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SUMMARY

The report describes an evaluation program on three analytical methods used in
the response analysis of plate and shell structures under random acoustic excitation.
The methods evaluated are (1) the statistical energy analysis (SEA) method, (2) the
modal method, and (3) the Fourier transform method. In order to determine the appli-
cability and the limitations of the methods, the basic assumptions and the formulations
of these metihods are reviewed, Additional analytical derivations are performed in
order to explore the problems involved in the basic formulations of the analyses,
Based on the analytical and the supporting experimental work, the workability and
applicability of the methods are established. Some of the limitations and restrictions

of the methods are postulated and described in detail.

11



SUMMARY

The report describes an evaluation program on three analytical methods used in
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INTRODUCTION

The three methods evaluated in the subject program and described in the report
are (1) the statistical energy analysis (SEA) methed, (2) the modal method, and (3) the
Fourier transform method. As is well known, these methods are different in origin
and varied in their basic formulations. Their commonality lies in the fact that all
methods have been applied in one way or another to predict the responses of plate and
shell structures under random acoustic excitation. The purpose of the present inves-
tigation is to explore the assumptions and the analytical derivations of the methods in
order to establish their applicability. Certain limitations and restrictions intrinsic to
the methods are probed and illustrated. While the three diverse m«thods are evalu~
ated consecutively, their merits and shortcomings, if any, are dealt with separately
and independently. In general, it is expected that the information collected in the
report will assist the prospective users to apply the analytical methods intelligently

and selectively in solving practical protlems.

The SEA method has its origin in room accustics. The basic theory establishes
the power flow between groups of uncoupled linear oscillators. Chronologically, a
paper published by Lyon and Maidanik in 1962 (Reference 1) gives the detail theo-
retical foundation of the SEA and its application to a structure excited by a reverberant
acoustic field. It also describes the equivalent electric circuits whose multimodal
response is similar to that of a structure under random loadings. In 1962, Smith and
Maidanik also published separate papers (References 2, 3), both of which deal with the
responses of structural panels and their interaction with an acoustic field. In these
papers, the level of excitation of the structure is formulated based on the radiation and
mechanical resistances, as well as the spectral density of the pressure field., Since
1962, a number of papers and reports have appeared in literature (References 4-18),
which postulate, extend, and apply the SEA to various problems involving randomly
excited structures, Among them, a paper by Lyon and Eichler (Reference 4) describes
the application of SEA to connected structures. Another paper by Crocker and Price
(Reference 5) describes the successful application of SEA to sound transmission
between partitioncd rooms, Other papers related to the subject area arc listed as

References 19-30.



The second method being evaluated in the subject program is the modal method.
The modal method has been used extensively to calculate the frequency responses of
structures subjected to external excitation. The approach, which is applicable to
either deterministic or random acoustic excitation, is based on the assumption that the
responses may be represented in terms of an infinitc number of natural modes of
the structure (References 31-33), The formulation takes the form of either a single
or double infinite series. In the series, each term represents the modal response
(as a function of the frequency) which is determined by th.=» modal force and the modal
impedance., For practical structures, it is well known that the infinite series con-
verges, The rate of convergence is dependent on the modal frequency distribution,
the modal impedance, the acoustic input, etc. In order to truncate the infinite series
for modal response computation in a rational manner, it is necessary to estimate the
truncation error based on the modal data, The usefulness of the modal method for
random response analysis is thus dependent on the ability to establish a reasonable
limit of truncation error within the frequency range of interest when a finite number

of natural modes is used.

The inherent limitation of the modal method lies in the fact that the modal den-
sity of a 2~ or 3-dimensional continuous structure increases with frequency. With
increasing frequency, proportionately more modes are needed in the response anal-

ysis, which in turn tax the capacity and accuracy requireinents in the computation.

