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Reviewed by:
Edward G. Dudley,

Pennsylvania State University (PSU),
United States

James L. Bono,
United States Department of

Agriculture, United States
Angelika Fruth,

Robert Koch Institute (RKI), Germany

*Correspondence:
Claire Jenkins

claire.jenkins1@phe.gov.uk

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Microbiology

Received: 29 June 2020
Accepted: 09 September 2020

Published: 21 October 2020

Citation:
Greig DR, Mikhail AFW,

Dallman TJ and Jenkins C (2020)
Analysis Shiga Toxin-Encoding
Bacteriophage in a Rare Strain

of Shiga Toxin-Producing Escherichia
coli O157:H7 stx2a/stx2c.

Front. Microbiol. 11:577658.
doi: 10.3389/fmicb.2020.577658

Analysis Shiga Toxin-Encoding
Bacteriophage in a Rare Strain of
Shiga Toxin-Producing Escherichia
coli O157:H7 stx2a/stx2c
David R. Greig1,2, Amy F. W. Mikhail1, Timothy J. Dallman1,2 and Claire Jenkins1*

1 National Infection Service, Public Health England, London, United Kingdom, 2 Division of Infection and Immunity, The Royal
(Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Easter Bush, United Kingdom

In December 2015, six cases of Shiga toxin (Stx)-producing Escherichia coli (STEC)
O157:H7 stx2a/stx2c phage type (PT) 24 were identified by the national gastrointestinal
disease surveillance system at Public Health England (PHE). Frozen grated coconut
imported from India was implicated as the vehicle of infection. Short and long read
sequencing data were interrogated for genomic markers to provide evidence that the
outbreak strain was from an imported source. The outbreak strain belonged to a sub-
lineage (IIa) rare in domestically acquired infection in the United Kingdom, and indicative
of an imported strain. Phylogenetic analysis identified the most closely related isolates to
the outbreak strain were from cases reporting recent travel not to India, but to Uganda.
Phylo-geographical signals based on travel data may be confounded by the failure of
local and/or global monitoring systems to capture the full diversity of strains in a given
country. This may be due to low prevalence strains circulating in-country under the
surveillance radar, or a recent importation event involving the migration of animals and/or
people. Comparison of stx2a-encoding prophage harbored by the outbreak strain with
publicly available stx2a-encoding prophage sequences revealed that it was most closely
related to stx2a-encoding prophage acquired by STEC O157:H7 that caused the first
outbreak of STEC-hemolytic uremic syndrome (HUS) in England in 1982–83. Animal and
people migration events may facilitate the transfer of stx2a-encoding prophage from
indigenous STEC O157:H7 to recently imported strains, or vice versa. Monitoring the
global transmission of STEC O157:H7 and tracking the exchange of stx2a-encoding
phage between imported and indigenous strains may provide an early warning of
emerging threats to public health.

Keywords: Shiga toxin-producing E. coli, outbreak, genomics, public health, epidemiology, coconut

INTRODUCTION

Outbreaks of foodborne, gastrointestinal disease caused by Shiga toxin (Stx)-producing Escherichia
coli (STEC) serotype O157:H7 are regarded as a significant threat to public health (Riley et al.,
1983; Michino et al., 1999; Cowley et al., 2016; Launders et al., 2016a; Gobin et al., 2018). A subset
of vulnerable patients at the extremes of age are at risk of developing hemolytic uremic syndrome
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(HUS), a condition characterized by renal failure, and cardiac and
neurological complications that can be fatal (Tarr et al., 2005;
Launders et al., 2016a). STEC O157:H7 is zoonotic and can be
transmitted to humans via direct contact with animals and/or
their environment, contaminated food or water, or person-to-
person spread (Byrne et al., 2015).

