International Journal of Heat and Mass Tramsfer, Vol. 26, pp.
121-132.

De Vries, D.A., 1987, "The Theory of Heat and Moisture Transport in
Porous Media Revisited," International Journal of Heat and Mass
Transfer, Vol. 30, No. 7, pp. 1343-1350.

Drazin,P.G., and Reid, VW.H., 1981, Hydrodynamic Stabilit
Cambridge University Press, Cambridge, p. 32.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



110

Dubin, F.S., and Long, C.G., 1978, Energy Conservation Standards
For Building Design, Construction and Operation, McGraw Hill Book Co.,
New York, p 152.

Duncan, A.B., Peterson, G.P., and Fletcher, L.S., 1989, "Effective
Thermal Conductivity within Packed Beds of Spherical Particles," ASME
Journal of Heat Transfer, Vol. 111, No. 4, p. 834.

Duyer, A., and Bober, W., 1984, "The Bottom Heat Loss of a Solar
Pond in the Presence of Moving Ground Water," ASME Journal of Solar
Energy Engineering, Vol. 106, No. 3, pp. 335-340.

Eckert, E.R.G., and Pfender,E., 1978, "Heat and Mass Transfer in
Porous Media with Phase Change," Proc. 6th Int’l Heat Transfer
Conference.

Elder, J.¥., 1966, New Zealand Department of Science and Industrial
Research, Bulletin 169.

Ene, H. I., and Polisevski, D., 1987, Thermal Flow in Porous Media,
D. Reidel Publishing Company, Dordrecht, Holland.

FIDAP Revision 4.5, 1989, Fluid Dynamics International, Inc., 1600
Orrington Ave., Suite 400, Evanston, Illinois 60201, April.

File, J., and Considine, D.M., 1977, "Energy," Energy Technology
Handbook, D.M. Considine, ed., McGraw Hill Book Co, New York, p. xxvi.

Fulks, ¥W.B., Guenther, R.B., and Roetman, E.L., 1971, "Equations of
Motion and Continuity for Fluid Flow in a Porous Medium," Acta Mechanica
XIT Vol. 11-2, Springer Verlag, pp. 121-129.

Gebhart, B., Jalura, Y.S, Mahajan, R.L., and Sammakia, B., 1988,

Buoyancy Induced Flows and Transport, Hemisphere Publishing Corp.,
Vashington, pp. 826-827.

Hart, D.P., and Couvillion, R., 1986, Earth-Coupled Heat Transfer
National Water Well Association, Dublin, OH, pp. 97-107.

Himasekhar, K. and Bau, H.H., 1988, "Thermal Convection around a
Heat Source Embedded in a Box Containing a Saturated Porous Medium,"
ASME Journal of Heat Transfer, Vol. 110, No. 3, p. 650.

Hubbert, M.K., 1940, "The Theory of Ground Water Motion," The
Journal of Geology, Vol. XLVIII No. 8, Part 1, pp. 785-944.

Khan, J.A., and Beasley, D.E., 1989, "Two Dimensional Effects of
the Response of Packed Bed Regenerators," ASHE Journal of Heat Transfer,
Vol. 112, No. 2, p. 329.

Kladias, N. and Prasad, V., 1989, "Convective Instabilities in
Horizontal Porous Layers Heated Form Below: Effects of Grain Size and
Its Properties," Heat Transfer in Convective Flows, ASME HTD-Vol 107,
Aug 6-9, pp. 369-379.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



111

Krarti, M., and Claridge, D.E., 1988, "Analytical Calculation
Procedure for Underground Heat Losses," ASHRAE Transactions, Vol. 96,
Pt. 1.

Krarti, M., Claridge, D., and Kreider, J., 1985, "Interzone
Temperature Profile Estimation — Slab-On-Grade Heat Transfer Results,"
Heat Transfer in Buildings and Structures, P. Bishop, ed., HID-V, 41,
ASME, New York, pp. 11-20.

Krarti, M., Claridge, D.E., and Kreider, J.F., 1990, "ITPE
Technique Applications to Time Varyin% Three-Dimensional Ground—Coupling
Problems," ASME Journal of Heat Transfer, Vol. 112, No. 4, pp. 849-856.

Kusuda, T., and Achenbach, T.R., 1963, "Numerical Analysis of the
Thermal Environment of Occupied Underground Spaces with Finite Cover
Using a Digital Computer," ASHRAE Transactions. 69, pp. 439-462.

Kusuda, T., and Bean, J.¥W., 1984, "Simplified Methods for
Determining Seasonal Heal Loss for Uninsulated Slab-On—Grade Floors,"
ASHRAE Transactions, Vol. 90, Pt. 1-B, pp. 622-632.

Kusuda, T., Piet, 0., and Bean, J.W., 1983, "Annual Variation of
Temperature Field and Heat Transfer Under Heated Ground Surfaces
éSlab—on—Grade Floor Heat Loss Calculation)," NBS Building Science

eries, No. 156, June.

Kwok, L.P., and Chen, C.F., 1987, "Stability of Thermal Convection
in a Vertical Porous Layer," ASME Journal of Heat Transfer, Vol. 109,
No. 4, pp. 890-892.

Lachenbruch, A.H., 1957, "Three Dimensional Heat Conduction in
Perma—Frost Beneath Heated Buildings," U.S. Geological Survey Bulletin
1052-B, U.S. GP0, Vashington, D.C.

Lapwood, E.R., 1948, "convection of a Fluid in a Porous Medium,"
Proceedings of the Cambridge Philosophical Society, 44, pp. 508-521.

Mitalas, G.P., 1982, "Basement Heat Loss Studies at DBR/NRC," DBR
Paper No 1045, NRC Canada.

Mitalas, G.P., 1983, Calculation of Basement Heat Loss," ASHRAE
Transactions, Vol. 89, Pt. 1B, pp.402-438.

Mitalas, G.P., 1987, "Calculation of Below Grade Heat Loss-Low Rise
Residential Building," ASHRAE Transactions, Vol. 93, Part 1, pp.
743-783.

