7 @ https://ntrs.nasa.gov/search.jsp?R=19670002826 2020-03-16T17:00:17+00:00Z

&

OAK RIDGE NATIONAL LABORATORY
operated by

’ UNION CARBIDE CORPORATION
NUCLEAR DIVISION CARBIDE
for the

U.S. ATOMIC ENERGY COMMISSION
ORNL- TM- 1249

COPY NO.i‘l(),;

<.

D Py
DATE - l[ck. k2 1966
Uﬁ\"fq ':',
-
Neutron Physics Division '%’f?;‘ - o«
oo o
2% %
SIGNIFICANCE ARITIMETIC FOR FCORTRAN e
AR cé},
W. R. Burrus and B. W. Rust* K
~ o
Nb7 - 12185 Abstract
. The FORTRAN statement X # 193./71. - 2721./1001. has a true value
of 0.0000281409... s but a single-precision FORTRAN computation (27 bit
fraction) ylelds 0.28133392E-O4 (using an E14.8 output FORMAT) due to
s loss of significence when subtracting. When the number of significant
digits is questionable, the same problem may be run in both single and
, double precision. This is inconvenient because existing programs must
4 be modified and because double precision requires twice as much storage
spece. We have implemented a simple alternative due to Max Goldstein
for keeping track of the amount of significance in floating-point num-
bers by representing them in unnormalized form. Progrems mey be written
in ordinary FORTRAN-IV, and the significance operations implemented by
use of the ALTER feature of the loader. Some problems and applications
of significance arithmetic are discussed.
5 a E
-lo
- — - i 5
X . This Work Partially Supported by v | I I
! Under- Order R-104 (97) i |
Q W
) T =2 ‘ :“\I - Loy -
w 5 7 2 - o
& F 8.8 | v s
o Q. o o 3 NOTIBE This /document contains information of a preliminory nature . Od 2“-5
o _ § .2 £ | ond wos prepored primorily for intermal use at the Ock Ridge National — |2
o - T = | Laboratory. H. is subject to revision or correction and therefore does]
‘Q'.' g : % not rwrtstnt c‘fijmj icfoirt.i - : 7 N §
- Ve

LS

209 Wyoa AlITiovd J

N

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States,

nor the Commission, nor any person acting on behalf of the Commission:

A. Makes ony warranty or representation, expressed or implied, with respect to the accuracy,

plet , or useful of the information contained in this report, or that the use of

any information, apparctus, method, or process disclosed in this report may not infringe
privately owned rights; or

B. Assumes any licbilities with respect to the use of, or for damages resulting from the use of
any information, apparatus, method, of process disclosed in this report.

As used in the above, ‘“person acting on behalf of the Commission' includes any employee or

i contractor of the Commission, or employee of such contractor, to the extent that such employee

or contractor of the Commission, or employee of such contractor prep , dis inates, or
provides accest to, ony information pursuont to his employment or contract with the Commission, {
o¢ his employment with such contractor. '

s

‘N

INTRODUCTION
Meaningless digits come into a numerical calculation from four
sources:
l. errors in the input data,
2. numbers going out of range (or spilling),
3. roundoff in the arithmetic operations,
L. loss of significance when subtracting numbers
with similar value or adding numbers of
similar magnitude and opposite sign.
The presence of meaningless digits in the final results is often not obvious
from a superficial inspection, and many a spurious digit has found its way
from a numerical calculation into the literature. Many schemes have been
proposed to keep track of the number of significant digits in the results.
(For explanation, we will refer to the number of accurate digits, even
though the calculation is performed on a binary computer. It will be
understood that one digit of accuracy implies about 3.4 bits of accuracy.)
Some of these methods are mentioned briefly, but the scheme that was used
with the IBM 7090/7094 FORTRAN-IV is considered in detail. A few results
using a significance tracing arithmetic are given.
The simplest significance tracing scheme, in concept, is "interval
arithmetic, " in which each number is represented by a pair of numbers
equal to the number's smallest and largest possible value. BEvery arithmetic
operation or input/output operation transforms the lower and upper bound
so that the resulting interval is sufficiently wide to include the true
result. Interval arithmetic guarantees that all the digits which agree in
the lower and upper bound are accurate. The primary disadvantage of inter-

val arithmetic is that it requires two floating-point words to represent

one number, which necessitates more storage space; also, its use tends
to give pessimistic results in a long computation, since for each arith-
metic operation the assumption is made that the worst possible lower and
upper bound will result.

Other schemes have been suggested to offset the pessimistic feature
of interval arithmetic by considering tendencies for the accumulation of
errors over many operations. Richtmeyert suggests an arithmetic scheme in
which some digits (or bits) explicitly carry the number of significant
digits. Another type of arithmetic, discussed by W&Ldey,"a computes the
error at each step as if the errors of the operands were independently
statistically distributed. This last method involves & square-root opera-
tion at each step.

The method that we selected to implement is based on an unnormalized
floating-point number representation suggested by Ashenhurst and M.etropolis‘3
in which numbers are carried as fractions that contain only significant
digits preceded by leading zero digits. These fractions and a corresponding
exponent are carried in a single IBM 7090/94% word.

Although significance arithmetics can handle all four types of error
mentioned above, our emphasis is only on the loss of significance when two
numbers of nearly equal size are subtracted or when two numbers of nearly
equal magnitude and opposite sign are added. Our philosophy is to treat
known errors in the input data explicitly in the program. Errors due to
input truncation can similarly be taken into account by augmenting the

input errors by a suitable amount. But we are still left with the not-so-

easy-to-predict arithmetical errors which are inherent in a finite computer.

