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SUMMARY

The report describes an evaluation program on three analytical methods used in
the response analysis of plate ?nd shell structures under random acoustic excitation.
The methods evaluated are (1) the statistical energy analysis (SEA) method, (2) the
modal method, and (3) the Fourier transform method. In order to determine the appli-
cability and the limitations of the methods, the basic assumptions and the formulations
of these me-dio& are reviewed. Additional analytical derivations are performed in
order to explore the problems involved in the basic formulations of the analyses.
Based on the analytical and the supporting experimental work, the workability and
applicability of the methods are established. Some of the limitations and restrictions
of the methods are postulated and described in detail.
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SnIMARY

The report describes an evaluation program on three analytical methods used in
the response analysis of plate -3-nd shell structures under random acoustic excitation.
The methods evaluated are (1) the statistical energy analysis (SEA) method, (2) the
modal method, and (3) the Fourier transform method. In order to determine the appli-
cability and the limitations of the methods, the basic assumptions and the formulations
of ti:ese me-1hods are reviewed. Additional analytical derivations are performed in;x r	 order to explore the problems involved in the basic formulations of the analyses.
Based on the analytical and the supporting experimental work, the workability and
applicability of the methods are established. Sonic of the limitations and restrictions
of the methods are postulated and described in detail.
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INTRODUCTION

The three methods evaluated in the subject program and described in the report
are (1) the statistical energy analysis (SEA) method, (2) the modal method, and (3) the
Fourier transform method. As is well known, these methods are different in origin
and varied in their basic formulations. Their commonality lies in the fact that all
methods have been applied in one way or another to predict the responses of plate and
shell structures under random acoustic excitation. The purpose of the present inves-
tigation is to explore the assumptions and the analytical derivations of the methods in
order to establish their applicability. Certain limitations and restrictions intrinsic to
the methods are probed and illustrated. While the three diverse m:tthods are evalu-
ated consecutively, their merits and shortcomings, if any, are dealt with separately
and independently. In general, it is expected that the information collected in the
report will assist the prospective users to apply the analytical methods intelligently
and selectively in solving practical prot lems.

The SEA method has its origin in room acoustics. The basic theory establishes
the power flow between groups of uncoupled linear oscillators. Chronologically, a
paper published by Lyon and Maidanik in 1962 (Reference 1) gives the detail theo-
retical foundation of the SEA and its application to a structure excited by a reverberant
acoustic field. It also describes the equivalent electric circuits whose multimodal
response is similar to that of a structure under random loadings. In 1962, Smith and
Maidanik also published separate papers (References 2, 3), both of which deal with the
responses of structural panels and their interaction with an acoustic field. In these
papers, the level of excitation of the structure is formulated based on the radiation and
mechanical resistances, as well as the spectral density of the pressure field. Since
1962, a number of papers and reports have appeared in literature (References 4-18),
which postulate, extend, and apply the SEA to various problems involving randomly
excited structures. Among them, a paper by Lvon and Eichler (Reference 4) describes
the application of SEA to connecteC, strii(Aures. Another paper by Crocker and Price
(Reference 5) describes the successful application of SEA to sound transmission
between partitioned rooms. Other papers related to the subject area are listed as
References 19-:30.
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The second method being evaluated in the subject program is the modal method.
The modal method has been used extensively to calculate the frequency responses of
structures subjected to external excitation. The approach, which is applicable to
either deterministic or random acoustic excitation, is based on the assumption that the

responses may be represented in terms of nn inffin;te rn-1rnber of natural in U-1 of
the structure (References 31-33). The formulation takes the form of either a single
or double infinite series. In the series, each term represents the modal response
(as a function of the frequency) which is determined by tl. q modal force and the modal
impedance. For practical structures, it is well known that the infinite series con-
verges. The rate of convergence is dependent on the modal frequency distribution,
the modal impedance, the acoustic input, etc. In order to truncate the infinite series
for modal response computation in a rational manner, it is necessary to estimate the
truncation error based on the modal data. The usefulness of the modal method for
random response analysis is thus dependent on the ability to establish a reasonable
limit of truncation error within the frequency range of interest when a finite number
of natural modes is used.

The inherent limitation of the modal method lies in the fact that the modal den-
sity of a 2- or 3-dimensional continuous structure increases with frequency. With
increasing frequency, proportionately more modes are needed in the response anal-
ysis, which in turn tax the capacity and accuracy requirements in the computation.

In the report, a method to calculate the truncation error for plate and shallow
shell structures has been formulated. An error analysis is performed involving the
estimates of seric;s residues corresponding to various structural configurations. The
basic scheme of the computation makes use of the wave number presentation which has
been applied by Courant (Reference 34), Bolotin (References 35 and 36), Wilkinson (Ref-
erence 37), and others in structural modal density study. Using the approach, the trun-
cation error of the modal method is established at the resonance frequencies of the
structure as a function of the ratio of the resonance frequency versus the cutoff frequency.

The Fourier transform method is a highly developed technique which transforms
a set of functional data from one domain to another by resolving the function into
Fourier components. Through the transformation, certain advantages are gained
which include: (1) ease of operations on the function such as integration; and differen-

tiations, etc., (2) better insight in the nature and makeup of the function, and (3) adap-
tiu)ility u, the numerical computation technique and/or the use of the Residue Thoorem
for the inv erse transform. The Fourier transform technique has been used extensively
in transient dynamic analysis and electric circuit analysis (Reference 33).
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In transforming the structural displacement frc m the space domain to the wave

number domain, the Fourier transform technique has been used in random vibration of

structures (References 3, 40). In this type of application, it is desirable that the

structure dimension be infinite or semi-infinite. For a finite structure such as a

finite plate or shell panel, the application of the Fourier transform technique involves

the introduction of line loads at the structure boundary (or boundaries) so that the

boundary conditions may be satisfied. In this report, some exploratory work along

this line is described.

The evaluation work covers the analytical methods developed by a number of

research workers, many of whom are presently active in the field. During our inves-

tigation. we have corresponded with several authors whose papers appeared in the

literature. These communications are acklowledged at appropriate locations of the

report. The findings presented herewith represent the personal opinion of the authors

of this report.

The authors wish to acknowledge the encouragement and support of Mr. Richard

W. Schock and Dr. Hugo Steiner, both of the Aeronautics Laboratory of NASA Marshall

Space Flight Center. Dr. Steiner served as the program monitor of the work reported

herein. The experimental work described in this report was carried out by Mr. D. C.

Skilling of Northrop.
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EVALUATION OF THE STATISTICAL ENERGY ANALYSIS (SEA) METHOD

Our findings with respect to the SEA as applied to the plate and shell structures

under random acoustic loading are listed below. The basis for and the reasoning behind

our conclusions are described in the subsequent subsections.

1. SEA is based on an analysis of the- energy transfer between linear oscillator

systems with weak coupling. The theory is sound and may be applied to

specific problems if all the basic assumptions are satisfied.

2. Based on available data, SEA is considered satisfactory in solving response

problems involving interface(s) between a structure and a reverberant pres-

sure field(s).

3. Based on the configurations .nvestigated, the weak coupling conditions are

generally not satisfied in problems dealing with connected solid structures.