Philip, J.R., and De Vries, D.A., 1975, "Moisture Movement in
Porous Media Under Temperature Gradients," Transactions of the American

Geophysical Union, Vol. 38, pp. 222-232.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



112

Renken, K.J., and Poulikakos D., 1989, "Experiments on Forced
Convection From a Horizontal Heated Plate in a Bed of Glass Spheres,"
ASME Journal of Heat Transfer, Vol. 111, No. 1, p. 59.

Rust, W.¥W., and Roberts, A.S., Jr., 1990, "Porous Media Heat

Transfer Experiment and Theoretical Model Analysis," Proceedings of the
Symposium on Mixed Convection and Environmental Flows, Winter innual

Meeting, ASME HTD-Vol 152, Dallas TX, Nov 25-30, pp. 61-68.

Shen, L.S., Poliakova, J., and Huang, Y.J., 1988, "Calculation of
Building Foundation Heat Loss Using Superposition and Numerical
Scaling," ASHRAE Transactions, Vol. 94, Pt. 2.

Spiegel M.R., 1964, Complex Variables With an Introduction to
Conformal Mapping and Its Applications, McGraw-Hill Book Company, New
York, p. 120.

Sun Zu-Shung, Tien Chi, and Yen Yin-Chao, 1970, "Onset of
Convection in Porous Medium Containing Liquid With a Density Maximum,"
International Conference of Heat Transfer, 4th, Versailles, pap N.C.
3-11.

Threlkeld, J.L., 1970, Thermal Environmental Engineering,
Prentice-Hall, Inc, Englewood Cliffs, N.J., pp. 196-198.

Witherspoon, P.A., S.P. Neldman, Sorey, M.L., and Lippman, M.J.,
1975, Lawrence Berkeley Laboratory Report No. 3263.

Yoshino, H., Matsumoto, S., Hasegawa, F., and Nagamoto, M., 1990,
"Effects of Thermal Insulation Located in the Earth Around a
Semi—Underground Room: A Two Year Measurement in a Twin Type Test House
Without Auxiliary Heating," ASHRAE Transactions, Vol. 96, Pt 2.

Zhang, X., and Nguyen, T.H., 1990, "Development of Convection Flow
During the Melting of Ice in Porous Media Heated From Above,"
Proceedings of the Symposium on Heat Transfer in Porous Media, Winter
Annual Meeting, ASME HTD-Vol 156, Dallas Tx, Nov 25-30, pp. 1 - 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A

ANALYTICAL DEVELOPMENT OF THE TWO DIMENSIONAL SLAB

A.1 Temperature Field for a Constant Temperature Slab

113

The slab may be idealized as a plane surface where the actual

thickness of the slab is small compared to some characteristic dimen—

sion. In the two-dimensional case, the edge of the ideal slab appears

as a line segment on the semi-infinite X-Y plane. The slab is heated to

some temperature T; while the remainder of the X axis is held at temper—

ature T;. The Temperature field in the semi—infinite plane (designated

as ) must satisfy the heat equation and also conditions on the boundary

(designated as T).
On 0:
On Slab:
T(x,0)=Ty, -L/2 < x < L/2
On T:
T(x,0)=T2, -L/2 >x, and L/2 < x
T(x,w)=Ts.

Let:

T=1T then

steady * T];z%riodic’
2 2p _ 1
VTS+VTp—aRp

(A.1.1)

(A.1.2)

(A.1.3)
(A.1.4)

(A.1.5)
(A.1.6)
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VI, = 0 (A.1.7)
and
v - 14 (A.1.8)

In this section attention will be focused on the steady condition
described by Eq. (A.1.7). Changing variables as indicated in in Chap. 4

results in the following:

On f:

V2®s =0 (A.1.9)
On Slab:

O(x*,0)=1, —1/2 < x* < 1/2 (A.1.10)
On T:

O(x*,0)=0, -1/2 >x*, and 1/2 < x* (A.1.11)

O (x*,0)=0. (A.1.12)

Solving Eq. (A.1.9) with the boundary conditions can be accomplish-
ed by a straight forward application of Poission’s Integral Formula for
the half plane (Spiegel, 1964). All coordinates will be considered

nondimensional and the asterisk notation dropped for brevity.

©(x,0
O(x,y) = —}r—Hé_“(—%;]dx (A.1.13)

For the particular conditions noted,

y +.5 y
O(x,y) = TJ [—2;} dx (A.1.14)
_p L)y

After integration the result is:

¥

O(x,y) = + arctan (A.1.15)

x2+y? — .25
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Equation (A.1.15) is the equation of the isotherms when © is fixed at a
specific value. A graphic representation of Eq. (A.1.15) is illustrated

in Fig. 2.1.

A.2 Temperature Field for a Constant Temperature Slab

In the Presence of Constant Opposing Heat Flux

The solution to this problem may be found by superposing the solu-
tion of the constant temperature slab and the solution of the constant
flux temperature fields.

The temperature field for a constant surface temperature slab is

given in Appendix A.1 by

y
0’ (x,y) = '71r_ arctan ————— (A.2.1)
X‘+y* — .25

The heat flux in a constant opposing flux field is by definition

- g%” = — Qerust J (A.2.2)

In nondimensional terms,
681 ’

3y = orust —/\%’T-j (A.2.3)
Let
Q= Qerust 37 (A.2.4)
0 =qy (A.2.5)
By superposition, the temperature field becomes
@ = @I + O,, (A.2.6)
1 y -
O(x,y) = —— arctan ————— + Q¥ (A.2.7)

x2+y? -.25

To find the isotherms, the following relations for heat flux are

invoked:
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q = kAT VO (A.2.8)

q-ds=0 (A.2.9)
where ds is the differential surface element vector which is normal to
the constant temperature surface. In two dimensions, this is represent—
ed by:

ds = dxi + dyj (A.2.10)

Combining Eqs. (A.2.8) and (A.2.9) and taking the scalar product

results in the following expression:

d 190 , 90
%:-yf/ﬁ- (A.2.11)
Differentiating Eq. (A.2.7) and substituting into Eq. (A.2.11) yields

the following differential equation:

2xy

g% - — - (A.2.12)
1q(x%+y?%-.25) 2+x2+ (1g-1) y*-.25

To find the equations for the adiabats, the same procedure is used
except the desired expression must be normal to the equation (A.2.11).
In two dimensions this may be accomplished by taking the scalar product

of the heat flux and the tangent vector along the surface such that:

q-dt=0 ' (A.2.13)
where

dt =ds x k (A.2.14)

dt = dyi — dxj (A.2.15)

The result is:
d ae , de
& = dy | ox (4.2.16)

The equations for the lines of flux satisfy the following differential

equation
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2xy -1

&. |- - (A.2.17)
1q(x%+y%.25) 2+x2+ (1q-1)y%-.25

A.3 Periodic Heat Flow Through any Point In a One-Dimensional Body

The purpose of this section is to show that a one dimensional body,
also known as a semi-infinite slab, when heated at one surface with a
periodic surface temperature has zero net flux over any integer multiple

of periods for any point in the slab. The following conditions exist:

101

vap = 5 7P (A.3.1)
Tp(O,Y,t) = T, (A.3.2)
ZL(X,Y) = 0 everywhere (A.3.3)
T (L,Y,8) = T (ut) (A.3.4)

Where F(wt) is a twice differentiable Fourier Series of unit amplitude.
The above equations are made nondimensional by defining a time scale
such that

£*

t( pcL?/A )1 (A.3.5)
w( pcl?/A )
and the length scale previously defined in Chap. 4. The following set

u¥

of equations results:

On A:
2
-2 (A.3.6)
On T:
©(0,t%) = 0 (A.3.7)
O(1,t%) = F(s*t*) (A.3.8)

The asterisk notation will be dropped and all variables considered

to be nondimensional. Equations (A.3.6) — (A.3.8) may be solved by
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using the Laplace transforms to comvert the partial differential equa—
tion and boundary conditions to an ordinary differential equation. The
procedure yields the following equations, where é)is the transformed

temperature function, "D" is the derivative operator and "s" is a com—

plex transform variable:

(2 -5).© = 0 (A.3.9)
o(1) = T (A.3.10)
0(0) = 0 (A.3.11)

the solution of Eqs. (A.3.9) — (A.3.11) is

o sinh(xy/s
©=F ﬁﬂ;&%} (A.3.12)

To transform Eq.'(A.3.12) back to the time domain, the convolution

theorem is used. If

O =fg , then (A.3.13)
= I f(a —-a') de (A.3.14)
c=0
Vhen applied to this problem
O(x,t) = (A.3.15)

t m
J F(wa)[%g— 2 n(—l)nsin(E%E)exp(—nZWz(t—a)/Lz)]da
c=0 n=1

Collecting terms and interchanging the order of integration and summa—

tion,

O(x,t) = (A.3.16)

® t
%’5— 2 n(-1) sm(m)J F(0) [exp(—n 7%(t—0) /LZ)]
n=1 c=0

Define a function, ((x) such that
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[tV
((x) = 3 Y n(-1)"sin () (A.3.17)
n=1
then
t
%%% = %%[ F(wa)[exp(—nzwz(t—a)/Lz)]da (A.3.18)
c=0
The form of F(wt) has been assumed to be represented by the Fourier
Series
@®
F(ut)= ) {(ajcos(jut) + bysin(jut)} (A.3.19)
j=1

The sine and cosine terms in the above series will be separated and
inserted individually into Eq. (A.3.18). Upon substitution of sine
terms from Eq. (A.3.18) into Eq. (A.3.19), the integral becomes

t
%%%. = %ébjj sin(jua)[exp(—nzw2(t—a)/L2)]do (A.3.20)
J c=0
Let c= (nr/L)? and d = ju. Then the standard solution for the integral
yields
I= J[Sin(da)exp(ca)da}exp(—ct)
= exp(c(s-t)) (c-sin(ds) — d-cos(ds))/(c? + d?) (A.3.21)
Furthermore, if the following trigonometric substitution is made,
cosg = ¢/(c? + @%)0°5 (A.3.22)
and sing = d/(c? + d?)0°5
This substitution makes the integral in Eq. (A.3.21) become
t
I = exp(c(o—t))sin(des + ¢)/(c? + d2)0® (A.3.23)
- (sin(dt - ¢) + ¢ Ssing)/(c? + d3)'® (A.3.24)
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The final result for the j th

59 - & (sin(@t - ¢) + & Hsing)/(c? + )0 (A.3.25)
J

sine component of the heat flux is

After a sufficiently long time, the exponential term dies out leaving
the sine term. The integral of the sine over one period or multiple of
periods is zero. The same method applies to the cosine terms. For the
jth cosine term, the result is

80 . gﬁaj(sin(dt + ) + e bsing)/(c? + d%)0® (A.3.26)
J
Again, the exponential term vanishes after sufficient time.
Seasonal periodicity is a reasonable approximation to weather
patterns which influence the building environment. This analysis indi-
cates that only the steady problem affects the heat transfer from a

seasonal perspective as discussed in Chap. 3.
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APPENDIX B

FINITE DIFFERENCE APPROXTHATIONS

B.1 The Governing Equations

The governing equations, Eqs. (4.43), (4.44) and (4.46), are
appropriate for describing thermally induced porous media flow. For the
particular case of a two dimensional, rectangular domain and the gravity
vector oriented in the negative y direction, the nondimensional
equations can be written in component form as

1%?2 + vggl -%ﬂ? +<§59 (B.1.1)
letting & = R Py, then

2 2 2 2
Y- (BB -n g2 (B.1.2)
and
6= — %% v (B.1.3)
[9— + R (p - 1)]/v (B.1.4)

Equations (5.10)—(5.14) define the operators to be used to form
the difference equations. For convenience, the central difference
operator will be redefined as:

2 o = (=
62 u; .= -2I + Ux,u = (2L +0)), (B.1.5)