There are three main lineages of STEC O157:H7 (I, II,
and I/II) and eight sub-lineages (Ia, Ib, Ic, IIa, IIb, IIc, I/IIa,
and I/IIb) (Dallman et al., 2015a). With respect to the clade
typing scheme proposed by Iyoda et al. (2014), as described
previously, lineage I corresponded to clades 1 through 6, lineage
II corresponded to clade 7, and lineage I/II corresponded to
clade 8 (Eppinger et al., 2011; Dallman et al., 2015a). The
majority of human cases and outbreaks of STEC O157:H7 in
the United Kingdom are caused by sub-lineages Ic, I/IIa, and IIc
(Dallman et al., 2015a). The sub-lineages that are infrequently
isolated from human cases in the United Kingdom are more likely
to be associated with returning travelers or outbreaks associated
with contaminated food imported to the United Kingdom from
elsewhere (Gobin et al., 2018).

The defining pathogenicity factor for STEC O157:H7 is the
presence of Stx-producing genes (stx). There are two types of
Stx, Stx1 and 2, and at least 10 subtypes (1a–1d and 2a–2i)
(Scheutz et al., 2012). The genes encoding the stx subtypes
are located on mobile genetic elements (bacteriophages) that
may be acquired by STEC and integrated into the genome.
STEC O157:H7 harboring the stx2a-encoded phage are most
commonly associated with causing HUS (Persson et al., 2007;
Byrne et al., 2020).

In December 2015, six cases of STEC O157:H7 phage type
(PT) 24 were identified by the national gastrointestinal disease
surveillance system at Public Health England (PHE). Following
the analysis of the trawling questionnaires, a specific brand of
imported frozen grated coconut was implicated as the vehicle
of infection. In this study, we conducted an epidemiological
investigation of the outbreak, and analyzed short and long read
sequencing data to look for genomic markers to provide further
evidence that the outbreak strain was from a non-domestic (non-
UK) source.

MATERIALS AND METHODS

Microbiological and Epidemiological
Data Collection
In England, all fecal specimens from hospital and community
cases of gastrointestinal disease submitted to local hospital
laboratories are tested for E. coli O157:H7. All isolates are
submitted to the Gastrointestinal Bacterial Reference Unit
(GBRU) at PHE for identification and phage typing. Since July
2015, all isolates have been whole genome sequenced for routine
surveillance (National Center for Biotechnology Information
Short Read Archive BioProject PRJNA315192).

The majority of isolates of STEC O157:H7 included in
this study were submitted to GBRU between July 2015 (when
WGS was first implemented) and December 2016 (12 months
after the outbreak occurred). During this time frame, 1103

isolates were submitted to GBRU; 149 belonged to household
outbreak, 283 were linked to known outbreaks, and 671 were
identified as sporadic cases. Additional isolates sequenced from
the archive collection submitted to GBRU between 2006 and
2016, included eight isolates belonging to the same PT as the
outbreak strain, PT24, all of which reported recent (within
7 days of onset of symptoms) travel to Uganda, and all cases
reporting recent travel to the Indian Sub-Continent (ISC; n = 56)
(Supplementary Table S1).

Epidemiological Data Collection
In January 2009, PHE implemented the National Enhanced
Surveillance System for STEC (NESSS) in England. This system
has been described in detail previously (Byrne et al., 2015).
Briefly, it captures standardized epidemiological on all cases of
STEC reported in England through an Enhanced Surveillance
Questionnaire (ESQ) including detailed demographic, clinical,
and exposure data which is reconciled with microbiological data
in NESSS. Following analysis of the ESQ data, each case was
re-interview using a standardized trawling questionnaire.

Short Read Sequencing on the Illumina
HiSeq 2500
Genomic DNA was extracted from cultures of STEC O157:H7
using the Qiagen Qiasymphony (Qiagen, Hilden, Germany).
The sequencing library was prepared using the Nextera XP kit
(Illumina, San Diego, CA, United States) for sequencing on the
Illumina HiSeq 2500 (Illumina, San Diego, CA, United States)
instrument run with the fast protocol. High quality trimmed
(leading and trailing trimming at < Q30 using Timmomatic
v0.27 (Bolger et al., 2014). Illumina FASTQ reads were mapped
to the Sakai STEC O157 reference genome (NC 002695.1) using
BWA MEM v0.7.13 (Li and Durbin, 2010) and Samtools v
(Li et al., 2009). Variant positions were identified by GATK
v2.6.5 UnifiedGenotyper (McKenna et al., 2010) that passed the
following parameters: > 90% consensus, minimum read depth of
10, Mapping Quality (MQ) ≥ 30. Any variants called at positions

TABLE 1 | Diversity and frequency of sampling within each
sub-lineage 2015–2016.