Th?.s is especially true in the low and medium frequency ranges where the

modal response data of each substructure are noticeably affected by the

substructure interface. We noted in a number of working examples in the

literature illustrating SEA where the computations were extended to such

frequencies that the basic assumptions could not be met. On the other

hand, there is justification to apply SEA to structures under very high fre-

quency excitation where (i) the wave patterns are diffused, (ii) the major

wave lengths of interest are small compared with the characteristic dimen-

sion of the structure, and (iii) the displacement response: patterns are almost

independent of the structural boundaries and interfaces. In general, caution

is suggested in applying SEA to fabricated aerospace structures.

4. The concept of establishing a probability function for the response data con-

sidering the variances of the energy based on analytical response functions

is considered sound. In order io establish a confidence level in SEA pre-

diction, a distribution function has to be assumed. The variances are usually

computed based on (i) ideal and diffused modal patterns, and (ii) essentially

linear responses of the oscillators with correction in the damping constants

due to weak coupling. In reality, the variances in energy may be contributed

4



to factors not considered in the analysis. The above conditions make the establishment

of a confidence level of the predicted data extremely difficult.

Assumotions of the SEA

The SEA is based on the power flow between groups of linear oscillators. Within

each group (substructure), the modal data of the oscillators are governed by an eigen

equation; no power flow is assumed to take place among the oscillators. Between two

groups, the power flow is established by a set of dynamic equations. Each equation

represents the mode response of one oscillator and its weak coupling with one or more

oscillators from the other group. It is assumed that the weak couplings are such that

the original eigenvectors may be retained in formulating the power flow. The coupling

parameters are classified into inertia, damping, and spring types. For a stationary

process, the assumption that the damping coupling parameters for any two oscillators

are equal in magnitude and opposite in sign gives rise to a condition called gyroscopic

coupling. Specifically, a gyroscopic coupling element is defined as one which produces

a negative coupling force on oscillator (2) due to a positive velocity of oscillator (1) if

it results in a positive force on oscillator (1) due to a positive velocity of oscillator

(2) (Reference 11). The gyroscopic coupling causes the power flow c-^efficients to be

equal in the two-way flows between the oscillators. As will be shown later, a sub-

stantial part of SEA involves the derivation of the power flow coefficient under the weak

gyroscopic coupling condition.

Consider a narrow frequency band for which the modal density of the substructure

may be determined either experimentally or analytically. in SEA, it is assumed that

the input power spectrum is fairly flat within the frequency band. Each linear oscil-

lator which is directly excited by the external source is considered to be subject to a

"thermal bath_ " LT^der this condlLlon, the modal energies of all the oscillators whose

natural frequencies lie within the narrow band are fairly equal and may be represented

by an average value. A final formulation of the SEA involves the response level of

two or more substructures (which may be either connected substructures or a structure

and a reverberant acoustic field) based on the average modal energies of the externally

excited and the coupled oscillators.

General Formulation of the SEA

The formulation of the SEA described here follows the veneral scheme of Ref-

erence 1. We use double subscripts for the equivalent modal energies in order to
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2
4X1	

R 
1
. 6' .

R 1 	 1 J

Rj Y

make their meaning.* more explicit. Additional equations are derived which relate the

damping constant of the coupled substructure to the power flow coefficient between the

oscillators. The result is used to evaluate the magnitude of the coupling parameter

as v ,cll as the degree of coupling between oscillators based on available test data.

Consider two groups of multiple oscillators. Within each group (or substruc-

ture), the oscillators are uncoupled. Power flows take place between the oscillators

of the two groups. The modal displacements of the oscillators are denoted by x i , y.
J

respectively. Assuming weak gyroscopic coupling with only damping type terms, the

following set of equations is established:

N

i 1	 1

	

X. + L)X.
1	 Z Bikygc _ fi 	i	 1, . . . . , N	 (1),	 +

k- 1

N

	y j + —,2 y 	 B Y^ = ij	 j = 1, . . . . , N	 (Z)
^ 1	 J

where Ri , R  are the damping coefficients of the oscillators i, j; w  w j are the natural

frequencies; B ik , B Qj are the coupling parameters (Bik  Bki' etc.); and fi , f  are

the modal forces. Assuming a stationary process, the time average of a function is

denoted by a pair of brackets ` } around the function. The power balance equations

may be expressed as follows:

2 N

R i 1 X i 	 Ri 9i -	 gik(yik - 9ki )	 i = 1,	 N	 (3)
k- I

_	 _ N	 _

Rj Cyj /	
Rj9j+	 gPj(e^j _ 9jr )	 J	 1,	 N	 (q)

i f=l

	

- gij (91 j - 9^ i )	 (5)

	9 (6 , - bp i )	 ((;)
N; j - I,	 N

where 91 3., t9!. are called the equivalent modal energies as defined below:
j i

N ij	 Ni	 g'ik (e
ik - 9ki ) 	 Ri	 (71

k%,J
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and

	

Ai = ^
fi Xi/ /fli	

<<t)

	

/) j	 03)

	

2	 2

	

gib = Bid (0i w
i
	 fl^ Wi )	 (Wi - Wi ) 2

_2	 2

	

` ( #i + 6	 (l3i W i 	 ̂ 
W i ) ]	 (ll)

Bi;! «,9i ^,
	 (12)

Equation (12) defines the relative magnitudes of the coupling parameter and the modal

damping coefficients which represent the weak coupling condition, a key condition:

on . cdeh SEA is based. For the purpose of examining the validity of the weak coupling;

condition, we developed the following formulations (equations 13-21) independently of

previous SEA work.

Thus, the relation between Bid and gib is as shown below:

Bid ( xi y! ) - 
gi3 (91 j 	(13)

Equations (7), (8), and (13) are used for defining the energy terms. Based on this

fon.iulation, the power diagram for a typical oscillator (.Y.) and the oscillator (y.)

is shown in Figure 1. Taking the summation of the terms of Equation (6) with respect

to index "i" from 1 to N yields

	

2	
N

N9	 ^J	 18	 dji	 (bij _ 6 ji ) gij	 (1I)
i - 1	 i - 1

Insertion of equation (4) into equation (1 .1) gives the following expression

N
(N - 11 (y-  	 (15)

i	 1	
)1	 ) 	 I ^

I



I
n

n equations (14) and (15), the unknown 
Of may be represented in terms of y^ and

t x2^. This is nevomnlishnrl by Rnlvi7cr the -Si—M , l t J-rC0UE Cquwt ; .s (5) gild (v) bdSLd
N i r	 -

..^•	 a- wie.i K_ ( • l 111I117'l0 . 7CC"m .,r..-....'r ""a	 ti	 N^iVii.

6 ij	 (1	 Ei) 
1yi / - E i (1 +Ei + 4E	

^Y. }
	 (16)

.2%
1 

9j . 	 (1 + E j ) { yj	 - E j (1 +E i + Ej) (xi )	
(17)

	

1	 1

where	 Ej	 gij / ^j

C  = gij 1 ,6i

insertion of equation (17) into equation (15) yields the relationship between (y j2 } and,! x ; \:

'N

Y2 _ 16J eJ	 & 1 gij 1 Xi	 18
J	 1\

^j +	 gij
i=1

s

If there is no source on oscillator system y, equation (18) becomes:

N

r g;;

	

^J +	 gij
i=1

where ^x?\ is a functioi, proportional. co the average energy contained in each individual

oscillator of system x. Equation. (15) may be rewritten for the multi-moda l. syste_n

where the average values of the modal energy, the damping coefficient, and the coupling

damping factor are established for each group of oscillators within the frequency band

(w - 112Jw, w - 1/2dw). Expressed in terms of functicn s related to the sur,structures,

the final equation i G:

/7- 2 \	 / . 2\	 M^'	
^e -

/ \ y /	 1 i 120)
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where the M, N, 
\v2) 

are the mass, the mode count, and the mean velocity square of

	

the substructure excited externally; nd M; u	 2	y; 	 , 1 ^ are the corresponding functions

for the coupled substructure. ^ is the average inodal damping oneffic;Pnt of the

coupled substrncture and ft  is the coupling damping factor defined below :

N
Qc = Mean of E g ib	 for all ;'s

j=1

With the term fc defined by equation (21), equation (20) conforms to the general formu-

lation of the SEA (see equation 27, Reference 4).