1,]
where

I, = U 5= u(i,j), and

Ox,u = u(i+1,j) + u(i-1,j)
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Using the above notation,

u = -3 o/(2hxv) (B.1.6)
vV=- [3y<I>/(2Ay) +R (p-1)]/v (B.1.7)
(-2I + 0,)g/8x* + (-2 + []y)@/Ay2 =

u(3,0)/(28x) + v (Z'y@)/(ZAy), and (B.1.8)

(-21 + 0,) pAx? + (21 + []y)‘b/Ay2 =
dv 2 2 d
70 [(-21 + []x)@/Ax + (=21 + [ly)@/Ay] + R -5(% (3'y®)/(2Ay) (B.1.9)
For uniform grid spacing, Ax = Ay. Combining terms, Eq. (B.1.8) becomes
(H4I + 0, + Oy)@/l\y2 = [u(?xe)) + v (3'y@)]/(2Ay), (B.1.10)
and Eq. (B.1.9) becomes
(—4I + 0+ Uy)@/Ayz =

OL (4T + 0, + 0,)o/by? + o (3,0)/(24) (B.1.11)

where
u = - (®(i+1,i) - @(i1,j))/(2hxv) (B.1.12)
v = - [(2(5,541) - ®(1,3-1))/(24y) + % (p - 1)]/v  (B.1.13)

These equations can be made tridiagonal if the off diagonal terms
are treated as known values. The initial solution is found for no mass

flow in the media.

(HI+0, +0)g =0 (B.1.14)
This may be solved by lines by re-arranging the Eq. (B.1.14)

(41 - 0 ) = Uy,@ (B.1.15)

(4I-0)g =0, o (B.1.16)

subject to the thermal boundary conditions. These results are fed into

Eqs. (B.1.11)—(B.1.13) and solved in a similar manner as Eqs. (B.1.15)
and (B.1.16).
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B.2 The Boundary Conditions

The thermal and velocity boundary conditions for this problem are
grouped into two classes. Class I represents the conditions associated
the impermeable domain and are delineated as follows:

1. Convective heat transfer at the slab and earth/air interface.

2. Adiabatic condition at the remote earth and symmetry boundary.

3. Impermeable surface surrounding the entire domain so that no
mass flux is possible.

Case II represents the condition where evapotranspiration is
allowed and will be modeled specifically for evaporation at the earth
surface. These conditions are summarized as follows:

1. Convective heat transfer at the slab and earth/air interface.

2. Evaporation at the earth/air interface.

3. Adiabatic condition at remote earth and symmetry boundary.

4. Permeable boundary over some portion of the domain limits to
allow for the steady flow of water.

The thermal equations may be generalized from Eq. (7.14) for any
location as

g% + Bi® = BiO_ — 1.171(Bi/Ste) (v — u2) (B.2.1)
For the slab surface: Bi = Bij; ©_=1; and, ¢(©) = w;. For adiabatic
boundaries: Bi = 0 and w(®) = ws. For the earth surface, the
conditions are selected by choosing the Biot number, v and © for the
appropriate case. In Chaps. 5 and 6, Bi = Bi, and Om = 0. These
conditions were relaxed in Chap. 7 at the earth surface for the
particular case where Biz =30 , ©_ =.1and v = w(©). For example,

when made discrete for the slab surface, Eq. (B.2.1) becomes
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-40(i,j-1) + (3 + AyBiy)O(i,j) +©(i,j-2) = 24yBi,
For the velocity conditions in the x and y directions,
vu = —%%-, and
~(§% + R(p-1)
These are made discrete at a boundary as follows:
—4®(i+1,j) + 3®(i,j) + ®(i+2,])
—4®(1,j+1) + 3®(i,j) + ®(i,j+2)

v

1}

=24xvu

20y (vv + R(p-1))

H

For an impermeable boundary, the appropriate velocity is set to zero.
B.3 The SLAB Code

The SLAB code is the title for a series of programs used to compute
data for porous media flow. The essential feature of SLAB is that
temperature and pressure fields are computed iteratively by lines in
alternating directions and successively over-relaxed.

After the initial physical parameters and geometric data are
entered into the data files, SLAB produces a pressure and temperature
solution set and stores this data for post-processing. Figure B.1
illustrates the logic flow for this program. The post-processing is
performed by a series of programs, the function of which is briefly
outlined here:

MESH is a program designed to improve accuracy of the solution sets
by decreasing the step size in each direction by half. The output from
MESH is a new, intermediate solution set that can re-processed by SLAB
main data program for a more accurate solution.

VELOCITY is a program that may be invoked to post-process the
solution set and produce flow data. These data are used in conjunction

with the temperature and pressure solution sets as input to STREAM
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program. STREAM is designed to compute the streamfunction of the flow
field. The streamfunction is a helpful way to visualize two dimensional
flow fields.

Graphical numerical analysis and presentation were produced by
"AXUM", under license agreement to TriMetrix, Inc., 444 N.E. Ravenna

Blvd., Suite 210, Seattle, WA 98115.
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INPUT DATA

L_:_:‘ ESTABLISH FlLEé

[ -

1 PRESSURE BC'S
2 PRESS. EQN
3 SOLVE BY LINES

2]

4 TEMP BC'S
5 ENERGY EQN
6 SOLVE BY LINES
6 3 7 DOWNLOAD FILES
8 END
A Q YES /N NON| -+ < 1oL 2
YES
L7 ]
8 ]

Fig. B.1 Logic diagram for SLAB code.
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PROGRAM LISTING

10
20
30

330
340

350
360

380
390
400
410
420
430
440
450

REM PROGRAM NAME: SLAB BY W.W. RUST

PRINT "ENTER THE NAME OF THE DATA FILES LESS SPECIFIER"