GOLDSTEIN'S RULES

Goldstein® has deseribed a set of rules for performing unnormalized
arithmetic on the IBM 7090/94. These rules have been incorporated as a
special modification into the NYU Computing Center machine. A special
operating mode was provided in which the ordinary floating-point arithmetic
instructions were interpreted by the hardware as unnormalized instructions.
Standard floating-point representation was used, except that each number
had just enough leading zercs in the fraction that all the remaining bits
were alleged to be significant. Addition and subtraction simply omitted
the usual normalization step. Multiplication and division gave the same
number of leading zeros as the less accurate operand, after which a
floating-point round operation took place.

In unnormalized arithmetic the result cited in the abstract is
obtained as

0.27183098E 01

-0.27182817E 01
0.00000281E 01

whereas the correctly normalized results is 0.28140873E-O4. Zero must be
treated as a special case. The ordinary 7090/94 zero is an all-zero word,
but it is possible to obtain a significance zero as the result of sub-
tracting two equal numbers:

0.34567890F -13

-0.34567890E -13
0 .00000000E -13

This "significance zero" implies that the true result is less in magnitude
than 0.00000001E-13, or 102!, Multiplication or division which involves
one or two "significance zero" operands must return an appropriate result.
Thus (0.00000000E-13 }*%2 should have a value which implies that the magni-

tude is less than 10742,

The price that one pays for using an unnormalized arithmetic is that
more significance is lost than when using comparable normalized arithmetic.
However, Goldstein has demonstrated that in most cases the loss of accuracy
is not significantly worse than the loss that occurs in ordinary 7090/9%
FORTRAN arithmetic, which ignores the rounding operation. Compared with
interval arithmetic, unnormalized arithmetic does not guarantee that a
certain number of digits are correct, but the results will usually be

correct to within a few units in the last significant digit.

FORTRAN IMPLEMENTATION
The IBM 7090/9& FORTRAN's have bullt-in provision for three types of
floating-point arithmetic: REAL, DOUBLE PRECISION, and COMPLEX. The
normal FORTRAN floating-point arithmetic is blased or truncated, since a
floating~-point round operation 1s not called for. It occurred to us that
1t would be convenient to have many different types of arithmetic avail-
able. In addition to the three above, one might wish the following:

ROUNDED single precision arithietic

RANDOM ROUNDED arithmetic (using pseudo-randomly
generated bits) in order to check statistical
models of error propagation

INTERVAL arithmetic, etc.
as well as unnormalized SIGNIFICANCE arithmetic. It would be convenient if
the arithmetic were implemented in a package of subroutines so that the
type of arithmetic could be changed without modification to the source
FORTRAN program.
An easy solution for single-word arithmetic is to hand-code FORTRAN
FUNCTION routines ADD, SUB, FMP, and DIV to perform the elementary opera-

tions. But this is somewhat inconvenient for the programmer, since an

expression of the form
X = A¥(B-C)/D
becomes
X = DIV(MPY(A,SUB(B,C)),D) .
It would be much more preferable to use the ordinary symbols and have them
interpreted in terms of the desired arithmetic.

Some FORTRAN compilers, such as the CDC FORTRAN-63, provide a TYPE
OTHER declaration, so that transfers to a special subroutine are auto-
matically provided. One may achieve the same effect for double-word
arithmetic in FORTRAN by declaring the variables to be TYPE COMPLEX and by
supplying hand-coded routines which have the same name as the COMPLEX
routines but which implement the desired arithmetic. An additional
problem in the implementation of SIGNIFICANCE arithmetic is that some way
has to be provided for the number of significant digits to be ascertained
from the output.

It has turned out that single-word auxiliary arithmetic can be imple-
mented very simply in FORTRAN-IV for the 7090/9%. In order to use the
ordinary arithmetic operations and have them correctly reinterpreted, one
may redefine the floating-point operations FAD, FSB, FDP, and FMP by means
of MACRO definitions. It is first necessary to obtain an ASSEMRLY
language listing of the compiled program (or a PREST deck) and to reas-
semble with the MACRO definitions inecluded. In cur version, we obbtain a
PREST deck from the FORTRAN compiler (IBFTC, version 9) and utilize the
ALTER feature of the input editor (IEDIT) to insert the necessary MACRO's.

In the MACRO definition, we included a switch which could be tested.

If SWICH .HQ. 0.0, then the ordinary FORTRAN arithmetic was performed,

but if SWICH .NE.

0.0, a transfer

With the switch off, the execution time
increased by seven cycles per operation

to SWICH by all programs, it was placed

ordinary arithmetic

CAMMPN /SCAM/

SWT CH
#

and for significance arithmetic

SWT! CH
#

vas made to a special routine.

of the ordinary arithmetic was
on the 7090. To obtain easy access
in labeled COMMON. Thus for

SWICH

$ 0
A-B

1.0
A-B

One could use additional values of SWICH, if desired, to switch back and
forth between several different types of arithmetic.
The following form was used for the redefinition MACRO's so that they

could be used in conjunction with indexing and indirect addressing:

Assume that the FORTRAN statement is A # B + C:

ZFAD @PSYN FAD S¢ THAT ¢RDINARY FAD CAN BE USED
FAD MACRg X,Y
N@P X, Y REPLACES @RIGINAL FAD IN THE TEXT
S@ THAT IF X WERE ** C@RRECT ADDRESS
WQULD HAVE BEEN ST@RED IN PRGPER PLACE
NZT SWICH
TRA *45 TRANSFER F@R ¢RDINARY FAD
SXA *42, 14 PREPARE FgR TRANSFER T¢ RGUTINE
TSX SGADD, 4
R AXT ** L RESTGRE INDEX REGISTER
TRA *42
ZFAD¥ *-7 NYRMAL FAD PERFRMED WHEN SWICH IS ¢fFF
ENDM FAD

The SGADD routine had the following form:

ENTRY SGADD

SGADD STP B
SXA RTN, 4 STYRES RETURN INFPRMATION
CLA -h, k4 PICKS UP N@P X,Y
STA FETCH STPRES ADDRESS
STT FETCH AND ST@RES TAG
XEC 1,4 REMJTELY EXECUTES INSTRUCTIPN AT RZ

TP RESTYRE XR4 IN CASE Y 4 4
FETCH CLA *%*

STP c
. PERFPRMS REQUIRED SIGNIFICANCE
ADDITIPN; LEAVES ANSWER IN ACC.
RTN AXT ** Y
TRA 1,k
B
C
END

A MAP listing of the ALTER deck and of the SIGNIFICANCE routines is
given in the appendix. These routines follow Goldstein's rules except that
we did not bother with a correct round operation after division. True zero
(denoted by 0) and "significance zero" (denoted by 0.0) were treated as
special cases. Figure 1 shows the results of the baslc arithmetical opera-
tions when either operand or both operands are zeros. We make no claim for
efficiency, and would appreciate being informed of faster methods.