In the report, a method to calculate the truncation error for plate and shallow
shell structures has been formulated. An error analysis is perforn:ed involving the
estimates of serics residues corresponding to various structural configurations., The
basic scheme of the computaticn makes usc of the wave number presentation which has
been applied by Courant (Reference 34), Bolotin {References 35 and 36), Wilkinson (Ref-
erence 37), and others in structural modal density study. Using the approach, the trun-
cation error of the modal method is established at the resonance frequencies of the

structure as a function of the ratio of the resonance frequency versus the cutoff frequency.

The Fourier transform method is a highly developed technique which transforms
a set of functional data from one domain to another by resolving the function into
Fourier components. Through the transformation, certain advantages are gained
which include: (1) ease of operations on the function such as integrations and differen-
tiations, ete., (2) better insight in the nature and makeup of the function, and (3) adap-
tability to the numerical computation technique and/or the use of the Residue Theorem

for the inverse transform. The Fourier transform technique has been used extensively

in transicent dynamic analysis and clectric circuit analysis (Reference 38).



In transforming the structural displacement from the space domain to the wave
number domain, the Fourier transform technique has been used in random vibration of
structures (References 3, 40). In this type of application, it is desirable that the
structure dimension be infinite or semi-infinite. For a finite structure such as a
finite plate or shell panel, the application of the Fourier transform {echnique involves
the introduction of line loads at the structure boundary (or boundaries) so that the
boundary conditions may be satisfied. In this report, some exploratory work along

this line is described.

The evaluation work covers the analytical methods developed by a number of
research workers, many of whom are presently active in the field. During our inves-
tigation. we have corresponded with several authors whose papers appecared in the
literature. These communications are acklowledged at appropriate locations of the
report. The findings presented herewith represent the personal opinion of the authors

of this report.

The authors wish to acknowledge the encouragement and support of Mr. Richard
W. Schock and Dr. Hugo Steiner, both of the Aeronautics Laboratory of NASA Marshall
Space Flight Center. Dr, Steiner served as the program monitor of the work reported
herein. The experimental work described in this report was carried out by Mr. D.C.

Skilling of Northrop.



EVALUATION OF THE STATISTICAL ENERGY ANALYSIS (SEA) METHOD

Our findings with respect to the SEA as applied to the plate and shell structures

under random acoustic loading are listed below., The basis for and the reasoning behind

our conclusions are described in the subsequent subsections.

1.

SEA is based on an analysis of thé energy transfer between linear oscillator
systems with weak coupling. The theory is sound and may be applied to

specific problems if all the basic assumptions are satisfied.

Based on available data, SEA is considered satisfactory in solving respornsc
problems involving interface(s) between a stritcture and a reverberant pres-

sure field(s).

Based on the configurations investigated, the weak coupling conditions are
generally not satisfied in problems dealing with connected solid structures.
This is especially true in the low and medium frequency ranges where the
modal response data of each substructure are noticeably affected by the
substracture interface. We noted in a number of working examples in the
literature illustrating SEA where the computations were extended to such
frequencies that the basic assumptions could not he met. On the other
hard, there is justification to apply SEA to structures under very high fre-
quency excitation where (i) the wave patterns are diffused, (ii) the major
wave lengths of interest are small compared with the characteristic dimen-~
sion of the structure, and (iii) the displacement response patterns arc almost
independent of the structural boundaries and interfaces. In general, caution

is suggested in applying SEA to fahricated acrospace structures.

The concept of establishing a probability function for the response data con-
sidering the variances of the energy based on analytical response functions

is considered sound. In order 1o establish a confidence level in SEA pre-
diction, a distribution function has to he assumed. The variances are usually
computed based on (i) ideal and diffused modal patterns, and (ii) essentially
linear responses of the oscillators with correction in the damping constants

due to weak coupling. In reality, the variances in energy may be contributed



to factors not considered in the analysis. The above conditions make the establishment

of a confidence level of the predicted data extremely difficult.