Sub-lineage Total
number of

isolates

Number of
sporadic
isolates

Number of clusters
detected at the 250 SNP

level

Ia 31 29 9

Ib 25 25 4

Ic 234 183 4

IIa 325 98 28

IIb 139 44 4

IIc 285 246 1

I/II 37 24 3

NSF 6 4 2

SF 21 18 5

Total 1103 671

NSF, non-sorbitol fermenting STEC O157:H7; SF, sorbitol
fermenting STEC O157:H7.
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TABLE 2 | Age and sex ratio and characteristics of isolates from UK travelers returning from the ISC and Uganda 2006–2016 (number in parentheses).

Country Total Male Female Adult Child Lineage (n) Stx profile (n)

Bangladesh 4 3 1 2 2 IIa (4) Stx2c (4)

Bhutan 1 0 1 1 0 Ib (1) Stx2c (1)

India 32 19 16 24 11 IIa (32) Stx2c (32)

Maldives 0 – – – – –

Nepal 0 – – – – –

Pakistan 16 6 9 2 14 Ia (1) IIa (15) Stx1a/Stx2a Stx2c (15)

Sri Lanka 3 1 2 2 1 IIa (3) Stx2c (3)

Total ISC 56 29 29 31 28

Uganda 8 2 6 6 2 IIa (7) IIb (1) Stx2a/stx2c (4)

TABLE 3 | Size, position, and integration sites of all 19 prophages (P) and six prophage-like elements (PLE) within sample 194195.

Prophage detected by PHASTER Gene 5’ to prophage Gene 3’ to prophage Size (bp) Position

P1 cpxPb fieF 31,356 237,188–268,544

P2a zur aphA 19,508 433,909–453,417

PLE1 leuX Hypotheticalb 9,862 678,235–688,097

PLE2 intAb nanM 33,695 688,557–722,252

P3a tRNA-Thr (cgt) prgR 54,474 1,128,970–1,183,444

P4 ybhCb ybhB 38,693 1,751,265–1,789,958

P5 yccAb tRNA-Ser (tga) 49,561 2,021,966–2,071,527

PLE3 ycdU tRNA-Ser (gga) 85,778 2,170,090–2,255,868

P6a potC potB 48,949 2,342,248–2,391,197

P7 potA caeBb 65,659 2,393,794–2,459,453

P8a ompW ispE 79,722 2,544,993–2,624,715

P9a ompW trpA 98,899 2,675,966–2,774,865

P10a ttcA rspR 101,788 2,877,961–2,979,749

P11 ompN rspAb 45,568 3,160,400–3,205,968

P12 yecAb tRNA-Leu (taa) 20,043 3,542,644–3,562,687

P13 yodB tRNA-Ser (cga)b 43,687 3,617,610–3,661,297

PLE4 cobU Hypothetical 13,348 3,684,489–3,697,837

P14 (stx2c) yeeW sbcBb 60,586 3,698,735–3,759,321

P15a yehV mlrAb 52,982 3,900,672–3,953,654

P16 (stx2a) yfcV argWb 74,662 4,190,350–4,265,012

P17 argWb lacY 8,233 4,265,444–4,273,677

P18 ssrA alpAb 20,904 4,549,827–4,570,731

PLE5 tRNA-Phe (gaa) pitB 23,331 4,924,934–4,948,265

P19 yicCb yicC 15,440 5,631,805–5,647,245

PLE6 (LEE) selC yicL 43,021 5,665,860–5,708,881

ARefers to prophages that appear to be compound prophages (i.e., two or more prophages that are sequential or one phage integrated inside another, with intact
integrase genes). BRefers to the end in which the Integrase gene (intA) is located.

that were within the known prophages in Sakai were masked
from further analyses. The remaining variants were imported into
SnapperDB v0.2.5 (Dallman et al., 2018).