Fortulitously, the outputing of the number of significant digits pre-
sents no problem in 7090/94% FORTRAN (II or IV). The input/output routines
make the BCD conversion so that the number of leading zeros in the fraction
is preserved if an "E" type FORMAT is used. For example, an unnormalized

1.0 might print out as 0.00100000E O3 with an E14.8 FORMAT.

EXAMPLES
Some of the features of unnormalized significance arithmetic are
nicely brought out by attempting to invert the notoriously poorly condi-

tioned Hilbert matrices of various orders. Table 1 shows a 3 x 3 Hilbert

10

A=B +(
B¥ O 0.0
¥o
c¥o0 or ¥ 0
0.0
00| ¥o 0.0
0 B B
A=B#*(
B¥O 0.0
c¥ol|l ¥o 0.0
00| 0.0 0.0
0 0 0
Fig. 1.

tions of Zero and Nonzero Arguments.
and O denotes a true zero.

0.0

Cyo

0.0

A=B~C
Byo 0.0 0
£0
or £0 =C
0.0
#£0 0.0 -G
B B 0
A=B/C
By¥oO 0.0 0
go 0.0 0

0.0f

0.0*

#

DIVIDE CHECK ON

The Results of Significance Arithmetic for Various Combina-
0.0 denotes a significance zero

11

Table 1. Three-by-Three Hilbert Matrix Example

MATRIX A
C.C9999999E O} 0.50C00000€ 0O 0.323323332e-0C
C.5CCOCOCOE o0 C.33333333e~C0 0.25C0CCCCCE-Q0
C.33333333e~C0 0.25C000C0€e-00 C.2CCCCCCCe~-00

INVERSE CF A

C.CCO9CO00E Ou -0.003600C0F Ou 0.CC3CCCCIE OY4
-C.CC36C000E Oy 0.019200CI1E Ou -0.CO18000CE 0OS
0.0QC300000€E Ou ~-0.01800001E Ou 0.C18COCOIE O
PRODUCT
C.0CO09999E O -G.00C000C0E Oh 0.COOCCOCCE QO
C.CCOOCO01E 03 0.000100C0E Oy 0.CCCCCCOCE 04

-C.CCO0Con1e 03 -0.00C000C0E Ou G.CCOi1CoCCE Ou

12

matrix, its computed inverse (using a Gaussian elimination method), and

the product of the computed inverse times the original matrix. Note that
the elements of the inverse matrix have lost several digits of significance
and that the off-diagonal elements of the product are not all zero as they
should be. It is clear from the significance arithmetic, however, that the
off-diagonal elements of the product have no significance to speak of. The
4 x 4 case is shown in Table 2. About half the significance has been lost
in the computed inverse. Because the elements of the correct Hilbert
inverse have simple floating-point representation, the spurious digits are
easy to recognize. The diagonal elements of the product have lost nearly
all significance, so that we should expect the worse for the 5 x 5 case.
Table 3 shows that this is about as far as we can go in single precision
on the 7090/9%.

Table 4 shows some elementary FORTRAN statements and a comparison of
the true value with the values obtained by ordinary arithmetic and signif-
icance arithmetic. The first result, Rl, is the example given in the
abstract. The second is of interest because ordinary arithmetic yields a
small negative number instead of zero. R4 and R6 show how this false zero
can propagate into -other results. The third result is a true zero. RS
illustrates the effect of attempting todivide by true zero. The eighth
result, R8, is contrived to show an extremely adverse case of significance
arithmetic, where three significant digits are indicated but none are
correct. In this case, "0.1" had a small conversion error when converted
to binary, and combined with the roundoff, the sum picked up a spurious bit
once in about every five summations. One can see from this example that
significance arithmetic is more reliable if only a few numbers enter into

the result. The last result, R9, shows how the error in R8 propagates.

13

20 3310300232°2

40 330030333°3-
20 3003030333 °0

210 330030033°0-

40 332008¢033°)
40 3100<n033°0~
40 300891033 °0
40 300+10033°0-

00-3nilsgchl°]
00-399999991 °0
00-30033033¢°0
- 00-300033006¢2°0

10 310333033°0- 93 31002000C°0
L0 331003032°0 10 300000000°0
10 310003003°0~ 40 301000000°0
10 330003003°0- .0 303000000°C

40 3100¢h332°0- 40 300891000°0
40 3108%9003°0 40 300022003°0-
80 330223003°0- {0 300021060°0
40 33J0n¢3033°0 40 300210000°0-
00-379999991°3 00-300000302°0
00-33033300¢°0 00-3030000s¢°0
30-31303306¢2°0 03-3eceeceee°0
J0-3egereeEr°0 00 30000030s°0