LINE INPUT "INPUT ROOT NAME OF DATA FILE,NOT INCLUDING
SPECIFIER.:"; F$

LINE INPUT "READ DATA OR START FROM SCRATCH? <FILE> <SCRATCH>"; G$
IF 6§ = "F" OR G$ = "f" THEN GOSUB 2160: GOTO 120

IF 6§ = "S" QR G$ = "s" THEN GOSUB 2090: GOTO 120

GOTO 40

IF M > N THEN V = M ELSE V = N

g%% g(M N), T(4, N), B(M, N), C(H, N), AL(V), B1(V), C1(V), DL(V),
RETURN

REM SHAPE DATA ****x

GG = INT(10*.5/L*M + .5)/10

TOL = .001: TR = (T1 + 12)/2: T3 = .1

REM NUMERICS *#***

W=1.75

B$ = RIGHTS(FS, 1)

REM IF BS = "2" OR B$ = "3" OR B§ = "4" THEN V = 1.75

REM DEFINE PROPERTIES *¥+#*

NU1 = .568887: NU2 = .2003726834

DEF ENNU (I, J) = 1 — NU1*(T(I, J) — .53 + NU2¥(T(I, J) - .5) °
DEF ENDNU (I, J) = -NU1 + 2%NU2*(T(I, J) — .5

RHO1 = .001587423#: RHO2 = .00279274f

DEF FNRHO (I, J) = -RHO1*(T(I, J) - .5) - RH02*(T(I I) - .5) "
DEF FNDRHO (I, J) = —RHOL — 2%RHO2*(T(I, J) —

DEF FNW (X) = —.5076 + 4.307*X + 7.6902%K ~ 2: "B 20 AT 50%rh
DEF FNEVAP (X) = 2.8128E-04*BI*R*FNW(X)

REM COMPUTING APPROXIMATIONS *****

DEF FNU (I, J) = —(P(I + 1, J) — P(I — 1, J) {2/DX/FNNU(I J)
DEF FNV (I, J) = —((P(I, 3’+ 1) — P(I, J - 1))/2/DY + RB*ENRHO(I,
J))/ENNU(I, J

DEF FNA (I, J) = ENU(I, J)*(T(I + 1, J) = T(I - 1, J))*DX/2

DEF FNB (I, J) = ENV(I, J)*(T(I, J + 1) — T(I, J — 1))*DY/2

DEF INT (I, J) = -ENDNU(I, )*(T1(I + 1, J) + T(I - 1, J) — 4*1(1,

J) + TéI J+ 1) + T(I, J - 1)

DEF FNS (I, J) = -RB*FNDRHO(I, J)*(T(I, J + 1) — T(I, J — 1))*DY/2

DEF ENDY (I, J) = (3*I(I, J) + T(I, J = 2) ~ #T(I, J - 1))/2: REM
y derivative top surface

JEF ENDX {1 D= (I +1, 3) =N -1, 1))/2

DEF FNQ ( J) = —FNDX(I, J% + FNU(I, J)*1(I, J)*DY

GOSUB 1670: REM LOAD TEMP COMP MATRIX

GOSUB 2560: REM FILL IN CORNERS

GOSUB 1210: REM FORWARD ADI TEMP

GOSUB 1280: REM BACKWARD ADI TEMP

GOSUB 3010: GOSUB 3590: REM HEAT FLUX

GOSUB 3300: REM FORWARD ADI PRESSURE

GOSUB 3770: REM INLET VELOCITY COMPUTATION

GOSUB 2950: REM FILL IN CORNERS

GOSUB 1880: REM CHECK PREVIOUS VALUES OF PRESSURE
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460 IF EE > 1*T0L THEN PRINT EE: GOTO 420

470 GOSUB 2560: REM FILL IN CORNERS

480 GOSUB 1670: REM CHECK PREVIOUS VALUES OF TEMPERATURE

490 IF EE > TOL THEN PRINT EE: GOTO 390

500 GOSUB 1210: GOSUB 3300: REM FINAL ITERATION

510 GOSUB 2560: GOSUB 2950: REM FILL IN CORNERS

520 GOSUB 2380: REM SAVE DATA TO DISK

560 END

570 REM ESTABLISH THERMAL CONDITIONS X DIRECTION

580 XX = M

590 D1(0) = 3: A1(0) = —4: C1(0) = 0: B1(0) = 1: REM 1HS

600 D1 XX) = 3: BI(XK) = —4: C1{XX) = 0: AT(XK) = 1: REM RES

610 A = D=4

620 FOR K

630 D1(K

640 A1(K

650 B1(K

660 C1(K

670 NEXT K

680 RETURN

690 REM BOUNDARY CONDITIONS IN Y DIRECTION ON TEMPERATURE

700 XX = N

710 D1(0) = 3: A1(0) = —4: C1(0) = 0: B1(0) =

720 IF I < GG THEN D1(XX) = 3 + 2*DX*BI: Al(XX) 1: C1(XX) = 2*DX*BI:
B1(XX) = —4: GOTO 750

730 IF I > 66 THEN D1(XX) = 3 + 2*DX*R*BI: A1(XX) = 1: C1(XX) =
9*DX*BI*R* (T3 — .14434*FNW(T(I, XX))): B1(XX) = —4: GOT0 750

740 D1(XX) = 3: AI(XX) 1: C1(XX) = 0: B1(XX) = —4: REM I-gg

B 4

B: =
1 T0 XX - 1
D
A
B
T

nuwnun

(K, J + 1) + T(K, J — 1) — (FNA(K, J) + ENB(K, J))

0 XX -1
D
A
B
T

wu mwn

(I+1,K +T(I-1, K) — (FNA(I, K) + FNB(I, K))

820 RETURN

830 REM SOLVER ALGORITHM

840 REM ENTER WITH TT(I) DEPENDENT VARIABLE

850 REM 0=< K<= XX

860 FOR K =1 TO XX

870 IF K = 1 THEN GOSUB 980: GOTO 910

880 IF K = XX THEN GOSUB 1060

890 D1(K) = D1(K) — BL(K)*A1(K — 1)/D1(K - 1

900 N . C1(K) = C1(K) — B1(K)*C1(K — 1)/D1(K - 1
EXT K

920 TT(XX) = C1(XX)/D1(XX
930 FOR K = XX ¢ 1)T0 0 S%EP 1

940 IF(K)z O(TH?N)GOSUB 1030 GOTO 960 ®)
950 TT(K) = (C1(K) — A1(K)*IT(K + 1))/D1(K
960 NEXT K ()T NI

970 RETURN

980 REM FIRST "ZEROTH" ROW
890 D1(1) = D1(1) — B1(1)*A1(0)/D1(0
1000 A1(1) = A1(1) — B1(1)*B1(0)/D1(0
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1010 C1(1) = C1(1) — B1(1)*C1(0)/D1(0)

