5,955 research outputs found

    Accruals and Real Earnings Management around Debt Covenant Violations

    Get PDF

    Jet-Induced Nucleosynthesis in Misaligned Microquasars

    Get PDF
    The jet axes and the orbital planes of microquasar systems are usually assumed to be approximately perpendicular, eventhough this is not currently an observational requirement. On the contrary, in one of the few systems where the relative orientations are well-constrained, V4641Sgr, the jet axis is known to lie not more than ~36 degrees from the binary plane. Such a jet, lying close to the binary plane, and traveling at a significant fraction of the speed of light may periodically impact the secondary star initiating nuclear reactions on its surface. The integrated yield of such nuclear reactions over the age of the binary system (less the radiative mass loss) will detectably alter the elemental abundances of the companion star. This scenario may explain the anomalously high Li enhancements (roughly ~20-200 times the sun's photospheric value; or, equivalently, 0.1-1 times the average solar system value) seen in the companions of some black-hole X-ray binary systems. (Such enhancements are puzzling since Li nuclei are exceedingly fragile - being easily destroyed in the interiors of stars - and Li would be expected to be depleted rather than enhanced there.) Gamma-ray line signatures of the proposed process could include the 2.22 MeV neutron capture line as well as the 0.478 MeV 7Li* de-excitation line, both of which may be discernable with the INTEGRAL satellite if produced in an optically thin region during a large outburst. For very energetic jets, a relatively narrow neutral pion gamma-decay signature at 67.5 MeV could also be measurable with the GLAST satellite. We argue that about 10-20% of all microquasar systems ought to be sufficiently misaligned as to be undergoing the proposed jet-secondary impacts.Comment: ApJ, accepted. Includes referee's suggestions and some minor clarifications over previous versio

    Discrete breathers in a two-dimensional hexagonal Fermi-Pasta-Ulam lattice

    Get PDF
    We consider a two-dimensional Fermi-Pasta-Ulam (FPU) lattice with hexagonal symmetry. Using asymptotic methods based on small amplitude ansatz, at third order we obtain a reduction to a cubic nonlinear Schrodinger equation (NLS) for the breather envelope. However, this does not support stable soliton solutions, so we pursue a higher-order analysis yielding a generalised NLS, which includes known stabilising terms. We present numerical results which suggest that long-lived stationary and moving breathers are supported by the lattice. We find breather solutions which move in an arbitrary direction, an ellipticity criterion for the wavenumbers of the carrier wave, asymptotic estimates for the breather energy, and a minimum threshold energy below which breathers cannot be found. This energy threshold is maximised for stationary breathers, and becomes vanishingly small near the boundary of the elliptic domain where breathers attain a maximum speed. Several of the results obtained are similar to those obtained for the square FPU lattice (Butt & Wattis, J Phys A, 39, 4955, (2006)), though we find that the square and hexagonal lattices exhibit different properties in regard to the generation of harmonics, and the isotropy of the generalised NLS equation.Comment: 29 pages, 14 Figure

    Adaptive Wetting of Polydimethylsiloxane

    No full text

    The Extraordinary X-ray Light Curve of the Classical Nova V1494 Aquilae (1999 #2) in Outburst: The Discovery of Pulsations and a "Burst"

    Get PDF
    V1494 Aql (Nova Aql 1999 No. 2) was discovered on 2 December 1999. We obtained Chandra ACIS-I spectra on 15 April and 7 June 2000 which appear to show only emission lines. Our third observation, on 6 August, showed that its spectrum had evolved to that characteristic of a Super Soft X-ray Source. We then obtained Chandra LETG+HRC-S spectra on 28 September (8 ksec) and 1 October (17 ksec). We analyzed the X-ray light curve of our grating observations and found both a short time scale ``burst'' and oscillations. Neither of these phenomena have previously been seen in the light curve of a nova in outburst. The ``burst'' was a factor of 10 rise in X-ray counts near the middle of the second observation, and which lasted about 1000 sec; it exhibited at least two peaks, in addition to other structure. Our time series analysis of the combined 25 ksec observation shows a peak at 2500 s which is present in independent analyses of both the zeroth order image and the dispersed spectrum and is not present in similar analyses of grating data for HZ 43 and Sirius B. Further analyses of the V1494 Aql data find other periods present which implies that we are observing non-radial g+ modes from the pulsating, rekindled white dwarf.Comment: ApJ accepte

    Contact angle hysteresis

    Get PDF
    This manuscript is dedicated to honour our dear colleague and friend Peter Kralchevsky

    Dispersion force for materials relevant for micro and nanodevices fabrication

    Full text link
    The dispersion (van der Waals and Casimir) force between two semi-spaces are calculated using the Lifshitz theory for different materials relevant for micro and nanodevices fabrication, namely, gold, silicon, gallium arsenide, diamond and two types of diamond-like carbon (DLC), silicon carbide, silicon nitride and silicon dioxide. The calculations were performed using recent experimental optical data available in the literature, usually ranging from the far infrared up to the extreme ultraviolet bands of the electromagnetic spectrum. The results are presented in the form of a correction factor to the Casimir force predicted between perfect conductors, for the separation between the semi-spaces varying from 1 nanometre up to 1 micrometre. The relative importance of the contributions to the dispersion force of the optical properties in different spectral ranges is analyzed. The role of the temperature for semiconductors and insulators is also addressed. The results are meant to be useful for the estimation of the impact of the Casimir and van der Waals forces on the operational parameters of micro and nanodevices

    Global and regional trends in particulate air pollution and attributable health burden over the past 50 years

    Get PDF
    Long-term exposure to ambient particulate matter (PM2.5, mass of particles with an aerodynamic dry diameter of < 2.5 μm) is a major risk factor to the global burden of disease. Previous studies have focussed on present day or future health burdens attributed to ambient PM2.5. Few studies have estimated changes in PM2.5 and attributable health burdens over the last few decades, a period where air quality has changed rapidly. Here we used the HadGEM3-UKCA coupled chemistry-climate model, integrated exposure-response relationships, demographic and background disease data to provide the first estimate of the changes in global and regional ambient PM2.5 concentrations and attributable health burdens over the period 1960 to 2009. Over this period, global mean population-weighted PM2.5 concentrations increased by 38%, dominated by increases in China and India. Global attributable deaths increased by 89% to 124% over the period 1960 to 2009, dominated by large increases in China and India. Population growth and ageing contributed mostly to the increases in attributable deaths in China and India, highlighting the importance of demographic trends. In contrast, decreasing PM2.5 concentrations and background disease dominated the reduction in attributable health burden in Europe and the United States. Our results shed light on how future projected trends in demographics and uncertainty in the exposure–response relationship may provide challenges for future air quality policy in Asia
    corecore