SEA Applicd to a Structure in a Reverberant Acoustic Field

Formulation of SEA as applied to a str=ture and a reverberant acoustic field may

be found in Reference 1. Using basic equations of power flow, such as equations (3),

(4) of the previous subsection, Lyon and Maidanik* defined the mechanical and radiation

resistance Rmech' Rrad of the structure:

	

m Em ^ ` m / Rmech	 s m
)

 Rmech

lei m ,m (
s2 )	

(22)

E m l sm t Rrad - M	 gmr (8'm - Br)	 (231
m	 m, r

In the above equations, (;,m2) is the mean square modal velocity averaged over

time, while {sm 
i 

is the mean square modal velocity averaged over time and space.

M is the mass of the structure and m, r are the indices for the structure modes and

the acoustic field modes respectively. In equation (3), we multiply the terms by M and

move the coupling energy terms to the opposite side of the equation. Taking summation

with respect to index i, the following is reached:

*The authors acknowi,3dge the assistance of Dr, 's Lyon and Maidanik who confirmed
cert •iin tN, ,.^..,. 1.;	 tILI,J p og apl- cal errors 1[1 llLlt;L-f;[1C.'e 1.

(21)
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l 9	 N N

M	 {9 
i 

Bi = M	 ^i . \ xti } -+ Al	 gik (6'ilc - B ki )	(24)
i	 k

It is noted that the mechanical resistance, as given in equntion (22), is identical to the

first term on the RHS of (24). The radiation resistance, as given in equation (23), is

identical to the second term on the RHS of (24). We note that each of the equivalent

energy functions Om of equation (23) is dependent on all of the modes 
4  

of the acoustic
field, and each 0 1

r
	 dependent on all of the modes sm in the vibrating structure.

This point was explained previously in equations (7) through (10).

Lyon and Maidanik applied the above equations to a structure interacting with a
reverberant acoustic field. For this case, the modal density of the structure is sub-
stantially smaller than that of the acoustic field:

ns(w) << nr (w)	 (25)

Based on (25), the following may be deduced chasing  the equivalent modal energy of the
, t—turc to the power flow due to weak acoustic cuapiiiig:

em >> ► __	 f
)9m ^.^	 grm ( r	 9 

m)	
(26 )

which is equation (9.24) of reference 1. This relation in turn yields ^s 2\ - 0
m / m

In other words, the modal energy and the equivalent modal energy of the structure may

be used without distinction. Additional assumptions in this formulation are that the

average modal damping coefficients 13s, 
^R 

exist, and that the modal energies for each

substructure are approximately equal within the frequency band of interest.

With the q qs mptions desc ribed above, w ratio may be established between the
pressure spectrum and the acceleration spectrum when the structure alone is excited:

S (wj	 1	 R

^ p 2) = 2n
L nR 

(^} ^	 (27}

and when the acoustic titid :s excited:

Sa (wl	 27r - n s (w)	 c

S l w }}	 J'I	 ^' p
P
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1	
E	 g

where	
Rrad	 _	 Ns(w) r,m	

mar	 ,
a(w) - R	 + R	 (^..9)

Ynech	 rad -	 fls + Ns 
1	

E	 gmr

In the above, p is the air density and c is the speed of sound. In Reference 5, Crocker
and Price applied equations (27) through (29) and some additional formulations to pre-
dict the sound transmission loss, the radiation resistance, and the vibration of a parti-
tion in separate chambers. Also applied in the anal '-iical prediction tis the formulation
of the panel radiation resistance to half space as a function of the panel geometry and
the frequency ratio (f/fc ) developed by Maidanik (Reference 3). The experimental
phase of Crocker and Price studies itivolves the measurement of the radiation resis-
tance, the total resistance, the coupling factor, the modal density, the transmission
loss, and the vibration response of the aluminum panel located between two chambers.
In general, the measured data correlate well. with the data predicted by the SEA. For
instance, the panel response relative to the mass law when one of the chambers is
excited by a loudspeaker is plotted for 1/3-octave in Figure 2, which is reproduced
from Reference 5. The analytical data are overplotted as a continuous curve based on
the following:

!	 Sa(w)__ 
7r 

fc s	 77 rad (30)Sa 
mQ

,w)	 2 pc	 dint + brad

where

S	 2a	 =. -	 ^	 S D (w)	 ^^7
^..	 p

s

Iii Figure 2, the agreement in theory and experiment is considered satisfactory.
In the low-frequency range (<400 Hz), moderate disagreement is ohscrved. it is
worthy of mention that Crocker and Price attributed the cause of the discrepancy to
the insufficiency -of panel modes in the low-frequency range. The low modal density
of the panel and the resulting spread of the panel/room interaction modes make a
correct averaging process impossible, a factor not considered in the SEA.

In conclusion, the general success of the SEA ; as applied to a strvcfir,(, inter-

acting with _i rF?verberant acoustic field(e), i s bel ieved dit_e to thi ioilvwI

1. Weak coupling exists between the panel and the acoustic field.
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2. The weak coupling and the difference in modal densities of the panel and

the acoustic chamber justify the use of the modal energy is 2 } and the
m

equivalent modal energy, om, without distinction.

3. A va"'formulation exists for the radiation resistance of a panel which

makes possible the analytical determination of	 gm r. This formulation
r, m

is carried in the wave number domain through the assumption of a completely

diffused wave field.

The Extent of Coupling Between Substructures

in the hasic formulation of the SEA, Equations (1- 12), it is assumed that the

coupling is weak between any two oscillators of two substructures. This condition is

represented by:

Bij ! << fj i . ^j

In this subsection, we attempt to establish an analytical relation between B. the rout

mean square value of B ij , and the couple damping factor 6e = re o

	

r	
for various

center frequencies w o ( c is denoted by r ss in Reference 4 ). Since the couple damp-

ing factor 6c may be determined either analytically or experimentally for any given

set of substructures, and since the average modal damping coefficient ^ (see equation

20) is usually determined experimentally, the analytical relation between B 2 	(B 2
1J

and R  developed here may be applied to check the validity of the weak coupling con-

dition of (12).

As shown in equation (11) previously, gij may be expressed in terms of the

c6upiing parameter B i .
J
, the natural frequencies of the oscillators, and the moda'

(tamping coefficients. Furthermore, the mean value of any function in group i is

indicated by subscript 2 and the rnean value of any function in group j is indicated by

subscript 1. Based on this convention, the following is reached through the application

of equation (21).

