de lime Delaterate

nc

MASA-18-112447

375

Int. J. Biometeor. 1972, vol. 16, number 4, pp. 375-387

Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

by J. E. Greenleaf*, B. L. Castle and W. K. Ruff

INTRODUCTION

The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating (Wyndham et al., 1968) that allows the acclimated man to function with a cooler internal environment and to extend his performance (Rowell et al., 1967). Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition (Bean and Eichna, 1943; Eichna et al., 1945). Also, upon first exposure trained men tolerate exercise in the heat better than untrained men (Greenleaf, 1964; Piwonka et al., 1965). Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat (Bean and Eichna, 1943; Strydom et al., 1966). These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects.

Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating (Astrand, 1960; Kozlowski and Saltin, 1964; Saltin and Hermansen, 1966). Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was (a) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (b) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

PROCEDURE AND METHODS

Seven healthy young men with maximal oxygen uptakes between 2.83 l/min [42 ml/(min.kg)] and 5.97 l/min [66 ml/(min.kg)] were employed as subjects (Table 1). After determination of their maximal oxygen uptakes, they were tested in pairs in an environmental chamber and underwent one 2-hr control exercise

^{*)} Laboratory of Human Environmental Physiology, National Aeronautics and Space Administration, Ames Research Center, Moffett Field, California 94035, USA Received 10 August 1972

V	nthropo	metry				Maximal work	values		Expe 2,	srimental 4°C and 4	values 7oC
Subject	Age	١M	Ab	Work load	$ abla_{0_2} $	V02	V _E BTPS	Heart rate	Work load	v_{0_2}	$\frac{v_{0_2} \times 100}{v_{0_3} \max}$
	yr	kg	m^2	watts	l/min	ml/(min.kg)	l/min	beats/min	watts	l/min	8
AMB	21	80.92	2.01	350	4.38	54.1	185.0	198	55	1.36	31
BUC	22	90.98	2.10	400	5.97	65.6	201.0	198	80	1.61	27
CIL	21	88.28	2.23	375	5.34	60.5	154.1	189	70	1.17	22
JEW	27	66.82	1.89	225	2.83	42.4	117.6	201	30	0.92	33
MeC	26	93.06	2.18	250	3.93	42.2	168.8	204	45	1.16	30
SCH	23	79.14	2.05	350	5.08	64.2	198.6	183	70	1.22	24
SHA	24	66.66	1.85	300	4.23	63.5	140.4	177	55	1.16	27
×	23	80.84	2.04	220	4.54	56.1	166.5	193	58	1.23	28
+SE	1	4.11	0.05	25	0.39	3.8	11.7	4	9	0.08	1

sets of the at the set of t

ti W e

u: m a: of c(

T -

-

C A A ír

or ar te nr ur M V

Y al sl fr lo sc by tu pu la lo

:10

TABLE 1. Anthropometric data and cardio-respiratory values during maximal work and during the experimental tests

376

test on a Monark bicycle ergometer at $24^{\circ}C T_{db}$. Each pair of subjects then underwent three 2-hr acclimation exposures at $47^{\circ}C T_{db}$ with one day of rest between exposures (Table 2). During all tests the subjects exercised at a relative oxygen uptake ($\dot{V}_{02} \times 100/\dot{V}_{02}$ max) of $28 \pm 1\%$ (Table 1). Workloads that gave approximately the same relative oxygen uptakes were employed instead of constant absolute workloads to provide comparable "internal stress" and similar elevation of core temperature for each subject. The environmental conditions provided constant "external stress" and comparable levels of skin temperature.

	т _{db}	T _{wb}	rh	^Р н ₂ О	т _g
	°C	°C	%	mm Hg	°c
Control test	24	16	44	10	21
Acclimation test no 1	48	32	34	27	47
Acclimation test no 2	48	33	38	31	47
Acclimation test no 3	47	33	41	32	47

TABLE 2. Average environmental conditions during the experiment

In all tests turbulent air motion varied from 12 to 15 m/min.

Expired gas was collected in meteorological balloons and the O₂ and CO₂ concentrations were determined immediately with Beckman E2 and Beckman IR 215 analyzers. Analyzer calibrating gases were calibrated with the micro-Scholander technique (Scholander, 1947). Oxygen uptake was calculated with data from the nomogram of Dill and Fölling (1928). The reproducibility of duplicate ∇_{02} measurements averaged \pm 0.02 l/min. The 175 ml dead space in the modified Otis-McKerrow respiratory valve was included in the calculation of V_E from V_E. Heart rate was determined from the continuous EKG BTPS record.