STdwrsXy XTI3BW JISQTTH Jnof-Aq-anod

*¢ STAqBl

S0 318636033
S0 33306000633 °
90 3000350022
93 330130433°

90 3000+#1012°
90 3000%2033°
90 30CGZ21033°
93 300910G00°

v =0

02-3000200%2°
03-3ECEEEEEE "
00 300030036°

J
Ul
J
J

LONaodd

J-
J
g
J

3S¥3ANI

J
J
J

10 366666660°3

v

XIULV

1k

0t 300000000°0-
0t 300000000°0-
0! 300000000°0-
0¢ 300000000°0-
0t 300000000°0-

0! 30%%00000°0
ot 31e80006C0O°0~
0t 329500000°0
0! 3nc100000°0-

- g1 3sgooococto

go-30tekisti o
00-300000s21°0
00-3ni1268¢n1°0
00-399999991°0
00-300000002°0

ot 300030033°0-
gt 3030030033 °0-
gt 300030032°3

01 300330023°0

ot 3000130033°0-

0t 31883001333~
Ol 3262100233°)
0t 3s211003)°0~
0t 399220033 °0
01 3¢€1020033°J~

00-303030s<¢t °0
00-3%12582k1 "]
00-399999991°0
00-30033003¢2°0
03-3000300sC 2

oTdwrexy XTI3EW 3I9qTTH SATI-Lq-3ATI

gt{ 330003002°0

301 32000232]°0-
d¢ 333333003°0-
01 330003003°0-
gf 330003003°0-

J1 3L95803303°0
gt 3%2113233°0~
it 362333333°0
It 351033003°0-
J1 35%50002332°0

g0-3ni2582n1°0
30-379993991°0
J0-33300233¢°0
a0-3300030s¢°0
J0-3deeeecezz°0

60 310000000°0
60 313000000°0
J1 330000000°0
J1 300000000°0
o1 303000300°0

ol 392100000°0-
g1 389200300°0
at 368100000°0-
0! 381000000°0
01 3£0000000°0-

00-399999991°C
00-300000302°0
00-3030G600s¢°0
00-3eeceeeee 0
03 30303030s°0

*¢ STqEL

80 300030003°3
80 330CC0030°3]
80 33003060J33°J
80 300030033°3
80 310030000°J

4:0Naodd

80 303¢930000°3
80 300+%10333°3-
60 3wr3120033°3
60 30¢030333°3-
80 36200000G6°J

vV 40 3S¥3ANI

00-3300320032°)
00-330030062°)
00-3€SECTEEE 3
00 30C030005°3
10 366666663°]

vV xId1lvNW

15

*}09UD SDPTATUx

¢0 EL{600000°0

T0-H9L90¢T92" O- ‘0 *000T - Q¥ # 64

ToO+gd #8942

0 TH600000T* 0 €O A2QLL6666" #0 F0000000T*0 0000T‘T £ 1 2 0Q
20 H000000TO* 0 TO F66666660°0 TO F0000000T" 0 *00T - ‘00T + O°'T # .4
LT 000000000 60 F¢9LTSHST O @ 9 + ‘00T # o
e 0 ® CH/0°T # G4
* *
*NH Z00000000° 0 60 dclliensT 0~ ® 2d/0°T # ¥
0 0 e 0°0 # ¢4
00 HO0000000* 0 90-290850% 6L 0= ‘0 O°'T - *OTxT°0 # 2¥
TO ATE200000°0 ©0-826¢¢¢T82° 0 ©0-H¢LQOWTES 0 *TO0T/ T3le-"TL/ ¢6T # T8
ST3aUWY3 TIY OT3oU3 TIY sanTeA
90UBDTJTUSTS A1euTpI0 anay, Juswaqe3s NVITLHOL

anTeA poyndwo)

g #TH UITM SaInJTd g 03 S3Tnssy

*suoissaxdxyd NVIIMOJI oTdwIg Swog JIO0J OT1SU3TIy 20UBOIJIIUIIQ pur AIBUTIPIO

Sursp anrep peandwo) UITA onfep snal JO uosTxedwo) ‘4 oTqel

16

PRECAUTIONS
It is possible that system MACRO's such as an explicit or implied
FLOAT will fail to operate properly because of the redefined floating-
point operations. It is safer to switch the significance arithmetic off
while performing a mode conversion, etc., as shown below:

SWICH # 0.0
X# I
SWICH # 1.0

If SWICH is not set and is undefined, the FORTRAN-IV loader will store
an STR instruction in its location, and significance arithmetic will
result.

It is conceivable that one might want to perform normal floating-
point operations on unnormalized numbers and obtain normalized results.

The present method of implementing significance arithmetic will not allow
this because a floating-point multiplication of two unnormalized numbers
may or may not give a normalized result and a floating point division of
two unnormalized numbers will give the wrong answer if the divisor has
more leading zeros than the dividend. For this reason care should be taken
not to attempt to perform these normal floating-point operations on un-
normalized numbers. One way of avoiding this difficulty would be to
normalize the operands before carrying out the operations. Instead of
testing the status of the switch in the MACRO, one could Jjust transfer

to the subroutine that carries out the arithmetic. Then in the arithmetic
subroutine the switch could be checked. If significance arithmetic were

desired, the operation could proceed in the same manner as it does now,

17

but if normal arithmetic were desired the operands could be normalized and

the normal floating-point operation carried out.