Hierarchical single linkage clustering was performed on the
pairwise single nucleotide polymorphisms (SNPs) difference
between all strains at various distance thresholds (250, 100, 50,
25, 10, 5, 0). The result of the clustering is an SNP profile,
or SNP address, that can be used to describe the population
structure based on clonal groups (Dallman et al., 2015b, 2018).
Although isolates greater than 5 SNPs apart are unlikely to be
part of the same temporally linked outbreak, deeper phylogenetic
relationships within the 10 or 25 SNP clusters may provide
epidemiologically useful information or associations. Lineage and

sub-lineage assignment were performed based on discriminatory
SNPs, extracted directly from SnapperDB v0.2.5, that define the
population structure, as described previously (Dallman et al.,
2015b, 2018).

Long Read Sequencing Using ONT and
Data Processing
Genomic DNA was extracted and purified using the Qiagen
Genomic Tip, midi 100/G (Qiagen, Hilden, Germany) with
minor alterations including no vigorous mixing steps (performed
by inversion) and elution into 100 µl. DNA was quantified
using a Qubit and the high sensitivity (HS) dsDNA Assay
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TABLE 4 | Summary of the PHE archived and publicly available strains used within this study, their Strain ID, lineage, phage type, stx profile, assembly accession
numbers, and NCBI BioProject.

Strain ID lineage Phage type Stx profile Number of prophages Reference BioProject # Assembly accession #

PHE archive

194195 IIa PT24 Stx2a/2c 19 This study PRJNA315192 CP044350

E30228 Ia PT4 Stx1a/2a 15 Scotland et al., 1987 PRJNA315192 VXJO00000000

E34500 I/IIa PT2 Stx2a/2c 14 Taylor et al., 1986 PRJNA315192 VXJN00000000

E45000 I/IIb PT49 Stx2a 17 Yara et al., 2020 PRJNA315192 VXJM00000000

E116508 Ic PT21/28 Stx2a/2c 17 Yara et al., 2020 PRJNA315192 VXJP00000000

315176 IIb PT8 Stx2a 16 Byrne et al., 2018 PRJNA315192 VXJQ00000000

267849 IIa PT34 Stx2a/2c 16 Gobin et al., 2018 PRJNA315192 VXJR00000000

Publicly available

9000 Ic PT21/28 Stx2a/2c 17 Shaaban et al., 2016 PRJNA336330 CP018252

397404 Ic PT21/28 Stx2a/2c 15 Yara et al., 2020 PRJNA315192 CP043019

155 Ic PT32 Stx2a 18 Shaaban et al., 2016 PRJNA336330 CP018237

350 IIc PT8 Stx1a/2c 16 Launders et al., 2016b PRJNA336330 CP018243

272 I/IIa PT2 Stx2a 16 Jenkins et al., 2015 PRJNA336330 CP018239

644 IIc PT8 Stx1a/2c 18 Cowley et al., 2016 PRJNA321984 CP015831

180 IIc PT54 Stx1a/1a/2c 15 Cowley et al., 2016 PRJNA321984 CP015832

Sakai Ia n/a Stx1a/1a/2a 18 Michino et al., 1999 PRJNA57781 NC_002695

EDL933 Ia n/a Stx1a/2a 14 Riley et al., 1983 PRJNA253471 CP008957

EC4115 I/IIa n/a Stx2a/2c 17 Uhlich et al., 2008 PRJNA224116 NC_011353

TW14359 I/IIa n/a Stx2a/2c 17 Uhlich et al., 2008 PRJNA224116 NC_013008

Kit (Thermofisher Scientific, Waltham, MA, United States) to
manufacturer’s instructions. Library preparation was performed
using the Native Barcoding kit (SQK-LSK108 and EXP-NBD103)
(Oxford Nanopore Technologies, Oxford, United Kingdom). The
prepared library was loaded on a FLO-MIN106 R9.4.1 flow cell
(Oxford Nanopore Technologies, Oxford, United Kingdom) and
sequenced using the MinION for 24 h.