	

2	 2
^ ^	 ^2 ^'1 ^ 1^ i

^ (c.^u) - B 2
	 -
i — 1	 ^.	 B,) ^^^^"	 ^2 ^

ju
2 	 2	 (i -^1 }	 1	 2	 1	 1 r /	 l	 A 
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B2 n
	

W + 2dw	 (^12w1

2f	 ,,	 2,2
wl -2dw (wl

d 

+'62) (62"1 + ft w 2 )1 

B 2 n2	
2dw

-2dw

	

(Q1 + 62 ) d (,d	 oil)

	

4(w - wl)2 + (Q1	 0 2) 2

B 2 n tan-1	 dw	 (32)
2	 61+02

where w0 - Gil = the center frequencY

d w - frequency band width

n- - the modal density of substructure 26

H 1	 "1 w  - damping coefficient of substructure 1

02 	 ?7 0 = damping coefficient of substructure 2.

As mentioned previously, the term,6e appears in equation (20). Corresponding to

equation (32), substructure (2) refers to the one which is excited externally, while

substructure (1) refers to the coupled substructure. The damping coefficient ,6 in

equation (20) is thus equal to R 1 as shown in the equation above. When 1/3-octave

frequency band width is used, equation (32) may be simplified to:

B 2	 2,6 (wo)/n2 , - (2'1s s/n2 n) o	 (33)

Based on the above equation, the values of B 2 may be computed as a function of n2,

,, and ') 
s
ss ( =,c /wo)' The application of the above equations is presented in the

following subsection.

SEA .Applied to Connected Structures

Since its introduction in 1962, substantial effort has been directed to the applica-

tion of the SEA to connected structures such as fabricated a,orospace stucturc . For

this purpose, it is expected that the basic assumptions and conditions set up in the

analysis are valid so that the response eq-_iation (equaLion 20) may be used for each

freq_ueney band. nirthermore, efforts ha -.-e been made to determine the coupLing loss

13



factor analytically and experimentally in order to apply the method for prediction pur-

poses, corresponding to various structural configurations.

In Reference 4, Lyon and Eichler applied the SEA to the random vibration of

connected structures. Two examples are covered in the paper, namely, a beam bonded

to a corner-supported rectangular plate, and a vertical plate welded at right angles to

a corner-supported rectangular plate (Figure 3 of this report). For the latter configu-

ration, an edge absorption coefficient Y.. is determined based on the flexural wave prop-

agation equations in plates and the continuity conditions at the fabrication line of two

plates i, j.

Specifically, Y is the ratio of the outgoing wave energy rate per unit length of the

junction line vs the incoming wave energy rate in the other plate. The details of deri-

vation of Y are presented in Reference 4. ` Two cases of Y of special interest to the

present program are described below:

(i) h 1 =h 	 D1 D',

Y	

2	 (34)
12 9

(ii) h 1 << h2 , k 1 >> k2

Y12 2 (h 1A )3 	(35)

For a structure made of two connected plates of specific dimensions, the coupling

loss factor is given by Heckl (Reference 27) as:

n2 
1 

Lc	 ss	 n	 k A	 Y	 (i^'11 l

where L is the length of the junction Hne and A l is the n rea of the plate which is

excited externally.

In deference 4, the loss factor 771 = a%w 0 is measured for plate no. 1 (the vertical

web in Figure 3) before assembly. After assembly, the plate is excited impulsively at

a random location on plate no. 1, and the combined loss factor n l + nss 	 flc) A o

is determined based on the decay time measured at random locations of the same plate.

*Ir. private communication, certain modification and additional derivation of Y were
relayed to the authors by Dr, Eichler. These data are not covered in this report.
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The loss factor data are used in equation (20) to predict the ratio of responses of the

two plates when plate no.2 is excited. This technique is based on the assumption that

the power flow at the interface stops immediately after the iinpulsive load is released

irrespective of to which substructure the load was applied. In Reference 4, Y71 and

s
n ss data are plotted as functions of the 1/3-octave frequency. Also plotted is the

theoretical Y based on equation (35) and the Y data based on experimental 17ss and

equation (36). The plot is duplicated in the present report as Figure 4.

An alternative form of equation (33) is used to define B, or the root mean square

value of Bid , where Bid is the damping coupling parameter between an oscillator in

substructure 2 (tl:e base plate) and an oscillator in substructure 1 (the vertical web):

1	 2 ns 
w	

1

B = 1Bij)2 _
	 ns	 0 12	 {37)

	

2	 J

This equation is used together with equation (36) to determine the ratio (B/R.) atI
1/3-octave frequency increments. The results are plotted in Figure 5. In the figure,

the curve marked with dots is based on measured ass of the two-plate system (Figure

4). The curve marked with circles is based on the yth value of Equation (35) for the

same two-plate system. For a different two-plate system where h 1 = h2 _ .057", Y is

i

	

	 determined by Equation (34). For this case, the (B/,8 1) ratio is plotted as the curve

marked with crosses in Figure 5. In examining these curves, it is obvious that the

basic weak coupling condition (12), 
1
Bi , I «,6 i , fl y , is not satisfied at almost all fre-

	

quencies. For f < 7000 Hz, the computed (B/ft 1 ) values are greater than unity. The 	 r

highest value is 11.4. Since equations (32, 33) are derived based on the weak coupling

condition, the -,hove data do not serve a positive proof as to the applicability or in-

applicability of the SEA to the two-plas;e system. On the other hand, the extraordinarily

high ratio of (B/P 1 ) suggests that substantial coupling exists between the connected

plates. This observation casts doubt on the validity of the predicted responses based

on the SEA. Additional experimental observations on the same connected structure

are described subsequently.

Experiments on the Two-Plate System

A structure identical to the two-plate configuration described in Reference 4 and

illustrated in Figure 3 of this report was fabricated and tested. Preliminary damping
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tests were performed on the structure prior to the response tests. In the response
tests, a shaker with sinusoidal and 1/3-octave frequency band inputs was used to sup-
ply the excitation force at various locations of the base plate. Fine poiyvinyl chloride
pellets were spread over the base plate to visualize the deflection pattern of the plate.
The basic instrumentation system of the tests is shown schematically in Figure 6.

In the 1/3-octave response tests, the average response ratio of the two con-
nected plates is acquired through a number of accelerom-3ter readings. The data
are plotted in Figure 7 in terms of 10 log`v 2/v2)  for two locations of excitation. Sim-
ilar data obtained in Reference 4 are also plotted in the same figure. Referring to the
figure, the three sets of data correlate fairly well for frequencies above 4000 Hz.
Below 4000 Hz, substantial deviations are observed between Lyon and Eichler data
and our data. The discrepancy is believed due to minor differences in the method of
fabrication and the supporting conditions for which the low-frequency modes are sensi-
tive. The fairly consistent response data in the high-frequency region is partially con-
tributed to the more diffused wave patterns in the plates.

The modal density of a plate is given in Reference (34) as:

n  (f ) _	 3 Ap/C p 
t 
	 (38)

where A  is the area of the plate, t  is the plate thickness, and C  is the longitudinal
wave speed of the plate material. Equation (38) gives n  (f) _ .129 modes/Hz for the
base plate so that we are dealing with more than 115 modes in the 1/3-octave band at
4000 Hz center frequency. our Experiments show that under sinusoidal excitation, a
clear deformation pattern exists which represents a superposition of a number of
strong modes (Figure 8). This selection of the prominent modes is believed to be
dictated by the boundary conditions, including the substructure interface. A 1/3-octave
excitation yields a recognizable deformation pattern which resembles to a certain de-
gree the pattern of the sinusoidal excitation (Figure 9).