Rectal (T_{re}) , auditory canal (T_{ac}) and skin temperatures were measured with YSI series 400 thermistors and recorded on a Digitek thermometer; system accuracy was $\pm 0.05^{\circ}$ C. The rectal thermistor was inserted 17 cm and the six skin thermistors were fixed to spring clips attached to plastic rings that allowed free evaporation of sweat around each thermistor. The skin thermistors were located on the medio-lateral arm, medio-lateral forearm, upper abdomen, subscapular region, medio-anterior thigh and medio-lateral leg. Each skin thermistor reading was multiplied by the proportion of total surface area represented by that thermistor and the sum of the six products was the mean skin temperature (\overline{T}_S) . Auditory canal temperature was measured 8 to 10 mm from the tympanic membrane (Greenleaf and Castle, 1972). Total body sweat rate was calculated from changes in body wt measured on a platform balance (± 5 kg) at half-hourly intervals taking into account voluntary tap water consumption (37° C) but not respiratory gas exchange.

The criteria for terminating a test (tolerance time) were either a T_{re} of 40° C, a maximal heart rate for one min, or the subject's request to stop. The main signs and symptoms of most subjects at the termination of work were those of classical heat exhaustion: fatigue, nausea, excessively high heart rates, syncope during the rest periods, dizziness, chills and shortness of breath.

direction between the

to threadily only

A solution in the second second

ALM & MORE ALL 1 AVE.

÷

RESULTS

रूर ६ तो में अनेत में स्वतिमित

1.144.1

Ē

4115-4115-60

1.16-1

÷

÷

÷

18 14

Ē

41-416-1

Ì

1.1

÷

÷

-

vite of a state

MAXIMAL OXYGEN UPTAKE AND TOLERANCE

The results indicate essentially no demonstrable positive relationship between maximal oxygen uptake and tolerance to T_{db} 47°C while working at an average workload of 58 W and a relative oxygen uptake of 28% (Fig. 1). Subject BUC, with the highest maximal oxygen uptake of 65.6 ml/(min.kg), and subject JEW, with the second lowest maximal oxygen uptake of 42.4 ml/(min.kg), were exposed simultaneously and their tolerances for each of the three acclimation exposures were practically the same: subject BUC tolerance times were 55, 85 and 85 min; subject JEW times were 55, 75 and 85 min, respectively (Fig. 1, Table 3).

During the first acclimation exposure subject AMB was able to work for 120 min (100% tolerance), subject SHA completed 115 min and subject McC, who had the lowest maximal oxygen uptake [42.2 ml/(min.kg),] stopped at 85 min. Three other subjects (BUC, SCH, GIL) with high maximal oxygen uptakes had first exposure tolerances of 55 min or less.

During the second acclimation exposure, the tolerance of subject AMB decreased from 120 min on the first exposure, the tolerance of subject SHS dropped from 115 to 70 min and McC from 85 to 70 min. Conversely, those subjects with the lowest first exposure tolerances all had greater tolerance during the second exposure: GIL went from 50 to 55 min, SCH increased from 50 to 75 min and JEW from 55 min (he was stopped because his heart rate reached 200 beats/min) to 75 min. The average tolerance of 82 min was highest during the third acclimation exposure. It should be emphasized that the second exposure tolerances of subjects AMB, SHA and McC (55, 70 and 70 min, respectively), who had the greatest first exposure tolerances, were not appreciably different than the second exposure tolerances of subjects GIL, SCH and JEW (55, 75 and 75 min, respectively), who had the lowest first exposure tolerances. In all but two exposures termination was by voluntary withdrawal.

COMPARISON OF SUBJECTS WITH HIGH AND LOW MAXIMAL OXYGEN UPTAKES

A comparison of average tolerance time, ΔT_{re} , Δ heart rate and terminal heart rates between the two subjects with the highest maximal oxygen uptake (BUC and SCH, \overline{X} area = 2.08 m²) and the lowest maximal Δ ygen uptake (JEW and McC, \overline{X} area = 2.04 m²) is presented in Fig. 2. During the first acclimation exposures (Al), the low max V_{02} pair had greater tolerance, 58 min, compared with 44 min for the high max V_{02} pair; the values for the other three variables for the two pairs were essentially the same.

During the second acclimation exposure (A2), the high max V_{02} pair had a ΔT_{re} of $2.55^{\circ}C$ compared with $1.98^{\circ}C$ for the low group (Fig. 3). Terminal heart rates were 10 beats/min higher in the low pair.

During the third acclimation exposure (A3), while tolerance time, ΔT_{re} and terminal heart rates were essentially the same, the Δ heart rate for the low maximum pair was reduced 25 beats/min compared with the high maximum pair due to elevated resting heart rates in the former (Fig. 2, Table 3). From these data it is clear that, when working at the same relative load, the high capacity pair has no appreciable advantage in tolerance over the low capacity pair during early exposure to heat.

ship beting at an g. 1). (min.kg), f 42.4 t each of t BUC 55, 75 and

vork for ject McC, ped at l oxygen

AMB ubject SHS sely, those tolerance creased his heart 82 min was sized that 55, 70 and ices, were ubjects 1e lowest as by volun-

d terminal ygen uptake en uptake ig the first erance, ilues for the . pair had a

). Terminal e, ΔT_{re} and for the low

maximum 'able 3). tive load, over the low

Fig. 1. Individual values for maximal oxygen uptake and tolerance time expressed as % of maximal for the first ①, second ② and third ③ heat exposures.