1020 RETURN

1030 REM BACK SUBSTITUTION ON FIRST ROW

1040 TT(0) = (C1(0) — A1(0)*TT(1) — B1(0)*TIT(2))/D1(0)
1050 RETURN

1060 REM LAST ROW WITH EXTRA TERM

1070 B1(XX) = B1(XX) — A1(XX — 2)*A1(XX)/D1(XX - 2
1080 Ci(XX) = C1(XX) — C1(XX - 2)*A1(XX)/D1(XX — 2
1090 RETURN

1100 REM SUBSTITUTE IN X DIRECTION ON TEMPERATURE
1110 FOR K = 0 TO ¥

1120 T(K, J) = TT(K)

1130 NEXT K

1140 RETURN

1150 REM SUBSTITUTE IN Y DIRECTION ON TEMPERATURE
1160 FOR K = 0 TO N

1170 T(I, K) = TI(K)

1180 NEXT K

1190 RETURN

1210 REM THERMAL ADI ROUTINE

1220 PP =1: Q@ =1: I =1:J =1

1230 FOR ADI = 1 TO V*2

1240 IF ADI = 2*INT(ADI/2) THEN GOSUB 1350: GOTO 1260
1250 GOSUB 1460

1260 NEXT ADI

1270 RETURN

1280 REM THERMAL ADI ROUTINE BACKWARDS

1200 PP =N-1: 0 =M -1: I=M-1:J=N-1
1300 FOR ADI = V*2 T0 1 STEP -1

1310 IF ADI = 2*INT(ADI/2) THEN GOSUB 1410: GOT0 1330
1320 GOSUB 1520

1330 NEXT ADI

1340 RETURN

1350 REM X DIRECTION ADI

1360 IFPP >N -1 THEN PP =1

1370 J =PP

1380 GOSUB 1570

1390 PP =PP +1

1400 RETURN

1410 REM X DIRECTION ADI BACKWARDS

1420 IF PP <1 THEN PP =N - 1

1430 GOSUB 1570

1440 PP =PP -1

1450 RETURN

1460 REM ADI Y DIRECTION

1470 IF QQ > M — 1 THEN §Q = 1

1480 I1=200

1490 GOSUB 1620

1500 00 =00 + 1

1510 RETURN

1520 REM ADI Y DIRECTION BACKWARDS

1530 IF Q9 < 1 THEN QQ =M - 1

1540 GOSUB 1620

1550 00 =04 -1
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1560 RETURN

1570 REM WORKING SUBROUTINE

1580 GOSUB 570

1590 GOSUB 830

1600 GOSUB 1100

1610 RETURN

1620 REM WORKING SUBROUTINE

1630 GOSUB 690

1640 GOSUB 830

1650 GOSUB 1150

1660 RETURN

1670 REM TEMPERATURE RELAXATION
1680 EE = 0: RR = RR + 1

1690 FOR I = 0 TO M

1700 FORJ =0 TON -1

1710 IF RR > 1 THEN T(I, J) = B(I, J) + W*(T(I, J) - B(I, J))
1720 EF = ABS(T(I, J) - B(I, J))
1730  IF EF > EE THEN EE = EF
1740  B(I, J) = 1(I, J)

1750  NEXT J

1760 NEXT I

1770 RETURN

1880 REM PRESSURE RELAXATION

1890 EE = 0

1900 FOR I = 0 TO M

1910 FOR J = 0 T0 N

1920  IF RR > 1 THEN P(I, J) = C(I, J) + .85%(P(I, J) - C(I, J))
1930  EF = ABS(P(I 5 -¢(, 7))
1940 (I, J) = P(i,

1950  IF EF > EE THEN EE = EF
1960  NEXT J

1970 NEXT I

1980 RETURN

2090 REM SCRATCH ROUTINE

2100 M = 8: N = 8

2110 L = 1: H = 1

2120 DX = L/M: DY = H/N

2130 T1 = 1: T2 = 0: RB = 0: BI = 30: R = 1
2140 GOSUB 80

2150 RETURN

2160 REM DATA INPUT FROM FILE

2170 OPEN "I", 1, F$ + "T.DAT"
2180 OPEN "I", 2, F$ + "P.DAT"
2190 INPUT #1, M, N, DX, DY, T1, T2, BB, BI, R
9200 L = M*DX: H = N*DY’

2210 GOSUB 80

2220 FOR I = 0 T0

2230  FORJ =0 T0 N

2240  INPUT #1 T(I, J)

2250  NEXT J

2260 NEXT I

2270 CLOSE

2280 OPEN "I", 2, F$ + "P.DAT"
2290 INPUT #2, M, N, DX, DY, T1, T2, RB, BI, R
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2300 FOR I = 0 TO