Assumptions of the SEA

The SEA is based on the power flow between groups of linear oscillators. Within
cach group (substructurc), the modal data of the oscillators are governed by an cigen
equation; no power flow is assumed to take place among the oscillators. Between two
groups, the power flow is established by a set of dynamic equations. Each cquation
represents the mode response of one oscillator and its weak coupling with one or more
oscillators from the other group. It is assumed that the weak couplings are such that
the original eigenvectors may be retained in formulating the power flow. The coupling
parameters are classified into inertia, damping, and spring types. For a stationary
process, the assumption that the damping coupling parameters for any two oscillators
are 2qual in magnitude and opposite in sign gives rise to a condition called gyroscopic
coupling. Specifically, a gyroscopic coupling element is defined as one which produces
a negative coupling force on oscillator (2) duc to a positive velocity of oscillator (1) if
it results in a positive force on oscillator (1) due to a positive velocity of oscillator
(2) (Reference 11). The gyroscopic coupling causes the power flow crefficients to be
equal in the two-way flows between the oscillators. As will be shown later, a sub-
stantial part of SEA involves the derivaticn of the power flow coefficient under the weak

gyroscopic coupling condition.

Consider a narrow frequency band for which the modal density of the substructurc
may be determined either experimentally or analytically. In SEA, it is assumed that
the input power spectrum is fairly flat within the frequency band. Each linear oscil-
lator which is directly excited by the external source is considered to be subject to a
"thermal bath. " Under this condition, the modal energies of all the oscillators whose
natural frequencies lie within the narrow band are fairly equal and may be represented
by an average value. A final formulation of the SEA involves the response level of
two or more substructures (which may be either connected substructures or a structure
and a reverberant acoustic ficld) based on the average modal energics of the externally

excited and the coupled oscillators.

General Formulation of the SEA

The formulation of the SEA described here follows the general scheme of Ref-

erence 1. We use double subscripts for the equivalent modal energies in order to



make their meaning more explicit, Additional equations are derived which relate the
damping constant of the coupled substructure to the power flow coefficient between the
oscillators, The result is used to evaluate the magnitude of the coupling parameter

as wvell as the degree of coupling between oscillators based on available test data.

Consider two groups of multiple oscillators. Within each group (or substruc-
ture), the oscillators are uncoupled. Power flows take place between the oscillators
of the two groups. The modal displacements of the oscillators are denoted by X{s yj
respectively. Assuming weak gyroscopic coupling with only damping type terms, the

following set of equations is established:

i+ﬁx+uxr« ZBlkyk i i1, , N (1)
y.+B.y. + ZB = T, j=1,++-.,N 2
Yyt Ryt JJ [11 i ! @

where ﬂ B are the damping coefficients of the oscillators i, j; Wy t-JJ are the natural

frequencxes B. Bl] are the coupling parameters (B., - k , etc ) and f f are

ik’ ik
the modal forces. Assuming a stationary process, the time average of a functlon is
denoted by a pair of brackets < > around the function. The power balance equations

may be expressed as follows:
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where ole, 071']. are called the equivilent modal energies as defined below:
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[Equation (12) defines the relative magnitudes of the coupling parameter and the modal
damping cocfficients which represent the weak coupling condition, a key condition

on wiich SEA is based. TFor the purpose of examining the validity of the weak coupling
condition, we developed the following formulations (equations 13-21) independently of

previous SEA work,
Thus, the relation between Bij and gij is as shown bclow:
B.. <x vY) = g. (8L - & 13
i 1yJ) g (94 - 65;) (13)
Equations (7), (8), and (13) arc used for defining the energy terms. Based on this
forraulation, the power diagram for a typical oscillator (xi) and the oscillator (yi)

is shown in iigure 1, Taking the summation of the terms of Equation (6) with rc.spccl

to index "i'" from 1 to N yields

B .2 6l + Y (8. Fl) g (1)
i 131 i ij - i 1j

Insertion of equation (4) into equation (14) gives the following expression
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In equations (14) and (15), the unknown 5;1. may be represented in terms of