379

the second state of the second

	Sweat rate	g/(hr.m ²)		118	101	17	31	128 49	96	27	_		585	966	1 5	574 206	0 I 7	478	546	122	
	Heart rate _t	% max		54	7.c	54	53	48 49	54	2			87	86	50	202	70 99	86	83	, e	
	AHeart rate	beats/min		31	4.3 61	21	24	33 27	34	5			06	97	68	00 62	59	80	47	2	
	Heart rate _t	beats/min		107	125	109	108	94 87	106	ົວ	_		172	170	154	164 168	135	152	162	9	
- 1000-	Heart rate ₀	beats/min		76	6.49	80	84	61 60	72	4	-		82	73		96	26	72	83	4	
· · · · · ·	۵Ts	°c		-0.22	2.23	0.25	0.12	$1.72 \\ 0.42$	0.61	0.37	-		2.19	1.96	0.87	1.56	2.42	2.19	1.74	0.23	
,	\overline{T}_{s_t}	°c		31.66	32.07	32.71	32.41	31.14 32.22	31.95	0.21	-		39.83	39.58	39.00	40.03	39.43	40.00	39.75	0.08	
	$\overline{\mathbf{T}}_{\mathbf{s}_0}$	°c		31.88 31.73	29,84	32.46	32.29	29.42 31.80	31.35	0.46	-		37.64	37.62	20.73	38 47	37.01	37.81	38.01	0.25	
	۵T _{re}	о ^о		0.41	1.05	0.06	0.24	0.88 0.01	0.40	0.15	-		2.62	1.94	1.41	1 73	1.71	2.83	2.00	0.20	
	T _{re} t	ວຸ		37.81	37.75	37.49	37.64	37.45 37.40	37.59	0.06	-		40.03	39.13	59.03 18 01	39.16	38.96	39.72	39.28	0.16	
0	$^{\mathrm{T}}_{\mathrm{re}_0}$	ာ		37.40 37.46	36.70	37.43	37.40	36.57 37.39	37.19	0.15	-		$\frac{37.41}{2}$	37.19	37 13	37.43	37.25	36.89	37.28	0.05	
	Tolerance time	$^{q}_{k}$ max		100	100	100	100	100	100	0	-		100	46	45	21	42	96	63	10	
	Tolerance time	min	7	120	120	120	120	120	120	0	-	I ON NOIL	120	00	00 22	85	50	115	76	12	
	Subject	C.	CONTROI	AMB	CIL	JEW	McC	SCH	IX	HSE H	-	ACCLIMA	AMB	D D D D D D D D D D D D D D D D D D D	A B	MeC	SCH	SIIA	×	±SE	

TABLE 3. Tolerance time, body temperature, heart rate and sweat rate during the control and acclimation exposures. Sweat rate was the average loss over the exposure. 0 = zero time value; t = terminal value.

380

ACCLIMATION NO 2

-

-

1

and the second indication of the second s

राज्यात्र २ २ व्या २ आग्रे क्षेत्रवायो द्वितियित्विति विभिन्न कार्यक्षित्र व्या हे a contraction of the

1.000

1 contractions

•

-

· [1] 2019년 - 2011년 1월 1911년 1월 1911년 1월 1911년 1월 1911년 1월 2011년 1월 1911년 1월 1911년 1월 1911년 1월 1911년 1월 1911년 1

 $i \to 0.0\, \mathrm{dm}$ service Alternal transfer

all where the local set floor

Office | Description

etter i serieri (henterbeheed) (hen

AND A DATE OF THE CONTRACTOR

.....