2310 FORJ=0TON

2320  INPUT #2, B

2330  P(I, J) = B

2340  NEXT J

2350 NEXT I

2360 CLOSE

2370 RETURN

2380 REM SAVE DATA TO DISK

2390 OPEN "0", 1, F$ + "T.DAT"

2400 PRINT #1, M, N, DX, DY, Tt, T2, RB, BI, R

2410 FOR I = 0 T0

2420 FORJ =0TON

2430  PRINT #1, T(I, J);

9440  NEXT J

2450 NEXT I

2460 CLOSE

2470 OPEN "0", 2, F$ + "P.DAT"

2480 PRINT #2, M, N, DX, DY, T1, T2, RB, BI, R

92490 FOR I = 0 TO M

2500 FORJ =0TON

2510  PRINT #2, P(I, J);

92520  NEXT J

2530 NEXT I

2540 CLOSE

2550 RETURN

2560 REM FILL IN CORNERS

2570 §(o, 0) = (4*T(1, 0) - T(2, 0))/3: T(0, N) = (4*T(1, N) - T(2,
3

2580 T(H, 0) = (4*T}M ~1, 0) - T(M - 2, 0))/3: T(M, N) = (4*T(H - 1, N)

- T -2, N))/3

2590 RETURN

2600 %I;()M BOUNDARY CONDITIONS X DIRECTION ON PRESSURE

2610 =M

2620 D1(0) = 3: A1(0) = —4: C1(0) = 0: B1(0) = 1: REM 1HS

2630 D1(XX) = 3: Bi(XX) = —4: C1(XX) = 2*DY*UU*FNNU(XX, J): A1(XX) = 1:
REM RHS

2640 A = -1: B=-1:D =4

2650 FOR K =1 TO0 XX — 1

2660 D1(K) =D

2670 A1(K) = A

2680 B1(K) = B

2690 C1(K) = P(K, J + 1) + P(K, J — 1) — ENT(K, J) — ENS(K, J)

2700 NEXT K

2710 RETURN

2;20 I}EEM BgUNDARY CONDITIONS IN Y DIRECTION ON PRESSURE

2730 XX =

2740 D1(0) = 3: A1(0) = —4: C1(0) = -2*DY*(-RB*FNRHO(I, 0)): B1(0) = 1

2750 D1(XX) = 3: AL(XX) = 1: C1(XX) = —2*DY*(ENEVAP(T(I, XX)) +
RB*FNRHO(I, XX)): B1(XX) = 4

2760 A = —1: B = —1:'D = 4

2770 FOR K = 1 T0 XX — 1

2780  Di(K) = D

2790  A1(K) = A
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B1(K) = B

C1EK§ - P(I+1,K) +P(I -1, K) - ENI(I, K) — ENS(I, K)
NEXT K
RETURN
REM SOLVER ALGORITHM

92850 REM SUBSTITUTE IN X DIRECTION ON PRESSURE

2860 FOR K = 0 TO M

2870 P(K, J) = TI(K)

2880 NEXT K

2890 RETURN

92900 REM SUBSTITUTE IN Y DIRECTION ON PRESSURE

2910 FOR K = 0 TO N

2920 P(I, K) = TT(K)

2930 NEXT K

2940 RETURN

2950 REM FILL IN CORNERS

2960 P(0, 0) = (P(0, 1) + P(1, 0) — DY*R*FNRHO(0, 0))/2

2970 P(0, N) = (P(M, 1 P M-1, 0) - DY*R*FNRHO M, 0))/2

2980 P(M, 0) = (P(0, N - + 1 N) + DY*R*FNRHO(O, N))/2

2990 P(M, N) = (P(M, N - + M -1, N) + DY*R*FNRHU(M, N))/2

3000 RETURN

3010 REM COMPUTE HEAT LOST UNDER SURFACES

3020 GOSUB 3240: REM INSPECT SURFACE NODES

3030 PRINT "HOT SIDE"

3040 SS = 0: YY=0:XX=0:2Z2=0

3050 AA = 0: BB = GG

3060 GOSUB 3120

3070 SS = 0: YY=0: XX =0: ZZ = 0

3080 AA = GG: BB = M

3090 PRINT "COLD SIDE"

3100 GOSUB 3120

3110 RETURN

3120 REM INTEGRATING SUBROUTINE

3130 FOR I = AA + 1 TO BB -1

3140 XX =XX+1

3150 SS = SS + FNDY(I, N)

3160 IF XX = 2*INT(XX/2) THEN YY = YY + FNDY(I, N) ELSE ZZ = 7Z +
FNDY(I, N)

3170 NEXT I

3180 IF XX = 2*INT(XX/2) THEN GOSUB 3220 ELSE GOSUB 3200

3190 RETURN

3200 PRINT "SIMPSON’S RULE"; (FNDY(AA, N) + FNDY(BB, N) + 2*YY + 4*77) /3

3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320

RETURN
PRINT "TRAPEZOIDAL RULE"; (ENDY(AA, N) + ENDY(BB, N))/2 + SS

RETURN
REM INSPECT SURFACE NODES
FORI=0T0N
PRINT USING " #.##4"; T(I, N);
NEXT 1
PRINT
RETURN
IF RB = 0 THEN RETURN: REM PRESSURE ADI ROUTINE

PP=1:00=1:TI=1:J=1
FOR ADI = 1 TO V*2
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3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450
3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600
3610
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IF ADI = 2*INT(ADI/2) THEN GOSUB 3370: GOTO 3350
GOSUB 3430
NEXT ADI
RETURN
REM X DIRECTION ADI
IF PP >N—-1THEN PP =1
J ="PP
GOSUB 3490
PP =PP + 1
RETURN
REM ADI Y DIRECTION
IF 0Q > M — 1 THEN G0 = 1
I=200
GOSUB 3540
g =00 + 1
RETURN
REM WORKING SUBSUBROUTINE
GOSUB 2600
GOSUB 830
GOSUB 2850
RETURN
REM WORKING SUBROUTINE
GOSUB 2720
GOSUB 830
GOSUB 2900
RETURN
REM CENTRAL HEAT FLUX
PRINT "CENTRAL"
SS =0: YY=0: XX =0:2Z =0