.2 . . . .
<xi ). This is accomplished by snlving the simultaneous cquations (5)
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- + 3 _
i = @ € (%) - are €;) <yj (16)
-1 . 7. S
eji—(1+ej) (V7)) - U+g +ey (xi) 17
where €. = g../ 8.
i gl] / ;3]
€ = 85/ B
insertion of equation (17) into equation (15) yields the relationship between <y ) and-(: \:J“
N
—_ z 1,0
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If there is no source on oscillator system y, equation (18) becomes:

N
T &

49

(19)

i=1
_ N
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where( §2> is a function proportional to the average energy contained in each individual
oscillator of system x. Equation (19) may be rewritten for the multi-mod2a’ system
where the average values of the modal energy, the damping coefficient, and the coupling
damping factor are estahlished for each group of oscillators within the frequency band
(w=-1/28w, w - 1/24w). Expressed in terms of functicmis related to the substructures,

the final equation is:
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whcre the M, N, <v2> are the mass, the mode count, and the mean velocity square of
the substructure excited externally; and M, N, ’\_2> arc the corresponding functions
for the coupled substructure. B is the average modal damping coefficient of the

coupled substructure and B, is the coupling damping factor defined below :
N .
B, = Mean of<.}:1 gij> for all j's (21)
1=

With the term B, defined by equation (21), equation (20) conforms to the general formu-
lation of the SEA (see equation 27, Refere.ce 4).

SEA Applicd to a Structure in a Reverberant Acoustic Field

Formulation of SEA as applied to a structure and a roverberant acoustic field muy
be found in Reference 1. Using basic equations of power flow, such as cquations (3),
(4) of the previous subsection, Lyon and Maidanik* defined the mechanical and radiation

resistance R of the structure:

mech’ Rrad

m m m
> m <S::r41> Rgg = M2 &pp 6, - 60 (23)
m m, r

In the above equations, ( si} is the mean square modal velocity averaged over
time, while ( si) is the mean square modal velocity averaged over time and space.
M is the mass of the siructure and m, r are the indices for the structure modes and
the acoustic field modes respectively. In equation (3), we multiply the terms by M and
move the coupling energy terms to the opposite side of the equation. Taking summation
with respect to index i, the following is reached:

*The authors acknowicdge the assistunce of Dr.'s Lyon and Maidanik who confirmed
certain typegraphical errors in Refereunce 1,
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It is noled ithat the mechanical resistance, as given in equation (22), is identical to the
first term on the RHS of (24), The radiation resistance, as given in equation (23), is
identical to the second term on the RHS of (24). We note that each of the equivalent
energy functions Onll of equation (23) is dependent on all of the modes dr of the acoustic
field, aud cach O'r is dependent on all of the modes ém in the vibrating structure.,

This point was explained previously in equations (7) through (10).

Lyon aad Maidanik applied the above equations to a structure interacting with a
reverberant acoustic field., Tor this case, the modal density of the structure is sub-

stantially smaller than that of the acoustic field:

ns(w) < n, (w) (25)

Based on (28}, the following may be deduced relaling the equivalent modal cnergy of the
4
L.

o
'O
the power flow due Lo weak acoustic coy pl 1i

UCI

8! > g

ro !
m m I'm (Or Om) (26)

which is equation (9, 24) of reference 1. This relation in turn yields <s'm2> = Or'n .