ιø	55 6		3	99	1	33	0	7	57	34	57		84	22	80	32	89	47	58	73	78
47	12		74		4	č	8	151		9	Ä		-	00	4	ີ ເດ	ი 	<u>_</u>	~		
69 86	ຕ ຕ ຜ		85	85	86	97	81	75	19	84	ლ 		83	83	87	85	81	80	78	82	
59 80	79 5		80	94	74	96	73	19	72	81	4		75	66	84	67	99	83	82	46	4
135 152	162 6		168	169	162	194	165	148	140	164	2		165	164	164	170	166	156	138	160	4
76 72	88 44		88	75	88	96	92	69	68	82	4		90	65	80	103	100	73	56	81	2
2.42	1.74		1 63	2.83	1.51	0.57	1.82	2.10	0.68	1.59	0.30		66 [1.32	2 76	0.05	2.31	3.02	1.38	1.72	0.39
39.43 40.00	39.75 0.08	~	39 06	39.92	39.32	39.90	39.49	39.72	39.89	39.61	0.13		00 05	39.47	38 99	38.92	39.93	39.31	39.41	39.29	0.13
37.01 37.81	38.01 0.25		37 43	37.09	37.81	39.33	37.67	37.62	39.21	38.02	0.33		27 80	38 15	36 23	38.87	37.62	36.29	38.03	37.57	0.98
1.71 2.83	0.20		1 79	2.61	1.14	2.41	1.54	2.49	2.20	2.03	0.21	•	1 06	2.21	1.63	2.19	2.01	2.01	2.78	2.11	0.13
38.96 39.72	39.28 0.16		28 Q1	39.77	38.60	39.47	39.08	39.72	39.42	39.28	0.16	•	60.00	39.28	20 12	39.08	39.42	39.48	39.37	39.26	0.07
37.25 36.89	37.28 0.05	<u> </u>	61 26	37.16	37.46	37.06	37.54	37.23	37.22	37.26	0.07		00 00	37.07	27 50	36.89	37.41	37.47	36.59	37.14	0.13
42 96	10		ų	40	46	62	28	62	58	58	3	-	U	* 5	15	12	11	11	11	69	2
50 115	76 12	L ION NO 2	U	0 00 0 00	55	75	20	75	10	69		TION NO 3	L	00 20	с с С с	00 85	85	85	85	82	3
SCH SHA	E XI	I ACCLIMAT		AMB		LEW	We C	SCH	SHA	IX	+SE	ACCLIMA		AMA		LEW	NeC.	SCH	SHA	×	±SE

381

44444

100

territoria e de la contra de la c

- 16-14

-

a obticate (a)

1.41.11.401

Ξ

i

र र र र ६ ओस्स्सिक्कीस्त्री (जात) | ५ : १२ | ०२ t e i e i e i

-÷

Fig. 2. Comparison of average tolerance time, Δ heart rate, Δ rectal temperature and terminal heart rate (% of maximum) between the two subjects with the highest V_{02} (BUC and SCH) and the two subjects with the lowest max V_{02} (JEW and McC). C = control, Al = acclimation no 1, etc.

MAXIMAL OXYGEN UPTAKE AND SWEAT RATES

In five of the seven subjects sweat rates progressively increased from the first through the third acclimation exposures (Fig. 3, Table 4). Of particular interest is the relationship between "maximal" sweat rates (those measured during the second half-hour period) and maximal oxygen uptake (Fig. 3). The solid line is the average of the C, Al, A2 and A3 sweat rates. The missing data during the first acclimation exposure in subjects SCH and GIL were due to the inability of these men to complete the second half-hour work period. During the 24°C control test, the average second period sweat rate in the two high max V_{02} subjects [178 g/(hr · m²)] was much greater than the sweat rate in the two low maximum subjects [24 g/(hr · m²)]. This difference was also present during the three acclimation exposures (Table 4). In general, during the three acclimation exposures, the maximal oxygen uptake, expressed as ml/(min·kg), was proportional to the sweat rate expressed as g/(hr · m²).

GENERAL RESULTS

382

In the control experiment the average ΔT_{re} was $+ 0.40^{\circ}$ C, $\Delta \overline{T}_{s}$ was $+ 0.61^{\circ}$ C, Δ heart rate was 34 beats/min and the terminal heart rate was 54% of the maximal heart rate (Table 3). The average sweat rate increased from 66 g/(hr·m²) during the first half-hour work period to 110 g/(hr·m²) during the fourth half-hour period. EXPC JU SUBJEC MAX Ma.

TAE L

Contact

Accin

Acclar

Acc: r

111

ì.c

Н**і** Цо

Hi FC

III.

LC

'i

Enderstightlichen die Bertreichtlichen die Bertr

10-11-24

openand a state of a state

of the second se

Traff Low College

्रात्र र त्रार्थित विद्योति क्षेत्रका क्षेत्रिया श्रीत श्रित हि. त्रात्र ७ व द्विति रत्य त्रात्र स्थानका क्ष्विक्षि जीति लेकि स्थित हिस्त्र

of the second se

MAX Vo2 ml/(min'kg) 65.6

1600

1400

60.5

63.5

64.2

C AI A2A3 Amb

54.1

C ALAZA3

JEW

42.4

C AI A2A3

MCC

42.2

TABLE 4.	Average body temperatures and sweat rates for the two subjects with
	high max V_{02} and low max V_{02} during the control and acclimation
	exposures (t = terminal values)

	T _{re} t	∆T _{re}	Tst	∆T _s	Sweat rate
	С	С	С	С	$g/(hr \cdot m^2)$
Control High max Low max	37.54 37.56	0.52 0.15	31.30 32.56	0.72 0.18	178 24
Acclimation no 1 High max Low max	39.04 39.04	1.82 1.73	39.50 39.90	2.19 1.26	996 336
Acclimation no 2 High max Low max	39.74 39.28	2.55 1.98	39.82 39.70	$2.46 \\ 1.20$	1,092 322
Acclimation no 3 High max Low max	39.38 39.25	1.11 1.10	$39.39 \\ 39.42$	2.17 1.18	884 460