Data produced in a raw FAST5 format were basecalled
into FASTQ format and de-multiplexed using Guppy v2.3.5
(Oxford Nanopore Technologies). The reads were then de-
multiplexed again using Deepbinner v0.2.0 (Wick et al.,
2018) to reduce barcode contamination. Run metrics were
generated using Nanoplot v1.8.1 (De Coster et al., 2018).
The barcode and y-adapter from each sample’s reads were
trimmed, and chimeric reads split using Porechop v0.2.4. Finally,
trimmed reads were filtered using Filtlong v0.1.1 with the
following parameters; min_length = 1000, keep_percent = 90,
and target_bases = 275Mb, to generate approximately 50x
coverage of the STEC genome with the longest and highest
quality reads.

De novo Assembly, Polishing,
Reorientation, and Annotation
Trimmed ONT FASTQ files were assembled using Canu v1.7.1
(Koren et al., 2017). Polishing of the assembly was performed
in a three-step process first, using Nanopolish v0.11.1 (Loman
et al., 2015) using both the trimmed ONT FASTQs and
FAST5s for each respective sample accounting for methylation
using the –methylation-aware = dam,dcm and –min-candidate-
frequency = 0.1. Secondly, Pilon v1.22 (Walker et al., 2014)
using Illumina FASTQ reads as the query dataset with the use

of BWA v0.7.17 (Li and Durbin, 2010) and Samtools v1.7 (Li
et al., 2009). Finally, Racon v1.2.1 (Vaser et al., 2017) also using
BWA v0.7.17 and Samtools v1.7 (Li et al., 2009) was used with
the Illumina reads to produce a final assembly for each of the
samples. As the chromosome from the assembly was closed, it was
re-orientated to start at the dnaA gene (NC_000913) from E. coli
K-12, using the –fixstart parameter in circlator v1.5.5 (Hunt et al.,
2015). Prokka v1.13 was used to annotate the draft assembly
(Seemann, 2014).

Prophage Detection, Excision, and
Processing
Prophages across both samples were detected and extracted using
the Phage Search Tool (PHASTER) (Arndt et al., 2016). Prophage
extraction from the genome occurred regardless of prophage size
or quality and any detected prophages separated by less than
4 kbp were conjoined into a single phage using Propi v0.9.0
as described in Shaaban et al. (2016). From here the prophages
were manually trimmed to remove any non-prophage genes and
were again annotated using Prokka v 1.13 with the use of a
personalized database (Amino Acid multi-FASTA) containing
known STEC prophage genes was used to annotate the final
assemblies. Database publicly available from https://github.com/
gingerdave269/prophage_DB. The output GenBank (gbk) files
were modified to color genes by function.

Mash and Phylogeny
Mash v2.2 (Ondov et al., 2016) was used to sketch (sketch length
1000, kmer length, 21) stx-encoding prophages from the outbreak
isolate sequenced using ONT in this study, and the publicly
available STEC genomes listed in Table 4. The pairwise Jaccard
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FIGURE 1 | Sunburst diagram showing the distribution of isolates belonging to lineage and sub-lineage, and six descending concentric circles represent single
linkage SNP clusters at the 250 SNP, 100 SNP, 50 SNP, 25 SNP, 10 SNP, and 5 SNP levels. The segments were colored based on the proportion of isolates from
cases reporting foreign travel with 7 days of onset of symptoms, with dark blue being no cases report recent travel and dark red being all cases report recent travel
outside the United Kingdom. For example, within sub-lineage IIa, with the exception of one 50-SNP level cluster (t50: 5.156.490) that was almost exclusively
domestically acquired, the majority of the remaining clusters were travel associated.

distance between the prophages was calculated and a neighbor
joining tree computed and visualized using FigTree v1.4.4.

Visualization Tools
All gene diagrams were constructed using Easyfig v2.2.3 (Sullivan
et al., 2011). Neighbor joining trees were visualized and annotated
using FigTree v1.4.4.

Data Deposition
Illumina FASTQ files for all samples used in the
study can be found under BioProject PRJNA315192.
Nanopore FASTQ file is available under SRA accession:
SRR10177137. The assembly can be found under the
following accession: CP044350. All the above are available
from BioProject: PRJNA315192.
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FIGURE 2 | Maximum likelihood phylogenetic tree of strains belonging to sub-lineage IIa, most closely related to the outbreak cluster, showing SRA accession, stx
type profile, and travel history where available. *denotes Oxford Nanopore Technology sequenced sample 194195.
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FIGURE 3 | The relative positions of the 19 prophages and six prophage-like elements within the chromosome of 194195. Red prophages indicate stx-encoding
prophages. Blue indicates prophage like elements. Green indicates the locus of enterocyte effacement (LEE).