In other words, the modal energy and the equivalent modal energy of the structure may
be used without distinction. Additional assumptions in this formulation are that the
average modal damping coefficients 8, BR exist, and that the modal energies for each

S
substructure are approximately equal within the frequency band of interest,

With the assumptions described above, 2 ratio may be established between the

2

pressure spectrum and the acceleration spectrum when the structure alone is excited:

S (w) 1 R
P _ P __rad 27)

and when the acoustic heid is excited:

10
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g
o rad Ny (w) r,zm mr
where ulw) = R R = i (29)
mech rad . By + N (@) g

s

r, m

mr

In the above, p is the air density and c is the speed of sound. In Reference 5, Crocker
and Price applied equations (27) through (29) and some additional formulations to pre-
dict the sound transmission loss, the radiation resistance, and the vibration of a parti-
tion in separate chambers. Also applied in the anal:tical prediction is the formulation
of the panel radiation resistance to half space 2s a function of the panel geometry and
the frequency ratio (f/fc) developed by Maidanik (Reference 3). The experimental
phase of Crocker and Price studies iuvolves the measurement of the radiation resis-
tance, the total resistance, the coupling factor, the modal density, the transmission
loss, and the vibration response of the aluminum panel located between two chambers.
In general, the measured data correlate well with the data predicted by the SEA. For
instance, the panel response relative to the mass law when one of the chambers is
excited by a loudspeaker is plotted for 1/3-6ctave in Figure 2, which is reproduced

from Reference 5. The analyiical data are overplotted as a continuous curve based on

Sa(w) ™ fc ’s 7 rad
S. @) 26 L (30)
Ay c int rad
where
2
Sa_, = 7 @ (31)

In Figure 2, the agreement in theory and experiment is considered satisfactory,
In the low-frequency range (<400 Hz), moderate disagreement is ohserved. It is
worthy of mention that Crocker and Price attributed the cause of the discrepancy to
the insutficiency of panel modes in the low-frequency range. The low modal density
of the panel and the resulting spread of the panel/room interaction modes make a

correct averaging process impossible, a factor not considered in the SEA.

In conclusion, the general success of the SEA, as applied to a structure inter-

acting with a2 reverberant acoustic field(s), is believed due to

1. Weak coupling exists between the panel and the acoustic field.

11



2.  The weak coupling and the difference in modal densities of the panel and

the acoustic chamber justify the use of the modal encrgy <er;2) and the
equivalent modal cnergy, O;n’ without distinction.,
3. A valid formuiuation exists for the radiation resistance of a panel which
makes possible the analytical determination of Z 8 This formulation
r,m
is carried in the wave number domain through the assumption of a completely
diffused wave field,

The Extent of Coupling Between Substructures

In the basic formulation of the SEA, Equations (1- 12), it is assumed that the
coupling is weak between any two oscillators of two substructures. This condition is
represented by:

ij i

(B..! « B, B-J (12)
(N

In this subsection, we attempt to establish an analytical relation hetween B, the root
mean square value of Bij’ and the couple damping factor 'Bc = ',‘c v for various
center frequencies Wo (nc is denoted by r/SSS in Reference 4 ). Since the couple damp-
ing factor BC may be determined either analytically or experimentally for any given
set of substructures, and since the average modal damping coefficient 8 (sec equation
20) is usually determined experimentally, the analytical relation between B2 : < Bﬁ)
and 'Bc developed here may be applied to check the validity of the weak coupling con-
dition of (12).

As shown in equation (11) previously, gij may be expressed in terms of the
coupling parameter Bij’ the natural frequencies of the oscillators, and the moda!l
damping coefficients. Furthermore, the mean value of any function in group i is
indicated by subscript 2 and the mean value of any function in group j is indicated by
subscript 1. Based on this convention, the following is reached through the application

of equation (21).

2 2

N Bow, + B w:
2 2%1

Blw) B > 11

v i-1/.2 2

(wi —ul)

2
)

2
: ? " ('Bi " 52)(52“)1 B.w
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€
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)

.2 %A“’ (B + By d(w=-w)
- B nzf > 3
IAu AYw - ul) + (ﬁl + 52)

2
2 -1 Aw
=~ B n, tan —_— (32)
where Wy T wl = the center frequency

4w - frequency band width

N, = the modal density of substructure 2

e T We " damping coefficient of subsiructure 1

By ’72"’0 = damping coefficient of substructure 2.

