8,126 research outputs found

    Evaluation of three analytical methods for structures under random acoustic excitation

    Get PDF
    Evaluation of three methods for determining response analysis of plate and shell structures under random acoustic excitatio

    Investigation of Northrop F-5A wing buffet intensity in transonic flight

    Get PDF
    A flight test and data processing program utilizing a Northrop F-5A aircraft instrumented to acquire buffet pressures and response data during transonic maneuvers is discussed. The data are presented in real-time format followed by spectral and statistical analyses. Also covered is a comparison of the aircraft response data with computed responses based on the measured buffet pressures

    Analytical and experimental determination of localized structure to be used in laboratory vibration testing of shell structure-mounted components, Saturn V Progress report, May - Nov. 1966

    Get PDF
    Procedure for designing localized shell and finite difference computer program applications to Saturn V vibration testing projec

    Spatially Sparse Precoding in Millimeter Wave MIMO Systems

    Full text link
    Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.Comment: 30 pages, 7 figures, submitted to IEEE Transactions on Wireless Communication

    Vertically coupled double quantum rings at zero magnetic field

    Get PDF
    Within local-spin-density functional theory, we have investigated the `dissociation' of few-electron circular vertical semiconductor double quantum ring artificial molecules at zero magnetic field as a function of inter-ring distance. In a first step, the molecules are constituted by two identical quantum rings. When the rings are quantum mechanically strongly coupled, the electronic states are substantially delocalized, and the addition energy spectra of the artificial molecule resemble those of a single quantum ring in the few-electron limit. When the rings are quantum mechanically weakly coupled, the electronic states in the molecule are substantially localized in one ring or the other, although the rings can be electrostatically coupled. The effect of a slight mismatch introduced in the molecules from nominally identical quantum wells, or from changes in the inner radius of the constituent rings, induces localization by offsetting the energy levels in the quantum rings. This plays a crucial role in the appearance of the addition spectra as a function of coupling strength particularly in the weak coupling limit.Comment: 18 pages, 8 figures, submitted to Physical Review

    Assessment of wind-induced fatigue crack initiation life at guyed mast earplate joints considering welding residual stresses

    Full text link
    A new method for assessing the degree of the cumulative fatigue crack initiation damage of the welds of earplate joints of a guyed mast,which connect the mast with the cable,is proposed.Based on the multi-scale wind-induced stress analysis of the earplate joint,and considering the welding residual stresses at the earplate joints,the critical plane approach is used for the calculation of the cumulative strain fatigue damage due to combined actions of the welding residual stresses and wind load.The multi-axis fatigue accumulative damages of the welds of earplate joints in different wind orientations and at different wind average velocities are then evaluated on basis of Mason-coffin formula and Miner fatigue accumulative damage rule.The crack germination life is also calculated from the total damage

    Freezing of He-4 and its liquid-solid interface from Density Functional Theory

    Get PDF
    We show that, at high densities, fully variational solutions of solid-like type can be obtained from a density functional formalism originally designed for liquid 4He. Motivated by this finding, we propose an extension of the method that accurately describes the solid phase and the freezing transition of liquid 4He at zero temperature. The density profile of the interface between liquid and the (0001) surface of the 4He crystal is also investigated, and its surface energy evaluated. The interfacial tension is found to be in semiquantitative agreement with experiments and with other microscopic calculations. This opens the possibility to use unbiased DF methods to study highly non-homogeneous systems, like 4He interacting with strongly attractive impurities/substrates, or the nucleation of the solid phase in the metastable liquid.Comment: 5 pages, 4 figures, submitted to Phys. Rev.

    Electric-field-induced phase transition of <001> oriented Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals

    Full text link
    oriented 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 single crystals were poled under different electric fields, i.e. Epoling=4 kV/cm and Epoling=13 kV/cm. In addition to the temperature-dependent dielectric constant measurement, X-ray diffraction was also used to identify the poling-induced phase transitions. Results showed that the phase transition significantly depends on the poling intensity. A weaker field (Epoling=4 kV/cm) can overcome the effect of random internal field to perform the phase transition from rhombohedral ferroelectric state with short range ordering (microdomain) FESRO to rhombohedral ferroelectric state with long range ordering (macrodomain) FElRO. But the rhombohedral ferroelectric to tetragonal ferroelectric phase transition originating from to polarization rotation can only be induced by a stronger field (Epoling=13 kV/cm). The sample poled at Epoling=4 kV/cm showed higher piezoelectric constant, d33>1500 pC/N, than the sample poled at Epoling=13 kV/cm.Comment: 7 pages, 2 figure
    corecore