MAX V₀₂ MAX V₀₂

3

al 'n

the first interest ig the line is g the lity of C control cts iximum iree n expoortional

.61°C, maxi- $r \cdot m^2)$ half**3**83

ા ગામમાં નિવાર્થના નિવારનાં ભાગમાં આવેલાં છે. ÷ - 141 - 14

> ÷ 18 (4) (10 (3)) -

> > Ē

ondon de consector de la

During the first acclimation exposure, the average tolerance time was 76 min, ΔT_{re} was +2.00°C, $\Delta \overline{T}_{s}$ was +1.75°C and Δ heart rate was 79 beats/min.

and the second second

명하기

carolin-inda 🗠

1 indexe 10100

÷. - 1941-1

RENDER OF STREET Hiller of Heat grant

या कि जातिक ने किन्दी कही कहते हैं। यह ने विद्या हो की किनेव के किनेव के कि तिक्री कि ાણંબનાથે કે દાવ્યું અન્ય કોર્ય ખાયતો દાખ્યા ગામ જ

dim ----1

- and shires in a result of the solution of the second

month of the production

व्यक्ति विद्यासम्बद्धाः विकान

a de file

dende i fit ted

1

relies the

र १९२४ च के के प्रतितिति विभिन्ने सिहे-के रु

0.001-0-00-0

- theft -

ા જે નેવેલાએ વા પ્રત્યોય છે.

नकरीं विदेषिक निर्मते व

And could be

A comparison of average data between the first and third acclimation exposures at the point of exhaustion shows that some measurements were remarkably constant: terminal Tre (39.28°C vs 39.26°C), $\Delta \overline{T}_{s}$ (+1.74°C), ΔT_{re} (2.0°C vs 2.1°C) terminal heart rate (162 vs 160 beats/min), Aheart rate (79 vs 79 beats/ min), and terminal heart rate in percent of maximum (83% vs 82%). The more variable measurements were: tolerance time in percent of maximum increased from 63% to 69%, terminal T_s decreased from 39.75° to 39.29°C and first period sweat rates increased 20%, from 337 to 419 g/(hr·m²). Some possible criteria for tolerance limits might be constructed from these data: rectal temperature of 39.3°C; heart rate of 160 beats/min (82% of maximum); and a change in heart rate of 80 beats/min.

DISCUSSION

Men with high maximal oxygen uptake are capable of performing heavier work for longer periods of time than lower capacity men. The greater metabolic heat produced by the high capacity men, resulting from the greater absolute work loads, must be dissipated or hyperprexia would occur. Therefore, men with high aerobic capacity must have high heat loss capability or they will not be able to work near their maximal levels.

The results of the present study indicate that near maximal sweat rates, induced by mild exercise in the heat, are proportional to the maximal oxygen uptake. Subjects with maximal oxygen uptakes of 64 ml/(min kg) had maximal sweat rates of 884 to 1,092 g/(hr m²) while those with maximal oxygen uptakes of 42 ml/ (min kg) had maximal sweat rates of 336 to 460 g/(hr \cdot m²) (Table 4). The lower sweat rates in the lower capacity subjects were not due to lower tolerance times in the heat (Fig. 2, upper left). During the control exposure at $T_{db} 25^{\circ}C$ average sweat rate was 96 g/(hr m^2) but the high capacity subjects (BUC, SCH, SHA) had sweat rates between 49 and 228 g/(hr m^2) while the lower capacity men (JEW, McC) sweated between 17 and 31 g/(hr m^2). Thus the exercise per se contributed less than 20 percent of the maximal sweat rates during exercise in the heat.

Saltin and Hermansen (1966) suggested there was a direct relationship between maximal oxygen uptake and the rate of sweating during moderate exercise at 24°C ambient temperature. Two men with widely different maximal oxygen uptakes and working at the same relative oxygen uptakes but different absolute work loads had the same equilibrium levels of rectal temperature. Since the higher capacity subject had greater heat production because of his greater work load than the lower capacity subject, the "excess" heat from the former had to be dissipated for the rectal temperatures to attain the same level. The "excess" heat was dissipated mainly through greater evaporative loss since the exercise sweat rate of the high capacity subject was about 60% greater than that of the lower capacity man. In the present study the subjects worked at essentially the same relative oxygen uptakes but dry-bulb temperature was elevated to elicit maximal sweating. There is a positive relationship between the rate of sweating and maximal oxygen uptake with either a moderately heavy load in a cool environment (Saltin and Hermansen, 1966), resting in a sauna bath (Kozlowski and Saltin, 1964) or with a mild work load in the heat (present study). These observations suggest that as long as there is a stimulus sufficient to initiate sweating, this relationship between sweating and maximal oxygen uptake is not specifically dependent upon work load, metabolic rate or ambient temperature.

