115 research outputs found

    Weight‐of‐Evidence Approach for Assessing Removal of Metals from the Water Column for Chronic Environmental Hazard Classification

    Full text link
    The United Nations and the European Union have developed guidelines for the assessment of long‐term (chronic) chemical environmental hazards. This approach recognizes that these hazards are often related to spillage of chemicals into freshwater environments. The goal of the present study was to examine the concept of metal ion removal from the water column in the context of hazard assessment and classification. We propose a weight‐of‐evidence approach that assesses several aspects of metals including the intrinsic properties of metals, the rate at which metals bind to particles in the water column and settle, the transformation of metals to nonavailable and nontoxic forms, and the potential for remobilization of metals from sediment. We developed a test method to quantify metal removal in aqueous systems: the extended transformation/dissolution protocol (T/DP‐E). The method is based on that of the Organisation for Economic Co‐operation and Development (OECD). The key element of the protocol extension is the addition of substrate particles (as found in nature), allowing the removal processes to occur. The present study focused on extending this test to support the assessment of metal removal from aqueous systems, equivalent to the concept of “degradability” for organic chemicals. Although the technical aspects of our proposed method are different from the OECD method for organics, its use for hazard classification is equivalent. Models were developed providing mechanistic insight into processes occurring during the T/DP‐E method. Some metals, such as copper, rapidly decreased (within 96 h) under the 70% threshold criterion, whereas others, such as strontium, did not. A variety of method variables were evaluated and optimized to allow for a reproducible, realistic hazard classification method that mimics reasonable worst‐case scenarios. We propose that this method be standardized for OECD hazard classification via round robin (ring) testing to ascertain its intra‐ and interlaboratory variability. Environ Toxicol Chem 2019;38:1839–1849. © 2019 SETAC.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151334/1/etc4470_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151334/2/etc4470.pd

    In-Network Outlier Detection in Wireless Sensor Networks

    Full text link
    To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.Comment: Extended version of a paper appearing in the Int'l Conference on Distributed Computing Systems 200

    The Universal One-Loop Effective Action

    Full text link
    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version accepted for publication in JHE

    Complete Higgs sector constraints on dimension-6 operators

    Get PDF
    Constraints on the full set of Standard Model dimension-6 operators have previously used triple-gauge couplings to complement the constraints obtainable from Higgs signal strengths. Here we extend previous analyses of the Higgs sector constraints by including information from the associated production of Higgs and massive vector bosons (H+V production), which excludes a direction of limited sensitivity allowed by partial cancellations in the triple-gauge sector measured at LEP. Kinematic distributions in H+V production provide improved sensitivity to dimension-6 operators, as we illustrate here with simulations of the invariant mass and pT distributions measured by D0 and ATLAS, respectively. We provide bounds from a global fit to a complete set of CP-conserving operators affecting Higgs physics

    Association of ultra-rare coding variants with genetic generalized epilepsy: A case\u2013control whole exome sequencing study

    Get PDF
    Objective: We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. Methods: We performed a case\u2013control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding \u3b3-aminobutyric acid type A [GABAA] receptors, 113 genes representing the GABAergic pathway). Results: GABRG2 was associated with GGE (p = 1.8  7 10 125), approaching study-wide significance in familial GGE (p = 3.0  7 10 126), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9\u20137.8, false discovery rate [FDR]-adjusted p =.0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3\u20136.7, FDR-adjusted p =.022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3\u20132.5, FDR-adjusted p =.0024) but not with sporadic GGE (OR = 1.3, 95% CI =.9\u20131.9, FDR-adjusted p =.19). Significance: URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE

    The effective Standard Model after LHC Run I

    Get PDF
    We treat the Standard Model as the low-energy limit of an effective field theory that incorporates higher-dimensional operators to capture the effects of decoupled new physics. We consider the constraints imposed on the coefficients of dimension-6 operators by electroweak precision tests (EWPTs), applying a framework for the effects of dimension- 6 operators on electroweak precision tests that is more general than the standard S, T formalism, and use measurements of Higgs couplings and the kinematics of associated Higgs production at the Tevatron and LHC, as well as triple-gauge couplings at the LHC. We highlight the complementarity between EWPTs, Tevatron and LHC measurements in obtaining model-independent limits on the effective Standard Model after LHC Run 1. We illustrate the combined constraints with the example of the two-Higgs doublet model

    Habitat Assessment of Non-Wadeable Rivers in Michigan

    Full text link
    Habitat evaluation of wadeable streams based on accepted protocols provides a rapid and widely used adjunct to biological assessment. However, little effort has been devoted to habitat evaluation in non-wadeable rivers, where it is likely that protocols will differ and field logistics will be more challenging. We developed and tested a non-wadeable habitat index (NWHI) for rivers of Michigan, where non-wadeable rivers were defined as those of order ≄5, drainage area ≄1600 km 2 , mainstem lengths ≄100 km, and mean annual discharge ≄15 m 3 /s. This identified 22 candidate rivers that ranged in length from 103 to 825 km and in drainage area from 1620 to 16,860 km 2 . We measured 171 individual habitat variables over 2-km reaches at 35 locations on 14 rivers during 2000–2002, where mean wetted width was found to range from 32 to 185 m and mean thalweg depth from 0.8 to 8.3 m. We used correlation and principal components analysis to reduce the number of variables, and examined the spatial pattern of retained variables to exclude any that appeared to reflect spatial location rather than reach condition, resulting in 12 variables to be considered in the habitat index. The proposed NWHI included seven variables: riparian width, large woody debris, aquatic vegetation, bottom deposition, bank stability, thalweg substrate, and off-channel habitat. These variables were included because of their statistical association with independently derived measures of human disturbance in the riparian zone and the catchment, and because they are considered important in other habitat protocols or to the ecology of large rivers. Five variables were excluded because they were primarily related to river size rather than anthropogenic disturbance. This index correlated strongly with indices of disturbance based on the riparian (adjusted R 2 = 0.62) and the catchment (adjusted R 2 = 0.50), and distinguished the 35 river reaches into the categories of poor (2), fair (19), good (13), and excellent (1). Habitat variables retained in the NWHI differ from several used in wadeable streams, and place greater emphasis on known characteristic features of larger rivers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41269/1/267_2004_Article_141.pd

    Genomes and Characterization of Phages Bcep22 and BcepIL02, Founders of a Novel Phage Type in Burkholderia cenocepacia

    Get PDF
    Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages
    • 

    corecore