We compare H-alpha, radio continuum, and Spitzer Space Telescope (SST) images
of 58 planetary nebulae (PNe) recently discovered by the Macquarie-AAO-Strasbo-
urg H-alpha PN Project (MASH) of the SuperCOSMOS H-alpha Survey. Using InfraRed
Array Camera (IRAC) data we define the IR colors of PNe and demonstrate good
isolation between these colors and those of many other types of astronomical
object. The only substantive contamination of PNe in the color-color plane we
illustrate is due to YSOs. However, this ambiguity is readily resolved by the
unique optical characteristics of PNe and their environs. We also examine the
relationships between optical and MIR morphologies from 3.6 to 8.0um and
explore the ratio of mid-infrared (MIR) to radio nebular fluxes, which is a
valuable discriminant between thermal and nonthermal emission. MASH emphasizes
late evolutionary stages of PNe compared with previous catalogs, enabling study
of the changes in MIR and radio flux that attend the aging process. Spatially
integrated MIR energy distributions were constructed for all MASH PNe observed
by the GLIMPSE Legacy Project, using the H-alpha morphologies to establish the
dimensions for the calculations of the Midcourse Space Experiment (MSX), IRAC,
and radio continuum (from the Molonglo Observatory Synthesis Telescope and the
Very Large Array) flux densities. The ratio of IRAC 8.0-um to MSX 8.3-um flux
densities provides a measure of the absolute diffuse calibration of IRAC at 8.0
um. We independently confirm the aperture correction factor to be applied to
IRAC at 8.0um to align it with the diffuse calibration of MSX. The result
agrees with the recommendations of the Spitzer Science Center and with results
from a parallel study of HII regions. These PNe probe the diffuse calibration
of IRAC on a spatial scale of 9-77 arcsec.Comment: 48 pages, LaTeX (aastex), incl. 18 PostScript (eps) figures and 3
tables. Accepted by Astrophysical Journa