At lower frequencies, features similar to those described above are observed
when the plate is subject to the 1/3-octave and sinusoidal excitations. For 1/3-octave
excitation, the wave pattern tends to break into smaller grids than those of the sinu-
j. c_:lai excitation, which suggests a higher degree in the superposition of modes, as
it should be. In either case, the effects of the interface of the vertical plate to its
deformation patterns are pronounced. Figures 10 and 11 are the visualized patterns
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of sinusoidal and 1/3-octave excitations at 2000 llz. We were able to obtain a fairly
clear deformation pattern with 5000 liz sinusoidal excitation and a riuch diffused pfit-
tern with 1/3-octave excitation. Above 5000 llz, no clear . pattern was recognizable
when we used the pellet visualization technique.

It is worthy of mentioning that because of the usual spectral makeup of the
acoustic loads and the high damping constant at very high frequencies, significant
responses of the typical aerospace structure usually appear in the low and moderate
frequency region. (See, for instance, Figures " ,nd 10, Reference 28. ) In view of
the spectral distribute,)n of the major responses in aerospace structures, and to the
uncertainty regarding the applicability of the weak coupling condition of the connected
substructures at moderate frequencies, it is considered advisable to perform certain
prciiminary investigations prior to the application of SEA. In the preliminary fnvesti-
g'r cion the extent of coupling of the substructures, the degree of dependence of the
mode shapes on the structure interface(s), and the natural constraints should be care-
fully evaluated. The preliminary data may then be used to determine the applicability
and limitations of SEA.
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EVALUATION OF '1'111: NODAL METHOD

The modal method, as applied to random acoustic excitation of structures, is

based on the assumption that the responses may be represented in terms of the infinite

number of natural modes of the structure (References 31, 32, and 33). The formulation

takes the form of either single or double infinite series. In the series, each term rep-

resents the modal response (as a function of frequency) which is determined by the

modal force and the modal impedance. For practical structures, it is well known that

the infinite series converges. The rate of convergency is dependent on the modal fre-

quency distribution, the modal impedance, the frequency range of interest, etc. The

convergence of the series justifies its truncation during computa l ion. In order to

truncate the infinite series for modal response computation in a rational manner, it is

necessary to estimate the truncation error based on the modal data. in this section, a

method is described to calculate the truncation error for plate and shallow shell struc-

tures under specified random loads. Similarly, when the finite element approach is

used, the responses of the structure at selected locations are presented in terms of

the modal matrices. Since the number of modes used is equal to the matrix column

number, the matrix presentation implies a modal truncatioa.

The modal method is most suitable in determining the responses in the low-

frequency region. The upper limit of op^,ration of the method is influenced bN , the

following factors;

1. When the finite element approach is employed, the number of modes used

in the modal analysis is restricted by;

a. The amount of the structural details available in the analysis

b. The capacity and accuracy of the eigenvalue routine

c. The computer capacity and processing time requirement.

2. The modal truncation limits the application of the modal method only to the

frequency range where the natural modes are properly covered.

3. Corresponding to the highest frequency natural mode, the modal pattern has

a characteristic gave number, i. c., a typical wave length. When the finit(:
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element method is applied, this wavelength has to be a multiple of the typi-
cal length between two neighboring reference joints in order that sufficient
accuracy may be retained in both the eigen vectors and the eigen frequen-
cies. This condition limits the application of the modal method up to a
certain wave number.

Modal Method Formulation Using the Fini te Element Method

In the matrix formulation, the equation of motion of a damped elastic structure
is:

[M] { w J + [C] I w I + [K] { w } = I f (t ) 1	 (39)

where w is the matrix of nodal point deflection components, M is the mass matrix,
C is the damping matrix, K is the stiffness matrix of the structure, and f (t) is the
matrix of external nodal point forces.

In the modal analysis, the nodal displacements w are approximated by the finito
series of the eigen vectors in the fc"owing matrix form:

	

{w } _ [Q] k(t) }
	

(40)

where Q is a rectangular matrix whose columns are the eigen vectors. The analysis
satisfies the following orthogonality conditions:

[Q]T 
IX [Q]	

(41)

CQJ T [K] [Q] _ ^EiJ	 (42)

where w  represents the eigen fre quency of the i-th eigen vector. In order to simplify
the problem, the generalized damping matrix is usually assumed to be a diagonal
matrix:

[Q]T L C ] V = 2 I Y,^ I Z'J	 (43)

where Y  represents the damping ratio of the i-th mode.

The insertion of equations (40) - (43) into equation (39) leads to the matrix equation
for the generalized coordinate ^(t):

	

{ E I+ 2 (Yj rUJ { i I+ riD' J 1 4
 1	 CQJ T{ f(t)1	 (1.1)
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In the frequency domain, the Fourier transform of w may be simply expressed in
terms of the Fourier transform of external forces as:

Isw (' ^ = rol i s (U) } _ [Q] ^H (,;	 T, l FQJ ( Sf (c^) j	 (451

The j -th clement of the diaooual admittance matrix H (w) is defined as

Hj (w) = 1/ ^^j —^,2 + 2iW Wj Yi1	 (40)

Furthermore, the structure response PSD for random loading may be computed based
on the matrices described above:

[0 ((..)] = FQl Fu(w)y FQ? T ^^ 1 (^)^ FQj ^H * (i.;)i r- i T	 (17)

The asterisk above a matrix indicates the complex conjugate of the matrix. The
diagonal elements of the matrices ¢ represent the PSD values, while the off-diagonal
terms represent the cross-PSD values.

With matrix ¢ w (w) determined, the mean-square values of deflections ' . inay
be obtained by integrating the corresponding diagonal elements of ¢ w numerically.

Trancation Error In Modal Analysis

In the following, a method is established to compute the tnancation error in the
modal analysis of a plate or double-curved panel under random acoustic excitation.
The panel modal response is represented by an infinite series. In evaluating the
spectral response data, the error introduced due to the truncation of the infinite series
is computed based on the wa-e  number presentation. Using this approach, the trunca-
tion error of the modal method Is established at the resonance frequencies of the panel
as a function of the ratio of the resonance	 1--SUs the cutoff frequiericy. 1'11_'iL1

types of the input acoustic spectra may be applied in the process. For illustration

purpose, error analyses are performed on a simply supported plate and a shallow

spherical shell subjected to uniform intensity random loads.

In the modal formulation, the power spectrum density (PSD) of deflection at

location i may be expressed in the following form (also see equation (47)):

j 1 r=1 ^
I	 it	 r`.^ - -j	 p	 ]^_i p -	 (48)=	 , 	 4	 <''ti
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whe re

(i = frequency in rad/sec

W 	 - cutoff frequency, i.e., upper bound of natural frequencies in

modal truncation

9)	 cross PSD of modal forces F. and Fp
j£

At the resonance frequencies w  (p = 1, 2,	 N) of the structure, the response

PSD has the following approximate peak values:

-1	 1 N

Ow.. (c,'p' mN ) = Qip 14 Y^^`'pl 
•F (wP ) + Qip ^y10	 Qil	 I OF !^'o) Hp (^u)J

i i	 pp	 t =1	 L_ PI
lip

+	 Qtl	 1 i Ht (^, , I2
L=1	 tl P ^	 P f

Mp

where

a,p ' rvt s `'' N.