In such a scheme the

floating divide MACRO might have the form

FDP MACRS X,Y
N@P X,Y
SXA *42, 4
TSX SGDVP, 4
R AXT *%,

REPLACES @RIGINAL FDP IN THE TEXT S@
THAT IF X WERE ** CPRRECT ADDRESS
WOULD HAVE BEEN STYRED IN PRPPER PLACE
PREPARE F¢R TRANSFER TP ROUTINE

RESTYRE INDEX REGISTER

The subroutine itself might have the form

ENTRY SGDVP
SGDVP ST® DVIND
SXA RTN, 4
CLA -2,4
STA FETCH
STT FETCH
XEC 2,4
FETCH CLA *%
STP DVSR
CLA SWICH
TNZ SG
CLA DVSR
FAD ZERD
STP DVSR
CLA DVND
FAD ZERP
FDP DVSR
TRA RTN
SG .
RTN AXT **, 4
TRA 2 4
SCPM C@NTRL SWTCH, DVND
SWICH BSS 1
DVND HTR 0
DVSR HTR 0
ZER® DEC 0.0

STYRE RETURN INFYRMATIAN

PICKS UP NPP X,Y

STPRE ADDRESS

AND TAG

REMATELY EXECUTES INSTRUCTIPN AT
R T RESTORE XR4 IN CASE Y = &

CHECK THE SWITCH AND TRANSFER
TP SG IF SIGNIFICANCE ARITHMETIC
DESIRED

PTHERWISE,

NPRMALIZE THE DIVIS@R

THEN N@PRMALIZE THE DIVIDEND
AND CARRY @UT THE DIVISI@N

PERFYRM THE
DIVISIfN IN
SIGNIFICANCE ARITHMETIC

LABELED CPMMPN BLECK SCPHM
SWICH IN LABELED CAMM@N

Note that such an implementation has a disadvantage in that it requires a

transfer to a subroutine and the execution of several instructions to carry

out ordinary arithmetic.

This would increase the running time considerably

18

if the program used mostly ordinary arithmetic performed on numbers that
would never have leading zeros. But it has an advantage in that it
decreases the nuwnber of instructions in the MACRO itself and hence the
number of instructions that would replace each floating-point operation
in the main program. This might be advantageous for large programs which
almost fill up the memory.

Since FORTRAN library routines return normalized results, the amount
of significance will be lost if they are called with unnormalized arguments
unless speclal precautions are taken. Goldsteir* and Ashenhurst® discuss
the evaluation of FUNCTIONS which preserve significance. One possible
scheme to determine the amount of significance in the function value cor-
responding to an unnormalized argument is to evaluate the function at both
ends of the significance interval corresponding to the argument. For
example, if it were required to find the SIN of the number 0.00012321E+k,
then the number 0.00012321E+4 could be replaced by two numbers —
0.00012321E+4 itself and the number obtained by adding a binary one to the
last bit of it. The result would be the significance interval corre-
sponding to 0.00012321E+4. Then the SIN could be called for both of
these values, getting a normalized result each time. The amount of signif-
icance that the answer should have would be the number of digits that are
identical in the two results, and the correct answer could be obtained by

denormalizing one of them until it had Jjust this many significant digits.

CONCLUSIONS
Unnormalized floating-point significance arithmetic is easy to imple-
ment in FORTRAN-IV; however, some precautions must be exercised by the

programmer. It is easy to extend the method used to obtain a variety

19

of different types of arithmetic, as well as significance arithmetic. We
have found significance arithmetic to be extremely valuable when running a
new problem for the first time or when running the problem to obtain final
results to be published.

In addition, there are some instances where significance arithmetic
can be used routinely to good advantage. A common problem is testing a
floating-point number against zero to branch in an algorithm. Testing
against zero is hazardous in ordinary arithmetic because of the accumula-
tion of roundoff errors and the loss of significance. But significance
arithmetic provides a simple solution by ignoring the bits of lowest sig-
nificance, as in

IF (AND(CRIT,MASK) .FQ. 0.0) ,

with MASK defined by a DATA statement to be an octal constant which masks

out the last few bits of the word.

ACKNOWLEDGMENT
We wish to express our appreciation to Jack Zeigler and Buford Carter
of the Computer Sciences Center, Union Carbide Nuclear Division, Oak Ridge,

for their advice and encouragement in trying to “beat the system."

5.