To explain the greater exercise sweating with high maximal oxygen uptakes in men who have the same equilibrium levels of core and skin temperature as lower

384

capacity men, Saltin and Hermansen (1966) suggest that any mechanism responding directly with the individual max V_{02} or the absolute work load, for example mechanoreceptor function, may provide stimuli that results in increased sweating. Smiles and Robinson (1971) present evidence that the level of exercise sweating is controlled by an undefined stimulus proportional to oxygen uptake (metabolic rate) plus a neuromuscular stimulus proportional to the speed of muscular movement (walking). However, other evidence suggests mechanoreceptor function is probably not an important part of the mechanism (Ekblom, Greenleaf and Hermansen, 1971; Greenleaf et al., 1971; Nielsen, 1968).

In the present study the high correlation between maximal oxygen uptake and sweating during work in heat could not have been influenced by speed of movement since there was a constant rate of pedaling the ergometer. The greater sweating in our higher capacity subjects was not related in any consistent pattern to terminal T_{re} , ΔT_{re} or terminal \overline{T}_s . The high capacity subjects did exhibit a two-fold greater ΔT_g during the control and heat exposures compared with the low capacity men (Table 4). Since terminal \overline{T}_s were the same in the two groups, the difference in $\Delta \overline{T}_s$ was due to different resting skin temperatures (Table 3). The higher \overline{T}_{s} in the low capacity group was probably due to their lower sweat rates in the rest period before exercise commenced (Kozlowski and Saltin, 1964). Thus, we are left with a still undefined mechanism for the observed relationship between maximal oxygen uptake and maximal sweating.

In normal, ambulatory people, exercise training of progressively increasing intensity can increase maximal oxygen utilization only 15 to 20 percent (Ekblom, 1969). Bed rest deconditioning reduces max \dot{V}_{02} up to 100 percent (Saltin et al., 1968). Maximal rates of sweating have not been measured in deconditioned subjects. It is possible that heredity sets the upper and perhaps also the lower limits of the oxygen uptake capacity from training and deconditioning. If the rate of sweating is coupled directly with the oxygen uptake capacity, then perhaps genetic factors influence the limits of sweating. It is also possible that both maximal oxygen uptake and maximal sweating are responding to a third common unknown variable or mechanism.

There was no appreciable difference between the responses of our high capacity and low capacity subjects to endurance, Δ heart rate, Δ T_{re} or terminal heart rate during the control and heat exposures (Fig. 2). But, there was a large difference in rates of sweating. These results modify observations from earlier studies that fit men exhibited more favorable responses to initial work in the heat than less fit men. One reason for this discrepancy is that in each of the earlier studies all subjects worked at the same absolute load during the acclimation exposures. Since the more fit men probably had higher maximal oxygen uptakes, they would have been working at lower relative loads, hence the attenuated physiological responses and greater performance. The similar endurance performances of our high and low capacity subjects appear to be the result of similar relative loads, in spite of wide variations in sweating. These results question the importance of the rate of sweating as a major determinant of performance during early heat exposure but affirm the close relationship between maximal oxygen uptake and the capacity to maintain thermal homeostasis.