RESULTS AND DISCUSSION

Epidemiological Investigations
In December 2015, the Gastrointestinal Bacteria Reference Unit
identified six cases of STEC O157:H7 with a rare PT, PT24. Whole
genome sequencing results confirmed that the cases belong to the
same 5-SNP single linkage cluster. The outbreak strain belonged
to sub-lineage IIa and had the stx profile stx2a and stx2c.

An outbreak control team was convened, and trawling
questionnaires were completed for each case and their
symptomatic household contacts. Of the six cases, two
were male and four were female, and the age range for all
six cases was 1–45 years old. Dates of onset of symptoms of
gastrointestinal infection fell between 17 and 25 November 2015.
The cases were national distributed. Analysis of the trawling
questionnaires identified consumption of frozen grated coconut
belonging to the same brand was reported by four of the six
cases. Of the remaining two cases, one patient recalled eating
coconut yogurt, while the other reported the consumption
of Indian sweets and attended a Diwali party in the days
before onset of symptoms but did not recall specifically eating
coconut.

Microbiological analysis of an unopened packet of the coconut
product from the restaurant where two of the cases ate, detected
unsatisfactory levels of E. coli (>102 cfu/g), as defined by
Regulation (EC) No. 178/200211, although no STEC O157:H7
was detected in the sample.

Phylogenetic Analysis of WGS Data
Linked to Patients Travel History to
Determine a Domestic or Non-domestic
Origin for the Outbreak Strain
Following the epidemiological investigation that provided
evidence that the contaminated food vehicle may be imported, we
analyzed the genome data to look for evidence that the outbreak
strain had a non-domestic origin.

Of the 671 sporadic isolates of STEC O157:H7 referred to
GBRU between July 2015 and December 2016, the majority
belonged to sub-lineages IIc (246/671, 36.7%) and Ic (183/671,
27.2%) (Table 1). In contrast, sub-lineage IIa was less frequently
isolated from sporadic cases (98/671, 14.6%), and showed the
highest level of sub-lineage diversity, as measured by the number

1https://www.gov.uk/government/publications/ready-to-eat-foods-
microbiological-safety-assessment-guidelines

of different 250-SNP single linkage clusters within each sub-
lineage (Table 1). High levels of sub-lineage diversity are
representative of infrequent sampling from a geographically
dispersed reservoir (Gobin et al., 2018).

The phylogeny of the 671 sporadic isolates included in this
study were visualized using a sunburst diagram showing the
distribution of isolates belonging to lineage and sub-lineage, and
six descending single linkage SNP clusters at the 250 SNPs, 100
SNPs, 50 SNPs, 25 SNPs, 10 SNPs, and 5 SNPs level (Figure 1)
(Dallman et al., 2018). In Figure 1, the inner circle shows the
proportions of the three main lineages and the proportion of
those isolates that fall outside the lineage structure. Moving
outward from the inner circle, the second concentric circle shows
the proportion of isolates in each sub-lineage, and the third,
fourth, fifth, sixth, and seventh concentric circles from the inner
circle represent the 250 SNPs, 100 SNPs, 50 SNPs, 25 SNPs, 10
SNPs, and 5 SNPs levels, respectively. The numbers represent
SNP type or SNP address designation, for example, the SNP
address designation for the largest 25 SNP single linkage cluster
in sub-lineage IIa is t25: 5.156.490.925%.