I
The error of the response PSD due to modal truncation is:

2 -1 00

AO (wP' w )	 Q'P 
^Y a' }	 Qit lrn rOF (U'P ) Ht (wP )^w';i	N	 L P P t^ I	 Ft

ao	 2

it OF

The relative error due to truncation is simply:

	

e = d 0 w (tip , `)N )/0w.. ( ``'p , `''N )	 (51)

T uuncation Errors For Double Curved Panels

In general, the asymptotic expression of the natural frequencies ^) may be used

far the Ynodes of vibration having sufficiently large wave numbers. For a rectangular

t19)
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elastic shell element Whose orthogonal curvilinear coordinates x and y coincide with

the lines of principal curvatures, the asymptotic frequency equation is (Reference 35):

2
2k 1

2k,,

R 2 ►? 1 iD Ehw 2 - /k2 + k2) (a^)
ph \	 1	 2! D 2ll2

(( 
2

\ k 1 * K2! ,

where R  and R2 are the radii of curvature of the middle surface, E the Young's modu-

lus, p the density of the material, D the plate stiffness, h the thickness, and k 1 , k2 the

wave numbers. It has been ,shown by Bolotin (Reference 41) that in the absence of a

dynamic edge effect in which the boundary conditions have a considerable effect on the

mode shapes in the interior of the shell, the wave numbers of shallo., shells can be

approximated by

1=1 =	 in +	 0 (1) , m	 =	 1, 2, .. .

k2 = nzr/b +	 0 (1) , n	 =	 1, 2,	 .. . (53)

where a and b are the edge lengths. The term 0(1) represents a term of the order of

unity. It is cxpeeted that corresponding to file cuL-off frequency of the shallow sheil,
either k  or k2 , or both, are of an order of magnitude much greater than unity. If the

boundary is simply supported, the asymptotic solution coincides with the exact one and

the wave numbers k 1 and k2 are given as:

k 1 - m7r/a,	 k2 = nrrib
	

(54)

Following the same ic-,^soning, it is noted that M (w T̂ , w* ), the total number of
1	 `^

modes whose natural frequencies are within the frequency band (w,^, , w ), may be
1	 2

deterniined approximately on the (k 1 , k2 ) plane. Specifically, area integration is

carried out in the first quadrant of the plane which is bounded by the k l , k2 axes and

the two curves defining w = w , and w - N2 The equation for M is given below:
^ 1 

i	
Cr

11 jwr f,	 w ,, T ^ _ -^,. ^Ir ! j d k y d k,	 (55).1	 "2/
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where dk 1 = 7r/a and dk2 
7--
	 Applying the transformation

k 1 = r cos 9

k2 - r sin 0

the following, is reached:

M(w , cry ) r ab ^^ r d  d9	 (57)' 1 9

 2	 s

Similarly, the error of the response PSD due to modal truncation may be derived

based on equations (46), (50), (52), (56 ), and (57):

f

dO	 (U) I UP ) ?	
iF	

Q.	 (^, )Ow
	
P N	 _"=NA r/W2 - ^" 2 4'r^ w^ -2 I	

t0 F^ p

Qi	 r

+ y 02 [̀22Ye ^ C, Re ^F (wp) + C^,1 - U3
2

) Im (^ (wp)^
p p	 ^ pt	 I	 L L

	

"2x	 ph 2
ab f	 f	 (D / Qit	 J

J	 J ^OF t^p I

7r ^1 r (^N ) (r4 + D a - k4 ^2 + 4YQ k
P
4 (r4 + p̂  C')]^
	

Qy

C	 P 

where

+ Qip r 2y` kp [r4+Da]1/Re[0Fp

P P L 	 p P

+ (r4 + D - gyp) Im 
[.0F 

(wp )J r d r do

PQ

r - ^D
r4	

ll1/2
+ a (B )

J

2

a (g)	
cos 20	 s1n29

p R2	 R1

c- _ (D /ph)1/2 r2
F	 N

r

(58)

(59)

(60)

(61)
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r	 ,	 2 1/2
I	 2	 2

k ip + 
k?L

^2	 1 /, 2	 ^_.\2

VIA 

H2 R,
K	 ^klp k2

)
	D 

(

% 	 1 /2('i2
)Pp 	 2

	2 k 2p)

1/4
r ( wN )	 (ph/D) ^^'N - a'(9)l

1 '
 (63)

Th y - integration is carried out over the first quadrant of the ( k l , k2 ) plane, the

details of which are described in the subsequent sections.

Random Pressure Loads

Consider the case of a simply supported shallow shell element with double curva-

tures under uniform intensity random loads g5o (W ) (psi)2%Hz. The random loads are

spaiiaiiy deterministic, i.e., they are in perfect spatial correlation.

The 1-th mode shape at location i (x, y) of the shell element is:

where

Qit = A sin kH, x sin k21,y	 (64)

A	 2 ( p h ab) 1/2,	 kif = PI 7r/a,	
k2.' = 1

2 n /b .	 (65)

The corresponding natural frequency is given by equation (52). The cross-PSD

of the modal forces Fe and m is:

•^1

0F. M16 0o(") A- (' k1I k2I k lm `^2m,-	 (66)
Cm

7r

where k^ = a ,etc., 11 , Q21 m l , m2 - odd integers.	 (67)

Based on equation (58), the truncation error of the center deflection PSI) of the

element may be expressed as:

2 2	 -1
d ^W ,p , ^ )	 4 00 (`7 ) A4 ^D) ab ^k lp k2p kp^

2
B

klpk2pkp +2r2 cosh sin g (r4	 a)

f2	 r d r do	 (68)

k ^ r cos o4sin^'^
p
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In equation (68), the factor in the denominator of the integrand

/
2

tl
	

'	 u 1^1 r4 + D a - kp! + 4 i 
^p (r4 Pli

J
2

has been replaced by (r4 } D a - p) approximately since Yp <<, 1 and Op > wp. The

approximation tends to 1„ake the computed truncation error on the conservative side

since the impedance magnitude is reduced. Furthermore, the value of dk l dk2 ab /7r2

has been replaced by ab /(47r2). This is because only the odd wave numbers contribute
to the response.

Figure 12 shows the modal distribution of the element in the wave number domain..
The double integrals are carried out over the shaded area in Figure 12(a).

It is noted that the narrow strips next to the k 17 k2 axes are. exeluded from the
area of integration. The exclusion, which forestalls the d iverge--- of the integrr^d
of ec;satic-t: (68), is justifia le Because uo natural frequeneles exist in these strips.

The boundary of the area of integration is defined by the following:

a

, B : 0 s B <_ ^1 r 	 (g) 7r/(b sin g)

n
_C 81 < 0 < 2̂ ro (6) r (wN)

C"D:
Ir

09	 B	 5 r0 (9) n/(a cos 9)	 (69)

The angles 01 and 6, are determined by the equations which follow:

1/4
2

>r w
Ph

w2
cost

E
sin`

Lsin -sin	 6	 -1	 b r 	 (,6 1) b D 1- P	 R2 R1

-1 '4

Ir 7r Ph
` LCOE	 S ^ 

2

2

Sln	 S,
Z

cos ^2	 a ro (,82 )
_

a D wN
_

P	 R2 R1

7(01

From equations (68) through (70), it is noted that the integration over the areas

0 f- B 1 and 6, < 9 < 2 will yield very complicated expressions for 9. In order to

simplify the problem, only the shaded area shown in Figure 12(b) is integrated, i.e.,

"o (n`	 r ^^^.1, pt1 < B < ps2 . Since 61 and —,7)r -- !^^ are small quantities in comparison
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with L	 ``when 'N is sufficiently large, the approximation is considered acceptable.