20

REFERENCES

R. D. Richtmeyer, The Estimation of Significance,NY0-9083 (1960).

W. G. Wadey, J. Assoc. Computing Mach. 7, 129 (1960).

R. L. Ashenhurst and N. Metropolis, J. Assoc. Computing Mach. 6,
415 (1959).

M. Goldstein, Commun. Assoc. Computing Mach. é, 111 (1963).

R. L. Ashenhurst, J. Assoc. Computing Mach. 11, 168 (196k4).

21

APPENDIX

Listing of ALTER DECK

and

SIGNIFICANCE Routines

22

TISTING OF ALTER DECK,

__eALTER |
NOCRS
MAKE _MACRO __ A,B
IZA OPSYN A

A MACRO XoY _
PMC ON
e ...NOP XeY
NZT SWTCH
TRA 45
SXA *e2,4
. YSX_ . By
AXT sa,l
_ _TRA_ = ee2
1A% =7
PMC OFF
ENDM A

__ENDM MAKE
MAKE FAD,SGADD
___MAKE FS$SB,SGSUB
MAKE FMP,SGMPY
MAKE FDP+SGDVP

«ENDAL

23

_ SIQADD o R
ASSEMBLED TEXT.
STEXT SIQADD
ENTRY SGADD
BINARY CARD ID. S$1QAJI002
00003 3631 03 0 00I45 10001 SGADD STO 8
00031 363k 03 & 00043 100C) SXA RTN, &
___00032 3570 0) 4 T777% 10000 CLA “Uol4
00003 23621 0J 0 DOOO6 1DOCH STA FETCH
00024 3625 03 0 00306 100CH STT FETCH
00035 3522 03 & 00371 100CO XEC ol
D0O0JS 3530 03 0 00100 10000 FETSH CLA .
00007 216311 07 O 00346 100CH sTO c
_DOD13 3530 03 0 00Ju5 1000H CLA 8 _
00011 3130 0) O 00J42 10DOCH TZE USES
- ...00012 4320 0) 0 00J47 10001~ ANA MASKL
00013~ 3138707 0 00323 100CH TLE TESTC
00014 3530 03 0 00345 100CH CLA_ 8
00015 %330 0) O N0Ju6 000! UFA c
....000t6 760 DI D OOJ4y #0000 _ _ RIN_
00017 4130 01 0 Q0043 10001 ™2 RTN
. _...D0023 3530 0) 0 00Jus 10001 _ cweA C_
00021 4320 03 0 00350 100CIH ANA #0 777000000000
00022 13020 03 0 _00J43 10001 124 RTN
BINARY CARD 1D, SIQAJ003 = e
00023 3530 03 0 00J46 10001 TESTC CLA c
00024 J130 D) D 00J%D 100CH CTZE____ USES
00025 4320 01 0 00Ju7 10001 ANA MASK1
00025 3133 01 0 00035 10001 T2E_ BIGXP
00027 3530 093 0 00Ju6 10001 CLA c
0003) 4330 0) 0 00J4S _100C)__ _ UFA___ B
00031 3750 01 0 00311 100CO F2N
00032 413001000043 100CY ____ TNZ _ RYN_
00033 3530 03 0 00345 10004 CLA 8
00034 3020 0) 0 00J43 100CH T3A RTN
00035 4530 03 0 20345 10001 BIGXP CAL)
00036 w430 03 0 00346 10000 SBM C o
00037 4120 03 7 00342 100CH ™I USEC
___DODW3 3530 01 0 00345 I00CI USEB CLA B -
00041 3020 03 3 20343 (0GCH T2A RTN
00042 3530 0] 0 00Jué6 10001 USEC CLA c
00043 3774 0 & 00000 10000 RTN AXT e,k
_____DDOWs_ 3020 0] & 000! 1DOCO T2A "
0005 3030 0) 2 J0J00 100CO B HTR 0
BINARY CARD ID. SIQAJOOM
0DOsS 3033 01 0 00300 i0DEO € HWIR O
00047 300777717777 100CG~ MASKI OCT 0007 TTTTTITT
00051 777070100000 13000 «LORG
0N300 01111 END

2k

SIGSUB
ASSEMBLED TEXT,
$TEXYT SIGSUB -
ENTRY SGSUB
BINARY CARD ID. $1653032
0000l 2631 0) 0 00J46 100CH SGSUB STO 8
00031 J63u4 1) & 00344 1n00CH SXA RTN, b
000J2 35)0 00 & 77TTW 100CO CLA -yl
p000n3 3621 02 1 30306 10001 STA FETS
_ DD0O3s 1625 02 0 00006 100CH STT. FETS
00035 1522 03 4 00391 00Cn XEC Lol
000Js 1530 0) 0 NOJNO _100CA FETCH CLA os
— 00037 J7sﬁ“bj'a B0J02 10000 TTTCHS
00013 2611 03 2 002347 100CH STO c
00011 2533 92 0 003Juée 1000 CLA B
00012 2130 03 O 00Ju3 100C! TZE USEZ
D003 4320 0) O 00350 100C! ANA MA SK 1
0001 3130 03 0 90324 100CH TZE TESTC
DOOT5 J59° 90346 19008 CLA 8
DOOtS 4330 03 0 D0J&7 100CH UFA c
0007 375003 9 001t 100CO FaN
_DD023 4130 02 0 903u4 100CIH N2 RTN
00021 3530 03 09747 10001 CLA c
00022 4320 03 0 006351 120CH ANA #0 777000000000
BINARY CARD ID. S1GSJ003 ‘
00023 13020 0D O 0ONJ4u 1000V TRA RTN
__0pD2w 3530 0D 0 0OJu7 130CH TESTC CLA c
00025 23130 02 0 O0Ju!l tooCt TZE USEB
00025 4320 03 0 20350 100C!H ANA MA SK |
00027 J(J0 OJ 0 00036 100CH TZE BIGXP
00033 3530 02 N 00Ju7 10001 CLA c
T 00031 4330 02 0 NOJue 10001 UFA 8
_..00032 31750 01 9 2021t 100CO F2aN
00033 w130 03 0 002uu 100CH T™NZ RTN
00034 3533 03 0 00Jué6 000! CLA)
000%5 31020 0J 7 00Ju4 100C1T TIA RTN
o 0003% 4530 03 J 30246 10001 BIGXP CAL 8
00037 44130 0J 0 00347 100CH SBM c
0004 4120 03 2 00243 1000H ™I USEC
000wl 1530 03 0 00346 100CH USEB CLA B
000uw2 3020 93 9 303Jsu4 000N TA RTN
000w3 3530 02 0 27347 100G USEC CLA ¢
0004 J774 01 4 20INC 10000 RTN AXT ..ol
00045 1220 0 & 209041 10000 TRA lolt
BINARY CARD ID. SIGSININ
000us J020 02 0 NOOOO 40000 B HTR 0
000u7 1030 03 0 2N3N0 100€0 € HIR 0
D00SI J03TTTITTITTY 100CO MASKI OCT 0oarrITITITT
30051 7770732102010 10000 *LORG
nN1J00 o1t END

25

SIGMPY
ASSEMBLED TEXT.

STEXT SIGMPY
ENTRY SGMPY
BINARY CARD ID. SIGM1I03J2

00002 3634 0 & 00362 _INOC) _ SGMPY SXA _ RTNpu
00071 J530 03 & 77774 10000 CLA ~Uy b
00032 3621 03 0 70005 10001 STA INST
00033 3625 03 3 00305 100CH STT INST
DODOW 3522 093 & 30001 10000 XEC 1ol
00035 3510 01 0 00990 10000 INST CLA .

