1,414 research outputs found

    Volume and surface propellant heating in an electrothermal radio-frequency plasma micro-thruster

    Get PDF
    The temporal evolution of neutral gas temperature over the first 5 min of operation for an electrothermal radio-frequency micro-thruster with nitrogen (N2) propellant was measured using rovibrational band matching of the second positive N2 system. Three distinct periods of gas heating were identified with time constants of τ 1 = 8 × 10⁻⁵ s, τ 2 = 8 s, and τ 3 = 100 s. The fast heating (τ 1) is attributed to volumetric heating processes within the discharge driven by ion-neutral collisions. The slow heating (τ 3) is from ion neutralization and vibrational de-excitation on the walls creating wall heating. The intermediate heating mechanism (τ 2) is yet to be fully identified although some theories are suggested.This research was partially funded by the Australian Space Research Program (APT project) and the Australian Research Council Discovery Project (No. DP140100571)

    New methods for unmixing sediment grain size data

    Get PDF
    Grain size distribution (GSD) data are widely used in Earth sciences and although large data sets are regularly generated, detailed numerical analyses are not routine. Unmixing GSDs into components can help understand sediment provenance and depositional regimes/processes. End-member analysis (EMA), which fits one set of end-members to a given data set, is a powerful way to unmix GSDs into geologically meaningful parts. EMA estimates end-members based on covariability within a data set and can be considered as a nonparametric approach. Available EMA algorithms, however, either produce suboptimal solutions or are time consuming. We introduce unmixing algorithms inspired by hyperspectral image analysis that can be applied to GSD data and which provide an improvement over current techniques. Nonparametric EMA is often unable to identify unimodal grain size subpopulations that correspond to single sediment sources. An alternative approach is single-specimen unmixing (SSU), which unmixes individual GSDs into unimodal parametric distributions (e.g., lognormal). We demonstrate that the inherent nonuniqueness of SSU solutions renders this approach unviable for estimating underlying mixing processes. To overcome this, we develop a new algorithm to perform parametric EMA, whereby an entire data set can be unmixed into unimodal parametric end-members (e.g., Weibull distributions). This makes it easier to identify individual grain size subpopulations in highly mixed data sets. To aid investigators in applying these methods, all of the new algorithms are available in AnalySize, which is GUI software for processing and unmixing grain size data

    Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution

    Get PDF
    Planetary Nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the Population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the HST Data Archive, and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar Population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extra-galactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe, specifically, that the genesis of PNe structure should relate strongly to the Population type, and by inference the mass, of the progenitor star, and less strongly on whether the central star is a member of a close binary system.Comment: The Astrophysical Journal Letters, in press 4 figure

    Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline

    Get PDF
    <b>Objective</b>: MicroRNAs (miRNAs) are small noncoding RNAs that have the capacity to control protein production through binding "seed" sequences within a target mRNA. Each miRNA is capable of potentially controlling hundreds of genes. The regulation of miRNAs in the lung during the development of pulmonary arterial hypertension (PAH) is unknown.<p></p> <b>Methods and Results</b>: We screened lung miRNA profiles in a longitudinal and crossover design during the development of PAH caused by chronic hypoxia or monocrotaline in rats. We identified reduced expression of Dicer, involved in miRNA processing, during the onset of PAH after hypoxia. MiR-22, miR-30, and let-7f were downregulated, whereas miR-322 and miR-451 were upregulated significantly during the development of PAH in both models. Differences were observed between monocrotaline and chronic hypoxia. For example, miR-21 and let-7a were significantly reduced only in monocrotaline-treated rats. MiRNAs that were significantly regulated were validated by quantitative polymerase chain reaction. By using in vitro studies, we demonstrated that hypoxia and growth factors implicated in PAH induced similar changes in miRNA expression. Furthermore, we confirmed miR-21 downregulation in human lung tissue and serum from patients with idiopathic PAH.<p></p> <b>Conclusion</b>: Defined miRNAs are regulated during the development of PAH in rats. Therefore, miRNAs may contribute to the pathogenesis of PAH and represent a novel opportunity for therapeutic intervention.<p></p&gt

    Spitzer IRAC observations of newly-discovered planetary nebulae from the Macquarie-AAO-Strasbourg H-alpha Planetary Nebula Project