With this simplification, the integral in equation (68) may be carried out with respect

to r as shown below:

(^b/ l	
I -1d^W (p, wN )	 2 0o(	

4
p) A 2 

k IP k2A P)

D 11
/2 	

1/2

f
(Ph!	 k lp k2p ^p	 1	 t Q2 a9)l2

1	
I	

2	 1 2
A	

^P -
a (9)i cos^0 sin 	 [Q 2 - a (9)1	 2 Q` _ ^p

f
f 	1/2	 2 +

In iE - a(9)3	 A	
^	

IQ	

u (4)11/2 _ ^p
+	

a(e)
1 1/2 I

S2	

1

J

 2J

4 IDp	
I^ 2

-a (9)j	 (<`'pa(B)l 	 2 - a(9),	 + gip- a(B) J

t ^—	 1	 j ^r 
I 2̂- a (B)] - 

a1/2 9 in S2- a1/2 ( 0
,2

	

	 1` 2Li 2 - a(9)J cos 9 sing	 S2 - wp 	Q+ a(9)

2, p a(9)	 Q-^+	 2
^	

rn _ —	 dB	 (71)
P 52+gyp	 1/2

The integration with respect to B in equation (71) may be carried out in

close form for a shallow spherical shell. For this case, the truncation error of center

deflection PSD is:
1

klpk2p 
La	

2

+b) D 2	 11/4	 1	 ^N - a/
7r	 Lph (^N - a^^	 2	 112 + 2 L, 2 - j52

k k (w
2 - a^

1p 2p p	

1/2

G

(
W - a^	 TT	 n

N

1/2 1/22 2 _2 2
3	 A

- a)	 (wN - a) - Wp + a
N (Dp - a^+fn 1/2 2 -	 },7	 ^2

4r 2(^.,p
X/22

- a
_2

+ Ed - a P 1 N	 p!L P -	 ^N

1 !2
a

-	
a	 in	 iv	 -

2
wa
- p	;n

w, -
in
 (	 1/2

ab	 ph 2	 C4)]
(72)

L)n
	 '1 Z ,w` + 5 1"n2 I D	 N 

N p
N	

A

d^W (r̂p , ^,r T̂) = 2 0o(E,pl A4 ab
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where a E/(PR2 ), R = R 1 - R2 , and the value of a is assumed to be smaller than the

square of the lowest circular frequency. Based on equations (49) and (72), the relative

error in response PSD due to truncation may be expressed in the following nondimen-

sional form. In the formulation, equation (52) dealing with the natural frequencies has

been made use of.

2	 ,	 (, L.	 1/2	 1/4 r	 2

	

e (U°^ N)	 Yp pl p2 (1 - Q) 2 j pl p2 2 bU ^	
(1 - crfr

2
)	 I 1 ; 2 0 uP2)

2 1/2	
1/2	 2 1/2

} 3 ( 1 - u a	 (1 -u)	 1 -N c	 -pal -Q + 1 r p
4P	 1-a /
	

in	
1/2	 2 1/2	 2 L1-u2 (1-(7)

(1 - (r)	 (1 - ,U (r)	 + N (1 - U)

- or 	 in 1	 + 12 Cr	

Pin i +] in ^ b ° (1 - P2o)1/2^
1 +pQ	 'r

2 

N

-1

1+4y 2	
p  

p2 (
211 Y1 N2/ 11 12)
	 (73)

F 
CXf 

$1, AQ 
k

-1	 11 F2 (,k
2
 - 1'2 + 4Yr A l Ij

here

	

wo
	(Ph/D)1/2 ^ ^ a2

	

b	 b/a < 1

a _ 12(1-v2)

	

cr	

U 2
	 r7 2 h2 w 

2
p	 o

7 R/a »1

	

u	 4p/,^T < 1

X i Z;1 /4p
h = h/a

Based on equation (73), the relative truncation errors of the fundamental mode

for a spherical shallow element with Y= 0.04 are plotted in Figure 13 against u-1 (the

ratio of the cutoff frequency vs the natural frequency) corresponding to various curva-

ture ratios a/R. The figure shows that the element with the snial!er curvature ratio

yields less errors. For a typical 48 inches by 36 inches by 0.118 inch steel panel

with Y = 0.04, the relative errors of the fundamental modes are less than 0.1' when

the cutoff frequency is only one and one-half times the natural frequency. Figure 14
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shows the relative truncation errors of the (1, 1) and (3, 3) modes of a flat plate with

different Y values ( Y = 0.04, 0.01, 0.005). The figure indicates that the relative trunca-

tion errors are reduced with a reduced damping factor. It also shows that the error

corresponding to a higher mode is larger than that of the lower mode when N and Y are

unchanged. Therefore, in order to retain a. ceitain accuracy in the computed spectral

data, the cutoff frequency should he chosen. based on the relative error of the highest

frequency of interest.
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shows the relative truncation errors of the (1, 1) and (3, 3) modes of a flat plate with

different Y values ( Y = 0.04, 0.01, 0.005). The figure indicates that the relative trunca-

tion errors are reduced with a reduced damping factor. It also shows that the error

corresponding to a higher mode is larger than that of the lower mode when µ and Y are

unchanged. Therefore, in order to retain a ceetain accuracy in the computed spectral

data, the cutoff frequency should t-c chosen based on the relative error of the highest

frequency of interest.
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D = bending rigidity of the plate or shell

s	 g = loss factor

Z = impedance function of the plate or shell
3

The impedance functions Z are given below based on the simplified plate and shell

equations:

{	 1. Infinite plate (based on the classical plate equation):

2
Z = (k2 + k2 ) - ko	 (79)

where

ko - mw2/D(1 + ig)	 (80)

m = mass per unit area

2. Large shallow shell surface (a large shallow shell is one corresponding to
which a >> h, a > 8, whe re a is the basic linear dimension of the shell,

h is the thickness, and d is the height of a typical arc on the shell middle

surface):

Z = (
k2 + k2) 2 - ko +12 (1 •- v2)/(Rh)2

	
(81)

where

R = radius of the spherical shell

h = thickness of the spherical shell

P - Poisson's ratio

The deformation function Sw (x, y, w) of the infinite plane, which is the inversed
transformation of Fw (k1 , k2 , m), may be obtained based on equations (75) and (77).

The power spectral density of the deformation function w is given by

tb w(x, Y, m) = Lim, TI Sw (x,y,U) 2
T-► oo

where 2T is the range of integration in the Fourier transform between w, t.

An Infinite Plate Strip Under Random Acoustic Load

The problem involving an infinite plate strip or a semi-infinite plane may be

solved through the introduction of line loads to the infinite plane. The line loads,

(82)
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which may be transverse shear or bending moment, etc., are determined in such a manner
that the displacement and stress distributions at the selected line location are identical

to the boundary conditions of the plate strip or the semi-infinite plane. After the line
loads are determined, the deformation function F ,̀`, (k l , k2 , w) in the wave number
domain can be computed based on equation (77). In the following, a working example
is presented which deals with the acoustic response of an infinite strip with two par-
allel simply supported edges.