in,

sures con-

re sed eriod ria re of art

ork neat k high to

nduced . rates

/ wer imes rage .) had W, ibuted

veen 24°C is and is had y subwer the ted high In the takes a e with , ork

.ng :ta-

3 in Iower

there

1. Hell

ASTRAND, I. (1960) :	Aerobic work capacity in men and women with
	special reference to age. Acta Physiol. Scand.,
BEAN, W.B. and EICHNA.	L.W. (1943): Performance in relation to environ-
22,	mental temperature. Reactions of normal young men
	to simulated desert environment. Fed. Proc. 2:
	144–158.
BRADBURY, P.A., FOX, H	R.H., GOLDSMITH, R. and HAMPTON, I.F.G. (1964):
	J. Physiol. (Lond.), 171 : 384-396.
DILL, D.B. and FÖLLING,	A. (1928): Studies in muscular activity. II. A nomo-
	graphic description of expired air. Amer. J. Physiol.
	66 : 133–135.
EICHNA, L.W., BEAN, W.	B., ASHE, W.F. and NELSON, N. (1945): Perform-
	ance in relation to environmental temperature.
	Reactions of normal young men to hot, humid (sim-
	ulated jungle) environment. Bull. Johns Hopk. Hosp.,
	76 ; 25-58.
EKBLOM, B. (1969) :	Effect of physical training on oxygen transport sys-
	tem in man. Acta Physiol. scand., suppl. 328.
EKBLOM, B., GREENLEA	F, C.J. and HERMANSEN, L. (1971): Temperature
	regulation during continuous and intermittent exer-
	cise in man. Acta Physiol. scand., 81:1-10.
GREENLEAF, J.E. (1964):	Lack of artificial acclimatization to heat in physi-
	cally fit subjects. Nature (Lond.), 203:1072.
GREENLEAF, J.E. and CA	STLE, B.L. (1972): External auditory canal temper-
	ature as an estimate of core temperature. J. appl.
	Physiol., 32:194-198.
GREENLEAF, J.E., KESSI	EL, A.L.van, RUFF, W., CARD, D.H. and RAP-
PORT, M. (1971) :	Exercise temperature regulation in man in the up-
	right and supine positions. Med. Science Sports,
	3:175-182.
KOZLOWSKI, S. and SALII	N, B. (1904): Effect of Sweat loss of body futus.
ATT CON D (1069)	J. appl. Physiol., 19:1119-1124.
NIELSEN, B. (1966) :	and intermittent log work. Acta Dhysiol Sound
	79 . 95-99
DIWONKA B W BODING	12:20-02. NN S CAY VI and MANATIS PS (1965); Dro-
PIWONKA, R.W., ROBINSC	acclimatization of mon to host by training I appl
	Descial 20, 270-284
POWELL TO KRANING	II K K KENNEDY I W and EVANS T O (1967).
ROWELL, L.B., MARING	Central circulatory responses to work in dry heat
	before and after acclimatization J appl. Physiol
	$22 \cdot 509-518$
SALTIN B BLOMOVIST	B. MITCHELL, J.H., JOHNSON, JR., R.L.
WILDENTHAL, K. and CHA	PMAN, C. B. (1968): Response to exercise after bed
	rest and after training. Circulation. 38 ; suppl.
	7:1-78.
SALTIN, B. and HERMANSI	EN. L. (1966): Esophageal, rectal, and muscle
	temperature during exercise. J. appl. Physiol
	21 : 1757-1762.
SCHOLANDER, P.F. (1947)	: Analyser for accurate estimation of respiratory
· · · · · · · · · · · · · · · · · · ·	gases in one-half cubic centimeter samples.
	J. biol. Chem., 167 : 235-250.

-

S: []

S' I $\mathbf{B}(\mathbf{G})$

Wť

 \mathbf{G}):

A 33

es.e. S∈v∈ si.re

(X V

swe to 4 la · $\mathbf{T}(\cdot)\mathbf{h}$

th :

sv e di :t

 $\mathbf{Z} \cong$ $\mathbf{T}_{i} = \mathbf{I}_{i}$ nanı \mathbf{W} : \mathbf{r} A.b Wit $ti { { on } }$ (h 🕚 $St \rightarrow f$

b€ it $\mathbf{P} \cdot \mathbf{r}$ SCI

te z

 \mathbf{R}_{-}° S

cont

 $\begin{array}{c} d\varepsilon & 0 \\ d\varepsilon & 0 \\ V_{1,2} \\ 2 \\ \exists \varepsilon \\ d\varepsilon \\ pI \\ s \\ \varepsilon \end{array}$

ac i

 $\mathbf{m}_{i}(\mathbf{l})$

la d

ét : . ds no la ti **s**é 21

chai

ALL ROUGH REAL FOR THE

Ē

-:

tideeq with Public for law

1

- transformer

1 · · ·] • ·

Ŧ - In I

-mentalistic di la politica compression of a compression of

- Hiteline Hitel

h-galle -

। মি চল চিলাই মূল হৈ বা বা বাইজি মাৰ্বাল প্ৰথমিক মহিলে বিভিন্দ আৰোগ বিজে পাছ বা বাব – া আছিল হল চিলাই বিভিন্দ দিন বাইলে বিজি মাৰ্বাল বিভিন্দ বিভিন্দ আৰোগ বিজে বিভিন্দ বিজে বিভিন্দ বিভিন্দ বিভিন্দ বিভ আছিল হল চিলাই বিভিন্দ দিন বাইলে বিজি বিভিন্দ বিভিন্দ বিভিন্দ বিভিন্দ আৰোগ বিজি নিৰ্বালি বিজি বিভিন্দ বিভন্দ বিভ

÷ 1-1

order Bellin D

- april

∞ाने वर्षकोष्ट[44] वर्षकोष्ट्रान

1.1

વ અન્ય છે. તે તે તે તે તે ગામ છે.

-ard day district

n Stepelitteren in off PS No Policy

hurr

a i de filolée jihondikon et aistast

÷.

functioned participation

character 1.1

interaction references interaction

men with ol. Scand.,

1 to environmal young men 1. Proc. 2:

I, I.F.G. (1964):

y. II. A nomoner. J. Physiol.

945): Performperature. , humid (simns Hopk. Hosp.,

ransport sysuppl. 328. Temperature mittent exer-1 : 1-10. eat in physi-3 : 1072. canal temperure. J. appl.

