499 research outputs found

    The agrin gene codes for a family of basal lamina proteins that differ in function and distribution

    Get PDF
    We isolated two cDNAs that encode isoforms of agrin, the basal lamina protein that mediates the motor neuron-induced aggregation of acetylcholine receptors on muscle fibers at the neuromuscular junction. Both proteins are the result of alternative splicing of the product of the agrin gene, but, unlike agrin, they are inactive in standard acetylcholine receptor aggregation assays. They lack one (agrin-related protein 1) or two (agrin-related protein 2) regions in agrin that are required for its activity. Expression studies provide evidence that both proteins are present in the nervous system and muscle and that, in muscle, myofibers and Schwann cells synthesize the agrin-related proteins while the axon terminals of motor neurons are the sole source of agrin

    The Size Distribution of Casein Micelles in Camel Milk

    Get PDF
    The size distribution of casein micelles in camel milk has been determined by electron microscopy. Individual and pooled samples were cryo-fixed by rapid freezing and freeze-fractured. Electron micrographs of the freeze-fracture replica revealed a relatively broad size distribution, with an average micelle dimeter around 280 nm in the volume distribution curve. The distribution was significantly broader than that of the particles of cow\u27s or human milk and showed a greater number of large particles. The submicelles were also somewhat larger than those observed in cow\u27s and human milk (approx. 15, 10 and 7 nm, respectively). The average values for the gross composition of camel milk were similar to those of cow\u27s milk. Partition of mineral salts between the serum and micellar phase of camel milk was studied by means of ultrafiltration. The proportion of soluble forms of the minerals expressed as percentage of their total concentrations were 33% for calcium, 69% for magnesium, 52% for phosphorus and 60% for citrate

    Bound states and field-polarized Haldane modes in a quantum spin ladder

    Get PDF
    The challenge of one-dimensional systems is to understand their physics beyond the level of known elementary excitations. By high-resolution neutron spectroscopy in a quantum spin ladder material, we probe the leading multiparticle excitation by characterizing the two-magnon bound state at zero field. By applying high magnetic fields, we create and select the singlet (longitudinal) and triplet (transverse) excitations of the fully spin-polarized ladder, which have not been observed previously and are close analogs of the modes anticipated in a polarized Haldane chain. Theoretical modelling of the dynamical response demonstrates our complete quantitative understanding of these states.Comment: 6 pages, 3 figures plus supplementary material 7 pages 5 figure

    Field-induced anisotropy in the quasi-two-dimensional weakly anisotropic antiferromagnet [CuCl(pyz)2]BF4

    Get PDF
    We measured NMR and magnetic susceptibility for the quasi-two-dimensional, weakly XY-like, spin-1/2 square-lattice Heisenberg antiferromagnet [CuCl(pyz)(2)]BF4 (pyz = pyrazine = N2C4H4) near the critical temperature. The Neel temperature T-N and the order-parameter critical exponent beta were obtained from the NMR line broadening as a function of temperature. As the applied field strength (H parallel to c) was increased, T-N increased and beta decreased. This behavior indicates that the field effectively enhanced XY anisotropy. The susceptibility as a function of temperature did not show a clear feature for T_N, but showed field-dependent minima below T_N for both H parallel to c and H parallel to ab, where minimum features disappeared for ÎŒH_0 > 2T

    Crystal Growth with Oxygen Partial Pressure of the BaCuSi2O6 and Ba1-xSrxCuSi2O6 Spin Dimer Compounds

    Get PDF
    BaCuSi2O6 is a quasi-two-dimensional spin dimer system and a model material for studying Bose-Einstein condensation (BEC) of magnons in high magnetic fields. The new Bai(1-x)Sr(x)CuSi(2)O(6) mixed system, which can be grown with x <= 0.3, and BaCuSi2O6, both grown by using a crystal growth method with enhanced oxygen partial pressure, have the same tetragonal structure (I4(1)/acd) at room temperature. The mixed system shows no structural phase transition so that the tetragonal structure is stable down to low temperatures. The oxygen partial pressure acts as a control parameter for the growth process. A detailed understanding of the crystal structure depending on the oxygen content will enable the study of the spin dynamics of field-induced order states in this model magnetic compound of high current interest with only one type of dimer layers, which shows the same distance between the Cu atoms, in the structure

    Academic freedom in Europe: reviewing UNESCO’s recommendation

    Get PDF
    This paper examines the compliance of universities in the European Union with the UNESCO Recommendation concerning the Status of Higher–Education Teaching Personnel, which deals primarily with protection for academic freedom. The paper briefly surveys the European genesis of the modern research university and academic freedom, before evaluating compliance with the UNESCO recommendation on institutional autonomy, academic freedom, university governance and tenure. Following from this, the paper examines the reasons for the generally low level of compliance with the UNESCO Recommendation within the EU states, and considers how such compliance could be improved