The segments were colored based on the proportion of isolates
from cases reporting foreign travel with 7 days of onset of
symptoms, with dark blue being no cases report recent travel
and dark red being all cases report recent travel outside the
United Kingdom. The majority of clusters that belong to sub-
lineages Ic, IIb, and I/II were domestically acquired. These data
were consistent with previous studies that indicated these sub-
lineages were likely to be endemic in the United Kingdom
(Dallman et al., 2015a; Adams et al., 2016; Byrne et al., 2018).
Sub-lineages IIa and IIc displayed a mixture of domestically
acquired and travel associated clusters (Figure 1). However,
within each sub-lineage, at more discriminatory SNP levels, clear
cluster associations to either travel or domestic-acquisition were
observed. For example, within sub-lineage IIa, with the exception
of one 50-SNP level cluster (t50: 5.156.490.) that was almost
exclusively domestically acquired, the majority of the remaining
clusters were travel associated. The outbreak strain described
in this study fell within the travel-associated clusters providing
evidence that the contaminated food vehicle was most likely from
an imported source.

Analysis of WGS Data of Isolates From
UK Residents Reporting Recent Travel to
the Indian Sub-Continent
A closer look at the phylogenetic context of the outbreak strain
revealed the most closely related strains were isolates from
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FIGURE 4 | Mid-rooted neighbor joining tree of Shiga toxin-encoding prophages based on Jaccard distance produced from Mash. Strains are annotated as Strain
ID, length, and stx type profile. Strains are colored by lineage—green: Ia, red: Ic, blue: I/IIa, gray: I/IIb, orange: IIa, purple: IIb. *denotes Oxford Nanopore Technology
sequenced sample 194195.
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FIGURE 5 | Easyfig plots comparing the stx2c-encoding prophages from 194195, 267849, 180, 397404, E34500, and TW14359 in descending order. Arrows
indicate gene directions. stx genes are shown in red; recombination/replication genes are shown in light blue; regulation-associated genes are shown in dark blue;
effector genes are shown in pink; structure- and lysis-associated genes are shown in light and dark green, respectively; tRNAs are shown as purple lines; finally,
hypothetical genes are shown in gray.

FIGURE 6 | Easyfig plots comparing the stx2a-encoding prophages from 194195 with E34500 and 272, in descending order. Arrows indicate gene directions. stx
genes are shown in red; recombination/replication genes are shown in light blue; regulation-associated genes are shown in dark blue; effector genes are shown in
pink; structure- and lysis-associated genes are shown in light and dark green, respectively; tRNAs are shown as purple lines; finally, hypothetical genes are shown in
gray.

cases reporting recent travel to Uganda (Figure 2). As the
epidemiological investigation indicated that the country of origin
of the outbreak strains was India, we included sequences of
all the isolates of STEC O157:H7 in the PHE database isolated
from travelers recently returned to the United Kingdom from the
ISC (Figure 2).

Interrogation of the PHE database of all isolates submitted
to GBRU between 2006 and 2016 (n = 11,339), identified 56
isolates from UK travelers recently returned from the ISC, the
majority reporting recent travel to India (n = 32) or Pakistan
(n = 16) (Table 2). The majority of isolates from the ISC belonged
to sub-lineage IIa (53/56), and all had stx2c only (n = 56).
Evidence from studies testing samples from humans, food, and
animals in India indicates that the prevalence of STEC O157:H7
is low in this country (Sehgal et al., 2008; Lanjewar et al., 2010;
Shrivastava et al., 2017).

There were eight isolates from UK travelers recently
returned from Uganda, all but one belonged to sub-lineage IIa

(7/8). Of these, 4/8 had the same stx profile (stx2a/stx2c)
as the outbreak strain, and all belonged to a unique
clade that had acquired a stx2a-encoding bacteriophage.
Evidence for the prevalence of STEC O157:H7 in East
Africa from human clinical specimens is sparse although
STEC O157:H7 has been detected in a number of studies
sampling the animal reservoir in this region (Kaddu-
Mulindw et al., 2001; Grace et al., 2008; Dulo et al., 2015;
Beyi et al., 2017).

Phylo-geographical signals have proved useful in providing
evidence for the likely country of origin of STEC and Salmonella
causing outbreaks of foodborne gastrointestinal disease (Allard
et al., 2016; Cowley et al., 2016; Hoffmann et al., 2016; Gobin
et al., 2018; Pijnacker et al., 2019). However, there are factors that
may confound this signal. Strains of STEC O157:H7 isolated from
returning travelers only provide a snapshot of strains endemic to
the country visited and may not reflect the full diversity of strains
circulating in a given region. Although the outbreak strain may be
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associated with travel to Uganda, it may also be circulating at low
prevalence in India, perhaps due to a recent importation event.