I. and RAPan in the upnce Sports,

pody fluids.

vork, leg work ol. Scand.,

S. (1965): Preing. J. appl.

NS, T.O. (1967): in dry heat opl. Physiol.,

R.L.,
rcise after bed
8 : suppl.

d muscle Physiol.,

respiratory nples.

SMILES, K.A. and ROBINSON, S. (1971): Regulation of sweat secretion during positive and negative work. J. appl. Physiol., 30:409-412.

STRYDOM, N.B., WYNDHAM, C.H., WILLIAMS, C.G., MORRISON, J.F., BREDELL, G.A.G., BENADE, A.J.S. and von RAHDEN, M. (1966): Acclimatization to humid heat and the role of physical conditioning. J. appl. Physiol., 21: 636-642.

WYNDHAM, C.H., BENADE, A.J.A., WILLIAMS, C.G., STRYDOM, N.B., GOLDIN, A. and HEYNS, A.J.A. (1968): Changes in central circulation and body fluid spaces during acclimatization to heat. J. appl. Physiol., 25: 586-593.

ABSTRACT. - The purpose of this experiment was to determine if tolerance to exercise in the heat is related to maximal oxygen uptake (max \hat{v}_{02}) and sweating. Seven men with max \hat{v}_{02} between 42 and 66 ml/(min·kg) underwent one 2-hr exposure at 24°C T₀ while working on a bicycle ergometer at \overline{X} rel \hat{v}_{02} of 28% (\overline{X} $\hat{v}_{02} = 1.23$ l/min). In the hot exposures the high capacity subjects had maximal sweat rates of 800 to 1,000 g/(hr·m²) while the lower capacity men sweated 300 to 400 g/(hr·m²). These differences in sweating were not related to neuromuscular stimuli, \hat{v}_{02} (metabolic rate), T_{re} , ΔT_{re} , \overline{T}_{s} , $\Delta \overline{T}_{s}$ or tolerance time. Tolerance to exercise in the heat was not related to maximal \hat{v}_{02} capacity when the subjects worked at the same relative load in spite of large differences in sweating. These results question the importance of the rate of sweating for predicting work performance in hot environments.

ZUSAMMENFASSUNG. - Das Ziel dieser Untersuchung war, zu prüfen, ob die Toleranz bei Arbeit in der Hitze in einer Beziehung steht zur maximalen O₂-Aufnahme und Schwitzen. Sieben Männer mit V₀₂ zwischen 42 - 66 ml/(min·kg) wurden belastet während 2 Stunden bei T_a 24°C und 3 x 2 Stunden bei 47°C mit Arbeit auf dem Fahrrad-Ergometer bei im Mittel von 28% V₀₂ = 1.23 l/min. Während der Hitzebelastung zeigten die leistungsfähigen Personen Schweissekretionsraten von 800 - 1000 g/(hr·m²) und die wenig leistungsfähigen 300 - 400 g/ (hr·m²). Diese Unterschiede waren ohne Beziehung zu neuromuskulären Stimuli, Stoffwechselrate, T_{re}, ΔT_{re} , \overline{T}_{s} , $\Delta \overline{T}_{s}$ oder der Toleranzzeit. Ausdauer bei Arbeit in der Hitze war ohne Beziehung zur maximalen V₀₂-Kapazität, wenn die Personen bei der gleichen relativen Belastung arbeiteten tro grosser Unterschiede im Schwitzen. Die Ergebnisse stellen den Wert der Schweissekretionsrate zur Voraussage der Arbeitsleistung in der Hitze in Frage.

RESUME. - Dans cette étude, on a cherché à voir si la tolérance au travail sous contrainte de chaleur était en relation avec la possibilité maximum d'absorption de O_2 (\dot{V}_{02}) d'une part, de transpirer d'autre part. 7 hommes présentant des \dot{V}_{02} compris entre 42 et 66 ml/(min . kg) ont pédalé sur un ergomètre pendant 2 heures par une T_a de 24°C et 3 x 2 heures par 47°C et cela par une \dot{V}_{02} relative de 28% (\ddot{X} $\dot{V}_{02} = 1,25$ 1/min). Durant l'effort sous contrainte de chaleur, les plus actifs ont eu des sécrétions de sueur de 800 à 1.000 g h⁻¹ m⁻² et les moins actifs de 300 à 400 g/h . m². Ces différences étaient sans rapport avec les stimulus neuro-musculaires, le taux de métabolisme, T_{re} , ΔT_{re} , T_s et ΔT_s ou la durée de tolérance. L'endurance au travail sous contrainte de chaleur n'a pas été fonction de la capacité maximum de \dot{V}_{02} , lorsque les personnes travaillaient dans des conditions analogues, même si l'on a noté de grandes différences dans la transpiration. Ces résultats mettent en doute la représentativité du taux de sécrétion de sueur comme indicatif des possibilités de travailler en atmosphère chaude.

₩.