    A constitutive model for cytoskeletal contractility of smooth muscle cells

    Get PDF
    The constitutive model presented in this article aims to describe the main bio-chemo-mechanical features involved in the contractile response of smooth muscle cells, in which the biochemical response is modelled by extending the four-state Hai–Murphy model to isotonic contraction of the cells and the mechanical response is mainly modelled based on the phosphorylation-dependent hyperbolic relation between isotonic shortening strain rate and tension. The one-dimensional version of the model is used to simulate shortening-induced deactivation with good agreement with selected experimental measurements. The results suggest that the Hai–Murphy biochemical model neglects the strain rate effect on the kinetics of cross-bridge interactions with actin filaments in the isotonic contractions. The two-dimensional version and three-dimensional versions of the model are developed using the homogenization method under finite strain continuum mechanics framework. The two-dimensional constitutive model is used to simulate swine carotid media strips under electrical field stimulation, experimentally investigated by Singer and Murphy, and contraction of a hollow airway and a hollow arteriole buried in a soft matrix subjected to multiple calcium ion stimulations. It is found that the transverse deformation may have significant influence on the response of the swine carotid medium. In both cases, the orientation of the maximal value of attached myosin is aligned with the orientation of maximum principal stress

    Couplings of N=1 chiral spinor multiplets

    Full text link
    We derive the action for chiral spinor multiplets coupled to vector and scalar multiplets. We give the component form of the action, which contains gauge invariant mass terms for the antisymmetric tensors in the spinor superfield and additional Green-Schwarz couplings to vector fields. We observe that supersymmetry provides mass terms for the scalars in the spinor multiplet which do not arise from eliminating an auxiliary field. We construct the dual action by explicitly performing the duality transformations in superspace and give its component form.Comment: 17 pages, v2 small change

    Multi-graviton theory, a latticized dimension, and the cosmological constant

    Full text link
    Beginning with the Pauli-Fierz theory, we construct a model for multi-graviton theory. Couplings between gravitons belonging to nearest-neighbor ``theory spaces'' lead to a discrete mass spectrum. Our model coincides with the Kaluza-Klein theory whose fifth dimension is latticized. We evaluate one-loop vacuum energy in models with a circular latticized extra dimension as well as with compact continuous dimensions. We find that the vacuum energy can take a positive value, if the dimension of the continuous space time is 6,10,...6, 10,.... Moreover, since the amount of the vacuum energy can be an arbitrary small value according to the choice of parameters in the model, our models is useful to explain the small positive dark energy in the present universe.Comment: 10 pages, No figure. Needs REVTeX4. citations are corrected and minor correction

    Quasi-2D Heisenberg Antiferromagnets [CuX(pyz)2](BF4) with X = Cl and Br

    Get PDF
    Two Cu2+ coordination polymers [CuCl(pyz)(2)](BF4) 1 and [CuBr(pyz)(2)]-(BF4) 2 (pyz = pyrazine) were synthesized in the family of quasi two-dimensional (2D) [Cu(pyz)(2)](2+) magnetic networks. The layer connectivity by monatomic halide ligands results in significantly shorter interlayer distances. Structures were determined by single crystal X-ray diffraction. Temperature-dependent X-ray diffraction of 1 revealed rigid [Cu(pyz)(2)](2+) layers that do not expand between 5 K and room temperature, whereas the expansion along the c-axis amounts to 2%. The magnetic susceptibility of 1 and 2 shows a broad maximum at similar to 8 K, indicating antiferromagnetic interactions within the [Cu(pyz)(2)](2+) layers. 2D Heisenberg model fits result in J(parallel to) = 9.4(1) K for 1 and 8.9(1) K for 2. The interlayer coupling is much weaker with vertical bar J(perpendicular to)vertical bar = 0.31(6) K for 1 and 0.52(9) K for 2. The electron density, experimentally determined and calculated by density functional theory, confirms the location of the singly occupied orbital (the magnetic orbital) in the tetragonal plane. The analysis of the spin density reveals a mainly sigma-type exchange through pyrazine. Kinks in the magnetic susceptibility indicate the onset of long-range three-dimensional magnetic order below 4 K. The magnetic structures were determined by neutron diffraction. Magnetic Bragg peaks occur below T-N = 3.9(1) K for 1 and 3.8(1) K for 2. The magnetic unit cell is doubled along the c-axis (k = 0, 0, 0.5). The ordered magnetic moments are located in the tetragonal plane and amount to 0.76(8) mu(B)/Cu2+ for 1 and 0.6(1) mu(B)/Cu2+ for 2 at 1.5 K. The moments are coupled antiferromagnetically both in the ab plane and along the c-axis. The Cu2+ g-tensor was determined from electron spin resonance spectra as g(x) = 2.060(1), g(z) = 2.275(1) for 1 and g(x) = 2.057(1), g(z) = 2.272(1) for 2 at room temperature
    • 

    corecore