3620 AA = 0: BB = N: CC = GG

3630 GDSUB 3650

3640 RETURN

3650 REM INTETRATING SUBROUTINE

3660 FOR J = AA + 1 T0 BB — 1

3670 XX = XX + 1

3680  SS = SS + FNQ(CC, J)

3600  IF XX = 2*INT(XX/2) THEN YY = YY + FNQ(CC, J) ELSE ZZ = 22 +
FNQ(CC, J)

3700 NEXT J

3710 IF XX = 2*INT(XX/2) THEN GOSUB 3750 ELSE GOSUB 3730

3720 RETURN

3730 PRINT "SIMPSON’S RULE"; (ENQ(CC, AA) + ENQ(CC, BB) + 2*YY + 4%27)/3

3740
3750
3760
3770
3780
3790
3800
3810
3820
3830

3840

RETURN
PRI%% "TRAPEZOIDAL RULE"; (FNQ(CC, AA) + FNQ(CC, BB))/2 + SS
RETURN
REM VELOCITY INTETRATING SUBROUTINE
SS =0: YY=0: XX=0:2Z=0
AA =GG: BB =N
FOR I =AA+1TOBB -1
X=XX+1
SS = §S + FNEVAP(T(I, N))
IF XX = 2*INT(XX/2) THEN YY = YY + FNEVAP(T(I, N)) ELSE ZZ = 7Z
+ FNEVAP(T(I, N))
NEXT I

IHn
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3850 IF XX = 2*INT(XX/2) THEN GOSUB 3890 ELSE GOSUB 3870

3860 RETURN

3870 UU = (FNEVAP(T(AA, N)) + FNEVAP(T(BB, M)) + 2*YY + 4*ZZ)/3/N
3880 RETURN

3890 UU = ((FNEVAP(T(AA, N)) + FNEVAP(T(BB, M)))/2 + SS)/N

3900 RETURN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

APPENDIX C

HATERIAL PROPERTIES AND MEASUREMENTS

Properties used in the experimental work were extracted from
various sources. Table C.1 is a listing of pertiment properties of
solids. The metric values appear in this tabulation are shown on the
upper line and English values are located beneath the line. Properties

of water have been approximated using a least squares fit of tabulated

datal.
Viscosity:
v¥ =1+ a0® - .5) + ay(® — .5)?, where (C.1)
a; = — 0.568887
az = 0.200373
v, = 13116 X 1077 m?/s
Density:

1 + by(® — .5) + b(® — .5)2, where (C.2)

o*
by = — 0.00158742
bs = — 0.00279274

- 3
p, = 999.69 Kg/m

Table C.2 is a listing of data collected during the calibration

procedure for the test apparatus.

Liley, P.E., "Thermophysical Properties," Handbook of Single-Phase
Convective Heat Tramnsfer, S. Kakac, R.K. Shah, and V. Aung, Eds., John
Wiley and Sons, New York, 1987, p. 22.30-22-32.
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Table C.1 Properties of solids

Material Density Specific Thermal
Heat Conductivity
Kg/m3 W—s/kg—oK ¥/m—oK
t BTU/1b—oF BTUH/ft—oF
derylite 1190 1470 0:19 )
Styrofoam 1555 i -oT7
Water 3
Glass 51 : 3
Glass — 4
Glass 673 1.046(200) .
Glass 2500 670 0.74(80C) 4
Glass 2707 800 .76(20C) ,

2MPhysical Properties of Acrylite FF Acrylic Sheet," CYRO
Industries, Mt. Arlington, NJ, 1987, p. 6.

3Physical Properties of Materials," ASHRAE Handbook of
Fundamentals, I-P Edition, American Society of Heating Refrigerating and
Air Conditioning Engineers, Inc., Atlanta, GA, 1989, p. 37.1-37.4.

4Baumeister, T., ed., Harks®> Standard Handbook for Hechanical
Engineers, McGraw-Hill Book Company, New York, 1967, p. 4-95.

SHodgman, C.D., R.C. Weast, R.S. Shankland, and S.M. Selby, eds.,
Handbook of Chemistry and Physics, The Chemical Rubber Publishing Co.,
Cleveland, Ohio, 1963, p. 2531.

6Isachenko, V.P., V.A. Osipova, and A.S. Sukomel, Heat Tramsfer, Mir
Publishers, Moscow, 1980, pp. 477-479.

"Eckert, E.R.G., and R.M. Drake, Jr., Analysis of Heat and Hass
Transfer, McGraw-flill Book Company, New York, 1972, p. 772-785.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



137

-1oqurey Surood pue Suryesy
oY} yjoq ut psoe[d ST SO] ‘YI0[q WIBCJOIA}S YOUI SUO Y}M Pade[ddr pue POAOWAI 39 19T, ‘NOILVEADIINOD

0661 934 8¢ ‘HLVd

£9°'1¢ 0°69 0°g¢ 0°g¢ 0'ce 0°G¢ 0'¢Ce 0°¢¢ G181
96°'1 0'69 0°G¢ 0'6¢ 0°6¢ 0°G¢ 028 0°3¢ 091
96°0¢C 069 0'ee 0'¢e 0°¢e 0'ee 0'¢¢ 0'¢e 00¥%1
80°6 '0°89 0'ee 0'ge 0'gE 0°ee 0'¢e 0°gg 0881
07’01 0°0L 0'¥9¢ 078 0'%€ 0'¢e 0°¢¢ 0'¢¢ 00€1
06°%¢ 0'89 0'9¢ 0%¢ 07v¢ 0°ge 0'ce 0°z¢ 0geT
1¥°¢1 0°69 0°9¢ 0°9¢ 0'9¢ 0'eg 0°ge 0°ge 0021
80°0T 0'89 0°9¢ 0'9¢ 0'9¢ 0°G¢ 0'¢2¢ 0'¢e 0811
89°01 0'89 0°L¢ 0°L¢ 0'.¢ 0'ee 0'€e 0°¢eg 00TT
00°00 0’89 0'8¢ 08¢ 0°8¢ 0'eg 0°¢e 0°ge 0£60

SH ¢H TH 140 (49)] 0

T ‘ToA J Sap Jq Sop ‘woryesor e i Sop ‘moryedor e
a81eydsig ‘durd) wooy duoy oyeld j0H dway o3erd pion oul],

T[99 153} 10§ B3EP UOLIRIQNED D 2[qEL

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



	Two-Dimensional Heat Loss From a Building Slab Including Convective Effects in Saturated Soil
	Recommended Citation

	tmp.1571334536.pdf.xmBYt