Analysis of the Outbreak Strain Using
Oxford Nanopore Technology
We analyzed long read sequencing data of the outbreak strain,
primarily to determine the sequence and genomic structure of
the stx2-encoding bacteriophage. The outbreak isolate assembled
into a chromosome of 5,753,376 bp and a single plasmid,
pO157 (111,625 bp, IncFIB). The genome of the outbreak isolate
comprised 19 prophages (Table 3 and Figure 3).

Based on Mash distance, the stx2c-encoding prophage located
at the stx-encoding bacteriophage insertion (SBI) site sbcB,
clustered on the same branch as stx2c prophage from strains from
different time frames, geographical regions, and sub-lineages,
most closely related to other stx2c-encoding prophage from
sub-lineage IIa (Figure 4). The stx2c-encoding prophage from
the outbreak strains aligned across the length of other stx2c-
encoding prophage with few structural variations (Figure 5).
The conserved nature of the stx2c-encoding bacteriophage
was consistent with the hypothesis that the stx2c-encoding
bacteriophage was acquired prior to the global dissemination and
regional expansions of STEC O157:H7 (Dallman et al., 2015a).

The stx2a-encoding prophage acquired by the outbreak
strain was located at SBI site argW. Compared to the stx2c-
encoding prophage, the stx2a-encoding prophage exhibits greater
diversity, based on Mash distance and whole prophage alignment
(Figure 4). In certain countries, the regional expansion of
specific sub-lineages, or clades within sub-lineages, has involved
acquisition of a stx2a-encoding prophage (Dallman et al., 2015a;
Yara et al., 2020).

The stx2a-encoding prophage from the outbreak strain was
most closely related to stx2a-encoding prophage acquired by a
strain belonging to lineage I/II that caused the first outbreak of
STEC-HUS in the West Midlands in England in the early 1980s
(Figures 4, 6) (Taylor et al., 1986; Yara et al., 2020). Previous
studies have shown that this lineage I/II strain of STEC O157:H7
harboring stx2c-encoding prophage had been indigenous in UK
domestic cattle population for decades, and that it emerged as
a threat to public health in 1983, following the acquisition of
a stx2a-encoding prophage at some point during the previous
decade (Dallman et al., 2015a; Yara et al., 2020).

CONCLUSION

The use of WGS for surveillance of gastrointestinal pathogens
enabled us to identify a small, geographically dispersed outbreak
of foodborne disease. The epidemiological analysis provided
evidence that the outbreak strains originated from India, while
the phylogenetic analysis of the sequencing data indicated the
strain was most closely related to isolates from Uganda, and the
stx2a-encoding phage was most closely related to stx2a-encoding
bacteriophage harbored by the strains of STEC O157:H7 that
emerged in the United Kingdom, as the most common cause of
STEC-HUS in early 1980s.

These analyses described in this study are open to
interpretation in a number of different ways. Microbiological
investigation of the grated coconut samples did not detect
STEC O157:H7, and the contaminated food vehicle may have
been an imported product from elsewhere. Alternatively, the
epidemiological evidence indicating India as the country of
origin of the outbreak strain may have been correct, but the
phylo-geographical signal was obscured by the low prevalence of
the outbreak strain in that region. Strains of STEC O157:H7 that
have a low prevalence in a specific region may not be captured
by either local or global monitoring systems, and it is likely the
full diversity of strains in a given region may circulate under
the surveillance radar. Moreover, non-indigenous strains of
STEC O157:H7 may be introduced into a new region by the
migration of animals (including migratory birds) and people,
thus further confounding the phylo-geographical signal. These
animal and people migration events may facilitate the transfer of
mobile genetic elements, such as the stx2a-encoding prophage,
from indigenous strains of STEC O157:H7 to recently imported
strains, or vice versa. Monitoring the transmission of strains
of STEC O157:H7 on a global scale, and tracking the exchange
of stx2a-encoding phage between imported and indigenous
strains, may provide an early warning of emerging threats
to public health.
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