2,125 research outputs found

    The Revolving Door of Education: Teacher Turnover and Retention amongst the Graduates of a Liberal Arts Teacher Education Program

    Get PDF
    In the United States, elementary and secondary education teachers comprise 4% of the entire civilian workforce (Ingersoll, 2001). The composition of that 4% is changing because of teacher turnover. According to recent statistics, 46% of teachers leave the classroom within the first five years of teaching and 9.5% of teachers leave the classroom within their first year (Rinke, 2014; Riggs, 2013; Zheng & Zeller, 2016). This study is designed to examine the teaching experiences of graduates of one teacher education program and the potential differences between graduates who stay in teaching and those who leave. Throughout this study, the guiding questions were: How many Gettysburg College Teacher Education Program Alumni, 1985 - 2008, are still teaching in the classroom at a primary or secondary level? Why did some alumni leave the classroom at a primary or secondary level and why did some alumni never teach? How does the data from the Gettysburg College Teacher Education Program alumni correspond with the previous scholarship on teacher turnover and retention? When looked at from the perspective of an individual post-secondary institution, the individual stories of the alumni emerge and so does the complexity of teacher turnover and retention in America, which is not always reflected in studies conducting on a state or national level

    Fostering Students\u27 Identification with Mathematics and Science

    Full text link
    Book Summary: Interest in Mathematics and Science Learning is the first volume to assemble findings on the role of interest in mathematics and science learning. As the contributors illuminate across the volume’s 22 chapters, interest provides a critical bridge between cognition and affect in learning and development. This volume will be useful to educators, researchers, and policy makers, especially those whose focus is mathematics, science, and technology education. Chapter Summary: The primary purpose of this chapter is to explore the process whereby students transition from a short-term, situational interest in mathematics or science to a more enduring individual interest in which they incorporate performance in mathematics or science into their self-definitions (e.g. I am a scientist ). We do so by examining the research related to domain identification, which is the extent to which students define themselves through a role or performance in a domain, such as mathematics or science. Understanding the process of domain identification is important because it can contribute to an understanding of how individual interest develops over time. The means through which students become highly domain identified involves many factors that are internal (e.g. goals and beliefs) and external (e.g. family environment and educational experiences) to them. Students who are more identified with an academic domain tend to demonstrate increased motivation, effort, perseverance (when faced with failure), and achievement. Importantly, students with lower domain identification tend to demonstrate less motivation, lower effort, and fewer desirable outcomes. Student outcomes in a domain can reciprocally influence domain identification by reinforcing or altering it. This feedback loop can help explain incremental changes in motivation, self-concept, individual interest, and, ultimately, important outcomes such as achievement, choice of college major, and career path. This dynamic model presents possible mechanisms for influencing student outcomes. Furthermore, assessing students\u27 domain identification can allow practitioners to intervene to prevent undesirable outcomes. Finally, we present research on how mathematics and science instructors could use the principles of the MUSIC Model of Academic Motivation to enhance students\u27 domain identification, by (a) empowering students, (b) demonstrating the usefulness of the domain, (c) supporting students\u27 success, (d) triggering students\u27 interests, and (e) fostering a sense of caring and belonging. We conclude that by using the MUSIC model, instructors can intentionally design educational experiences to help students progress from a situational interest to one that is more enduring and integrated into their identities

    Evaluation of AAFE apparatus to measure residual and transient convection in zero-gravity

    Get PDF
    An evaluation apparatus which photographs convective and diffusive flows in crystal growth experiments is presented. Results in the following catagories are reported: (1) Human factors; (2) Electrical and mechanical; (3) Optical performance; and (4) Thermal performance

    Time-dependent gravity in southern California, May 1974 - Apr 1979

    Get PDF
    Gravity measurements were coordinated with the long baseline three dimensional geodetic measurements of the Astronomical Radio Interferometric Earth Surveying project which used radio interferometry with extra-galactic radio sources. Gravity data from 28 of the stations had a single reading standard deviation of 11 microgal which gives a relative single determination between stations a standard deviation of 16 microgal. The largest gravity variation observed, 80 microgal, correlated with nearby waterwell variations and with smoothed rainfall. Smoothed rainfall data appeared to be a good indicator of the qualitative response of gravity to changing groundwater levels at other suprasediment stations, but frequent measurement of gravity at a station was essential until the quantitative calibration of the station's response to groundwater variations was accomplished

    Rupture extent of the 1978 Miyagi‐Oki, Japan, earthquake and seismic coupling in the northern Honshu Subduction Zone

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95645/1/grl4114.pd

    Improved ultrasonic standard reference blocks

    Get PDF
    A program to improve the quality, reproducibility and reliability of nondestructive testing through the development of improved ASTM-type ultrasonic reference standards is described. Reference blocks of aluminum, steel, and titanium alloys are to be considered. Equipment representing the state-of-the-art in laboratory and field ultrasonic equipment was obtained and evaluated. RF and spectral data on ten sets of ultrasonic reference blocks have been taken as part of a task to quantify the variability in response from nominally identical blocks. Techniques for residual stress, preferred orientation, and micro-structural measurements were refined and are applied to a reference block rejected by the manufacturer during fabrication in order to evaluate the effect of metallurgical condition on block response. New fabrication techniques for reference blocks are discussed and ASTM activities are summarized

    Quantum rainbow scattering at tunable velocities

    Full text link
    Elastic scattering cross sections are measured for lithium atoms colliding with rare gas atoms and SF6 molecules at tunable relative velocities down to ~50 m/s. Our scattering apparatus combines a velocity-tunable molecular beam with a magneto-optic trap that provides an ultracold cloud of lithium atoms as a scattering target. Comparison with theory reveals the quantum nature of the collision dynamics in the studied regime, including both rainbows as well as orbiting resonances

    Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    Get PDF
    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity

    Spectral, mineralogical, and geochemical variations across Home Plate, Gusev Crater, Mars indicate high and low temperature alteration

    Get PDF
    Over the last ~ 3 years in Gusev Crater, Mars, the Spirit rover observed coherent variations in color, mineralogy, and geochemistry across Home Plate, an ~ 80 m-diameter outcrop of basaltic tephra. Observations of Home Plate from orbit and from the summit of Husband Hill reveal clear differences in visible/near-infrared (VNIR) colors between its eastern and western regions that are consistent with mineralogical compositions indicated by Mössbauer spectrometer (MB) and by Miniature Thermal Emission Spectrometer (Mini-TES). Pyroxene and magnetite dominate the east side, while olivine, nanophase Fe oxide (npOx) and glass are more abundant on the western side. Alpha Particle X-Ray Spectrometer (APXS) observations reveal that eastern Home Plate has higher Si/Mg, Al, Zn, Ni, and K, while Cl and Br are higher in the west. We propose that these variations are the result of two distinct alteration regimes that may or may not be temporally related: a localized, higher temperature recrystallization and alteration of the east side of Home Plate and lower temperature alteration of the western side that produced npOx
    corecore