The infinite strip, which is subjected to a uniform-intensity, spacewise correlated,
and timewise random load, is shown in P.gure 15(a). The loads acting on the corre-
sponding infinite (x, y) plane which are used to simulate the plate strip are defined
below:

1. Random acoustic loads

B  (x .Y, w ) = S  (w)

= 0

2. Line force PI (y. w)	 l

Line moment Ml(y, (J)

^x 1 ` 2 a, lyI <_ 2 a

Ix I > 2 a or Jyj > 2 a

along the lines x = f 2 a (1 + E )

(83)

where P1 and M 1 are unknown functions which will be determined to satisfy the
boundary conditions at x = f 2 a. We note that P1, M 1 functions are delta functions
along the x direction with unkown y distribution. The Fourier transform of the random
load is

•	 E	 sin I k a sin l k a
Ff (kl , k2 , w^ = 2 28f (w)	 2 

k k 
2 2 +cos 2 kla (1 + E) FPl (k2, w)

\	 1 2

+ kl sin 2 kl a (1 + e ) FM (k2 , w)	 (84).
1

Since the geometry and the applied loads on the plate are symmetric w. r. t.
the y-axis, the simply supported boundary conditions may be reduced to two which
involve two unknown. functions FP (k2 , w) and FM ik!) . w) as follows:

1	 1 -

sin 1 k a
281f(di)2 22 I1 (k2) + FPl (kl . w) 12 (k2) + FM1(kl , w) 13 (kl) = 0	 (85)
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2Sf(w)	 k 2 I3 (k2) + F P (k2 , w) I4 (k2) + FM (k2 , W) 15 (k2) = 0
sin 1 k a

2	 1	 1
	 (86)

where

-11a	 a

	

1 2	
^

I (k) _	 w 2	 2 2l	 [ 
22 (1-e 1 )-X112(1+e	 2 )

4 o	 91 q2

	

I2(k2)
	 ,r 2	 1	

^T12(1+enla)- 
^ l(l+ a-*12a)

4 ko	 ^1 2

11 (k2)
-711a 

e 
-^2a

4	

)

	

=	 a 2 
t 
o	 -

k	 t0

[ I4 (k2) _4k 2 1 11 2 (1 + e 
712a) -

'' 1(l + e- 
ill a) I	 (90)

0

I	 2	 - T11a	
2	

- 712a

4k

15 
(k2)2 I^1 (l+e	

)+q2 
(1+e	 )^t 

0

Pk-k2and	 n1 	 0

71 2 = k22 + 02

2	 2
ko 

D 
(1 + 

ig)	
mD	 (1 - ig)	 g :< 1

The above equations lead to:

sin 1 k
2 
a	

rq2FP(k2' w)  2Sf(w)k	 171-	 tanh n2 ^2tanh 'i1

	

1	 2	 2	 1 	 1

sin 2 k2a	 '^'	 1	 1F	 (k-

	

MI	
= 2Sf(m)	 k
	 72  n	 tanh ql -	 tanh n2

	

1	 2	 - 1	 1	 2

Based on equa t, -a (77), (84), (92), and (93), the Fourier transform of the deforma-
tion function Fw (ki , k2 , w) of the infinite strip is obtained.

(87)

(88)

(89)

(91)

(92)

(93)
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Plates and Shallow Shells of Finite Dimensions Under -Random Acoustic Loads

The finite plate or shallow shell may be treated in a similar manner as that of

the infinite plate strip. In dealing with the finite plate, the line load functions at the

boundaries are to be determined iteratively. This is because of the coupling between

the line functions at intersectin g boundaries.

We have performed analysis along the scheme described above. It seems that

there are certain shortcomings inherent in the approach dealing with a finite structure

,,,, ,here the Fourier transformation from the space domain to the waive number domain

is carried out. The shortcomings include-

i.	 The need of iteration in determining the line functions at the boundary

L.	 Poor convergence

3. Lengthy numerical computations

4. Complicated integral evaluation.

In the following, a working example is presented which deals with the random

vibration of a square plate with simply supported edges. The plate is under a uniform

intensity, spacewise correlated, and timewise random load (Figure 15(b)).

The Fourier transform of the load is:

1	 sin I k 1 a sin 1 k a	 I
F f ( k1 k,). W ) = 2n 2dfirv)	 k	

2	 cos 
2 

ka(I = e) F(k	 ^)1 k 
2	

l	 ,^ 
21

+ 1,.in 
2 

k l a (1 + E) FM (k2 , cam) + cos - k ^a (1+ E) FT,(k,
r ^ 1

+ k  sin 
2 

k2 a (1 + e) FM 1 K1, C	 - F f. (k2 > 1{1 	 (94)

c; ncc tl,, geumeLry and the applied loads on the plate are doubl y svmmPtric t o the

x and y axes. the simply supported boundar y conditions may be reduced ,vhich involve

two unknown functions F
P 

( k 9 , c.,) and F `1 (r\	 ^ 0 ) as follows:

2::



sin2 k2a
2 Sf ( w ) - _	 13 (k2) + FP (k2 , w ) 14 (k2) + FM (k2 , w) I5 (k2)

1 j' 00 k1 2F (k , w)	 i 1 k a
+ cos 2 k2a (I+ e) I	 Z 1	 a 2 1 dk

1	 Oo k12FM (k1 , w)	 1 2 k1a
+ k2 sin 2 k2a (I+ f

00

7
J

sin2 k2a
2 Sf (w)	 k2	 11 (k2) + F  (k2 , w) I2 (k2) + FM (k2 , w) 13 (k2)

+	 1	
00 Fp 

(k1' 
w)	 i 2 k1a

cos ` k2a (I+E)J 	 Z	 e	 dk- ao

1	 FM (k1 w) i 2 la+ k2 sin 2 k2a (I+E)^	
Z	

e	 dk1 = 0	 (96)

For a first approximation, it may be assumed that the influence of a line load on
the boundary conditions is most significant to the boundary at which the line load is
located or otherwise is parallel to the line load. The effect is less significant to a
boundary which is perpendicular to the line load. By ignoring the above described
secondary effect in a first approximation, the problem is reduced to that of an infinitely
long plate strip with width a and simply supported edges along x = ± 1a.a 	 It is sub-

jected to the half-surface loads Sf(w). In this manner, FP (k2 , v,) and FM (k2 , c,) are

equal to one-half of the value F
Pl 	 M1

and F	 as given in equations (92) and (93).

The second iternation may be initiated as follows:

F  (k2 , w) = F 1 
(k2 , w) + Fa (k2 , w)	 (97)

FM .(k2 , w) = FM (k2 , w) + FR (k2 , w)	 (98)
1

where 2 FP1 + F^ and 2 FMl
+ 	 F^ are the corrections on the first approximated

solution ! F  (k,,, w) and 2 F ln1 (k2 , wl. Suh^at t?tting equations (9;), ($o) inLu equations2	 _

(95), (96) and dropping the integrals which involve F. and F,6 gives the two equations
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governing the corrections F. (k2 , w) and F# ( k2 , w). These equations are very
lengthy and are detailed as equations (99), (100) on the next page. The integrals in
equat i ons (99). (100) are evaluated by -the residue theorem before the two simultaneous
equations are solved. The numerical result shows that the corrected terms F. and
F are of the same order of magnitude of F P and FM Because of the complicated

integral evaluation, the lengthy numerical computation, and the poor convergence

of	 property of the problem, no additional iteration was carried out beyond the second
round.
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