00035 J631 03 0 d0J6s_ 100CI _ STO _ _ YSTO
00037 4630 03 1 20365 10001 sTQ QsT0
00013 2630 D3 O 29370 100CH STZ FLAS
000 3530 01 0 00365 100014 CLA QSTO
00012 3130 0) 0 00335 i00OCH TIE BLAP
00013 320 03 0 2037 100C! ANA MASK |
DOO1Y 4130 03 000322 _100CH ____ TNZ___ TESTY
00015 539 03 0 00365 19001 caL QsTo
00015 2832 03 0 00374 10OC) SuB ONEX
00017 IJ43D 03 0 J0173 10001 ADD ONE
00023 J632 07 0 00365 100CH SLw QSTO
00021 3831 03 0 00370 19001 $T0 FLAS
00022 3530 01 0 00364 100Ct __ TESTY CLA YSTO

BINARY CARD ID. SIGMI0O03

00023 3130 D) O 00334 000! TZE BLAP -1
00024 4320 .03 0 0NJI7t 100QU ANA MA SK
00025 w130 0) 0 00335 1000! ™2 BLAP
00025 4530 03 0 00Jék 10001 cAL YSTO
00027 JuJ2 03 0 0037w 100CH SUB ONEX
00033 Ju30 03 0 30373 10008 ADD ONE
00031 3632 03 0 20l6s 13001 SLW YSTO
. DD032 23631 03 3 30270 10004 STO FLAS
00033 3320 93 2 70735 10001 TRA BLAP
0003w 3610 01 0. 0N170__1A0CH _ STZ _ FLAS
00035 3076 03 & 93300 1001 BLA® TSX NIMZT, 4
00035 3 10301 3 30365 1730014 PLE QsTo
00037 3 1070) O 00187 100CH PLE aNo
~_DOOLI 3974 DI 4 03300 1001 TSX NRMZ T4
0004t 3 210003 0 INJ64 100C! . PIE YSTO
000v2 3 309093 3 3038610001 PZE __ _YNO _
060W3 3553 33 1 10365 10004 LDQ QsT0
00Ous 3250 03 D 2NI6s 100CH FMP YSTO
00045 1750 93 N 293¢l 100CO £y
BINARY CARD I0. SIGM3I0JL
D305 3631 03 3 33I64 100CH .. STO ¥STO
0GOWT I074 03 & DulN0 1201 TSX DNORM, 4
00051 3 030D 3 33364 190CH PLE YSTD
00351 J 39200 2 30367 100CH PLE aNo
00052 3 19703 3 MN6s 10004 PLE YNO
0DOS3 3530 0) 9 99370 inNOOY CLA FLAS
o D0OO0S5%_ 3133931 7 90361 10004 TZE ANS
00355 %530 03 7 310344 100CH cAL YSTO
00055 4320 03 N 20372 100CH ANA MASK 2

26

SIGMPY
ASSEMBLED TEXT.

00057 3830 00 0 090374 1061 DD ONEX ~ ~
00063 3632 2] 0 2064 100CH SLW YSTO
00061 3530 0) 0 00J64 10001 ANS CLA YSY0
00062 1774 0] & J0JINO 10000 RTN AXT se,l
00063 3020 D) & 10901 100CC TRA Lol

0005 J3J0 03 00000 10000 _YST)_ HTR

00065 3330 33
00065 3230 03
00067 3030 03
0ocorl 2330 03

900N0 100C0° " QSTY) HTR 0
90300 100€C0 YNO HTR 0
nngno 10000 ONO HTR 0
10300 100Cn FLAG HTR 0

QOQuUJIVFFOVO

BINARY CARD 1D, SIGMITIS

0007y JOJ7TTITITTT — 100060 MASKT olv ~ooarrrrivYvd
0o072 777000002000 10000 MASK2 OCT 777000000000
00073 3331030300001 ©In0CN ONE OCT 000000000001
0007 2010909200000 100CO ONEX J5T 001 000000000

30200 Ow END

SIGDVP

ASSEMBLED TEXT.

27

$TEXT SIGOVP

ENTRY SGOVP

BINARY CARD ID. §1GDJOOD2
000333631 03 0 30363 100CI = SGOVP SYO _ DVND_
00031 3634 03 & 00361 10OCI SXA RTN b
00032 3530 33 & 77774 10000 CLA -~y 4
DDOD3 3621 03 J 00306 100CH STA INST
DO0Js 3625 0) 9 10306 10004 STT INST
00025 3522 03 & 70071 100C0 XEC fols
00036 3530 03 J 00300 100CO___ INST _CLA___ __ e
00007 3631 03 0 00364 100CH STO DVSR
00913 2630 D3 3 00367 100CH $TZ FLAS
00011 3530 03 0 30363 10001 CLA DVND
00012 3130 03 3 30335 100C) TIE BLAP
00013 4320 03 0 00270 100CH ANA MASK |
000#u__ 4330 03 0 90322 100CY _ __ TNZ _ TESTY
00015 530 03 0 20363 100OCI Y DVND
00015 J&3J2 0 Q 70373 100CH Sus ONE X
00017 430 03 3 00372 100CH ADD ONE
00023 632 03 7 20363 0004 SLw DVND
00021 631 03 7 00367 100CH sTO FLAS
00022 1530 03 3 0036k _100CI TESTY CLA DVSR

BINARY CARD ID. SIGDINO3
00023 130 0J O ONJ3% 10001 TZE BLAP~-1

. D0O02% 4320 03 0 00370 100CH ANA MA SK |
00025 4130 03 7 10335 (00C) T™Z BLAP
00025 4530 03 0 001és 10001 cAL DVSR
00027 9832 03 3 00173 1000) SUB ONE X
00033 IsJ3 0J 0 DOJ72 100CH ADD ONE
30031 3632 03 3 33364 10QCH SLw ovs
00032 3631 0J 2 00387 100CH STO FLAS
00033 3920 03 0 00335 10001 T34 BLAP
00034 _ 3620 03 0 00367 _ 10DCH _STZ __ FLA5
00035 3074 0J & 03300 10011 BLAP TSX NIMET .6
00035 3 1070 0 90363 10004 PLE OVND
00037 3 12909 9 00165 100CH PZE DVNNO
. 000%) 3074 03 & D3I00 10011 TSX NIMIT, 4