    Full text link
    We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo- urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good isolation between these colors and those of many other types of astronomical object. The only substantive contamination of PNe in the color-color plane we illustrate is due to YSOs. However, this ambiguity is readily resolved by the unique optical characteristics of PNe and their environs. We also examine the relationships between optical and MIR morphologies from 3.6 to 8.0um and explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a valuable discriminant between thermal and nonthermal emission. MASH emphasizes late evolutionary stages of PNe compared with previous catalogs, enabling study of the changes in MIR and radio flux that attend the aging process. Spatially integrated MIR energy distributions were constructed for all MASH PNe observed by the GLIMPSE Legacy Project, using the H-alpha morphologies to establish the dimensions for the calculations of the Midcourse Space Experiment (MSX), IRAC, and radio continuum (from the Molonglo Observatory Synthesis Telescope and the Very Large Array) flux densities. The ratio of IRAC 8.0-um to MSX 8.3-um flux densities provides a measure of the absolute diffuse calibration of IRAC at 8.0 um. We independently confirm the aperture correction factor to be applied to IRAC at 8.0um to align it with the diffuse calibration of MSX. The result agrees with the recommendations of the Spitzer Science Center and with results from a parallel study of HII regions. These PNe probe the diffuse calibration of IRAC on a spatial scale of 9-77 arcsec.Comment: 48 pages, LaTeX (aastex), incl. 18 PostScript (eps) figures and 3 tables. Accepted by Astrophysical Journa

    Generalisation and specialisation in hoverfly (Syrphidae) grassland pollen transport networks revealed by DNA metabarcoding

    Get PDF
    1. Pollination by insects is a key ecosystem service, and important to wider ecosystem function. Most species-level pollination networks studied have a generalised structure, with plants having several potential pollinators, and pollinators in turn visiting a number of different plant species. This is in apparent contrast to a plant?s need for efficient conspecific pollen transfer. 2. The aim of this study was to investigate the structure of pollen transport networks at three levels of biological hierarchy: community, species, and individual. We did this using hoverflies in the genus Eristalis, a key group of non-Hymenopteran pollinators. 3. We constructed pollen transport networks using DNA metabarcoding to identify pollen. We captured hoverflies in conservation grasslands in west Wales, UK, removed external pollen loads, sequenced the pollen DNA on the Illumina MiSeq platform using the standard plant barcode rbcL, and matched sequences using a pre-existing plant DNA barcode reference library. 4. We found that Eristalis hoverflies transport pollen from 65 plant taxa, more than previously appreciated. Networks were generalised at the site and species level, suggesting some degree of functional redundancy, and were more generalised in late summer compared to early summer. In contrast, pollen transport at the individual level showed some degree of specialisation. Hoverflies defined as ?single-plant visitors? varied from 40% of those captured in early summer to 24% in late summer. Individual hoverflies became more generalised in late summer, possibly in response to an increase in floral resources. Rubus fruticosus agg. and Succisa pratensis were key plant species for hoverflies at our sites 5. Our results contribute to resolving the apparent paradox of how generalised pollinator networks can provide efficient pollination to plant species. Generalised hoverfly pollen transport networks may result from a varied range of short-term specialised feeding bouts by individual insects. The generalisation and functional redundancy of Eristalis pollen transport networks may increase the stability of the pollination service they deliver.publishersversionPeer reviewe

    Regulating Clothing Outwork: A Sceptic's View

    Get PDF
    By applying the strategies of international anti-sweatshop campaigns to the Australian context, recent regulations governing home-based clothing production hold retailers responsible for policing the wages and employment conditions of clothing outworkers who manufacture clothing on their behalf. This paper argues that the new approach oversimplifies the regulatory challenge by assuming (1) that Australian clothing production is organised in a hierarchical ‘buyer-led’ linear structure in which core retail firms have the capacity to control their suppliers’ behaviour; (2) that firms act as unitary moral agents; and (3) that interventions imported from other times and places are applicable to the contemporary Australian context. After considering some alternative regulatory approaches, the paper concludes that the new regulatory strategy effectively privatises responsibility for labour market conditions – a development that cries out for further debate

    The Evolution of Ga and as Core Levels in the Formation of Fe/GaAs (001): A High Resolution Soft X-Ray Photoelectron Spectroscopic Study

    Get PDF
    A high resolution soft x-ray photoelectron spectroscopic study of Ga and as 3d core levels has been conducted for Fe/GaAs (001) as a function of Fe thickness. This work has provided unambiguous evidence of substrate disrupting chemical reactions induced by the Fe overlayer—a quantitative analysis of the acquired spectra indicates significantly differing behavior of Ga and as during Fe growth, and our observations have been compared with existing theoretical models. Our results demonstrate that the outdiffusing Ga and as remain largely confined to the interface region, forming a thin intermixed layer. Whereas at low coverages Fe has little influence on the underlying GaAs substrate, the onset of substrate disruption when the Fe thickness reaches 3.5 Å results in major changes in the energy distribution curves (EDCs) of both as and Ga 3d cores. Our quantitative analysis suggests the presence of two additional as environments of metallic character: one bound to the interfacial region and another which, as confirmed by in situ oxidation experiments, surface segregates and persists over a wide range of overlayer thickness. Analysis of the corresponding Ga 3d EDCs found not two, but three additional environments—also metallic in nature. Two of the three are interface resident whereas the third undergoes outdiffusion at low Fe coverages. Based on the variations of the integrated intensities of each component, we present a schematic of the proposed chemical makeup of the Fe/GaAs (001) system
    corecore