0004t) 1300 2 20344 12004 PLE DVSR
00042 3 J030) 0 90366 _100CH = _ PZE = _DVSNO
00043 3513 03 0797363 ~ 1000l CLA DVND
000us 3241 03 0 N0OJé4 10001 EDP DVSR
00045 %630 03 3 10364 10001 STQ DVS3

BINARY CARD I1D. SIGDI0J4

. 0ODOWS 3378 01 & 04000 10044 TSX DNORM,b4
000k7 3 3000377 0Nl6s 100CH PLE DVSR
0025 3 30703 J 10365 17004 PIE DVNNO
00051 3 30203 0 70366 100CH PLE DVSNO
00052 1530 03 0 20367 190CH CLA FLAG
00353 3430 03 0 309360 1000 TIE ANS

____DDOS5% 4530 03 3 2036w 170CH caL OVS?
00055 4320701 0 27371 19001 ANA MA SK 2
0o05s 2430 93 3 10372 10004 ADD ONE X

28

SIGDVP
ASSEMBLED TEXT.

o 00057 3612 03 0 ey 10001 SLw DVSR

00063 3550 03 2 7064 100CH ANS LDQ DVSR

00061 774 0) 4 20300 10000 RTN AXT s,

00062 1020 0J & 04301 110CO TRA lok

00063 21230 03 2 299100 100C0 DVND HTR C

0006w 3233 03 3 00200 100CC DVSR HYR O

00065 2J0J0 0) O J0JXN0 10000 DVNNO HTR o

00065 31010 0) 7 300000 10000 DVSNO HTR 0

000s7 13030 0) 7 0NJINO 100CO FLAG HTR 0

0007 1DITTTTITTTINT 100CD MASKI OCT 0ooTTTTTITITT
BINARY CARD ID. S1GDJIDIS L _ L

poa71 rrroa0)700000 (0000 MASK2 OCY 777000000000

00072 3233301300091 t30C0 ONE OCT 000000000004

00073 1010203000030 10000 ONEX OCT 001 000000000

30200 0111 END

DNORML

ASSEMBLED TEXT,

29

$TEXT DNORML

ENTRY DNORM
BINARY CARD ID. DNORIOD2 T : A
00033 3533 63 & N0302° 1NOCO - ONORM CLAe - 2,4
00004 J5%0 63 & 30303 190C0 LoQs 3,4
00092 304D 33 9 7IN2. 10041 TLO we2
00033 313t 0) 9 70300 100CO XCA E
0003% 3771 03 0 70133 IN0CO ARS 27
00025 3621 03 0 3015 120CH STA BACK
00005 2631 03 8 00323 100CH ST0 NCT
00037 3530 03 0 J0J24 10001 CLA #27
00013 Jul2 03 2 N0l23 1DOC) sus cT
0DOtE 1621 02 0 J0dte . 100CH STA BAKMO
000¢2 1530 63 & 00001 100CO CLAs Lol
00013 4765 .03 0 90233 N00O - - LGR 27
000«& 1351 03 0 20323 100OCH ACL NTY O
00015 3757 03 3770300 100C0 ~ BACX "ALS we
. 00016 4763 03 D BOODOD 100CO BAKMO LGL o
00017 4773°3) 0 00333 10000 RAL . 27
/00023 3750°93 9 20211 100CO FaN
00021 D631 61 4 10301 10000 STOe told
00022 2020 0) & DOOO4 100CO TRA boly
BINARY CARD ID. DNORINI3
00023 1030 03 2 30290 100CO NCT HTR o
0002% 103030300033 10GCO *LORG
00000 Oty END

NRMCNT

ASSEMBLED TEXT.

BINARY CARD ID. NRMCI0D2

$TEXT NRMCNT

30

00033 3530 6] & 20101 130CO__ NRMIT ClLAe
00031 3631 03 O 00315 ioact $TO
00032 3330 32 3 10317 1000¢ FAD
00033 3631 01 0 09316 10001 STO
00034 631 6 & 00101 130CO STO®
00035 4530 0) 0 00316 100CH cAL
00076 4320 03 0 70320 10000 &NA___
00007 1632 03 0 00316 00CH SLW
00013 530 03 9 ON3Is I00CH caL
00014 4320 03 9 00320 100CI ANA
00012 3432 0] 2 20216 10000 SuB
00013 3632 63 & 00302 1NOCO SLwe
00Gte_ 3320 3] & N0ON3 17000 TRA __
00015 30930 03 @ 00300 100C0 DST? HTR
00016 3030 0] 0 10100 10000 DNSTO HTR
00017 103000300000 100C0 ZRO DEC
00023 377030103030 I00CO MASC OCT
00300 011)8 END

ENTRY

- T T,

NIMZT

Yol
DSTO
R0
DNSTO
ol
DNSTO
MaSK
ONSTO

0STO

MA SK

DNSTO

244

0

0

0.0
377000000000

1-3. L.
L-13, W.

4, V.

15. G.

16. C.

17. D.

18. F.
19. R.
20-30. B.

31. R.

32, D.

33, J.

226-240.,

’ oh1,

R.
R.
T.
E.
c.
C.
W
We
T.
X.

31

ORNL TM-12)+9
Internal Distribution

Abbott 34, W. Zobel
Burrus 35. G. Dessauer (Consultant)
Cain 36. B. C. Diven (Consultant)
Chapman 37. M. L. Goldberger (Consultant)
Clifford 38. M. H. Kalos (Consultant)
Irving 39. L. V. Spencer (Consultant)
Maienschein 4o-41l., Central Research Library
Peelle 42. Document Reference Section
Rust 43.223, Laboratory Records Department
Santoro 224, Laboratory Records ORNL R.C.
Trubey 225. ORNL Patent Office
Wachter

External Distribution

Division of Technical Information Extension (DTIE)
Division of Research and Development (ORO)