As mentioned previcusly, the term ,30 appears in equation (20)., Corresponding to
equation (32), substructure (2) refers to the one which is excited externally, while
substructure (1) refers to the coupled substructure. The damping coefficient 8 in
equation (20) is thus equal to Bl as shown in the equation above. When 1/3-octave
frequency band width is used, equation (32) may be simplified to:

2

—~ 1 _ P S
B” = 28 (w)/nym = (275 /n, n)wo (33)

Based on the above equation, the values of B2 may be computed as a function of Ny
w and ')Zs (= Bc/ wo). The application of the above equations is presented in the

following subsection.

SEA Applied to Connected Structures

Since its introduction in 1962, substantial effort has becn directed to the applica-
tion of the SEA to connected structures such as fabricated nernspace structurcs., Tor
this purpose, it is expected that the basic assumptions and conditions sect up in the
analyvsis are valid so that the response equation (equa.ion 20) may be used tor each

frequenrcy band. Furthermore, efforts have heen made to determine the coupling loss

13



factor analytically and experimentally in order to apply the method for prediction pur-

poses, corresponding to various structural configurations.

In Reference 4, Lyon and Eichler applied the SEA to the random vibration of
connected structures., Two examples are covered in the paper, namely, a beam bonded
to a corner-supported rectangular plate, and a vertical plate welded at right angles to
a corner-supported rectangular plate (Figure 3 of this report). For the latter configu-
ration, an edge absorption coefficient yij is determined based on the flexural wave prop-
agation equations in plates and the continuity conditions at the fabrication line of two

plates i, j.

Specifically, » is the ratio of the outgoing wave energy rate per unil length of the
junction line vs the incoming wave energy rate in the other plate. The details of deri-
vation of ¥ are presented in Reference 4. * Two cases of ¥ of special interest to the

present program are described below:

y :% (34)
(ii) h1 << h2, k1 >> k2

=1 3
Y12 5 5 By/hy) (35)
For a structure made of two connected plates of specific dimensions, the coupling
loss factor is given by Heckl (Reference 27) as:

- ) /
n;nb - = ud
m

)
c 'ss \ kK4, /

where L is the length of the junction linc and Agis the area of the plate which is

(36)

excited externally.

In Reference 4, the loss factor n o /§/’w0 is measured for plate no. 1 (the vertical
web in Figure 3) before assembly, After assembly, the plate is excited impulsively at
a random location on plate no. 1, and the combined loss factor 7_ + 'IZS (B ﬂc)/wo

1
is determined based on the decay time measured at random locations of the same plate.

*In private communication, certain modification and additional derivation of » were
relaved to the authors by Dr. Eichler. These data are not covered in this report.

14
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The loss factor data are used in equation (20) to predict the ratio of responses of the
two plates' when plate no. 2 is excited. This technique is based on the assumption that
the power flow at the interface stops immediately after the iinpulsive load is released

irrespective of to which substructure the load was applied, In Reference 4, '71 and

ot nzs data are plotted as functions of the 1/3-octave frequency. Also plotted is the
theoretical ¥ based on equation (35) and the ¥ data based on experimental nzs and

equation (36). The plot is duplicated in the present report as Figurc 4.

An alternative form of equation (33) is used to define B, or the root mean square
value of Bij’ where Bij is the damping coupling parameter between an oscillator in

substructure 2 (the base plate) and an oscillator in substructure 1 (the vertical web):

1 2nS & %
9
B = <Bf‘.>2 :(__S_S__O_)z 37)
ij n,m

This cquation is used together with equation (36) to determine the ratio B/ ﬁl) at
1/3-octave frequency increments. The results are plotted in Figure 5. In the figure,

the curve marked with dots is based on measured nzs of the two-plate system (Figure
4), The curve marked with circles is based on thce "th value of Equation (35) for the
same two-plate system, For a diffrrent two-plate system where hl = h2 =,057", 7is
determined by Equation (34). For this case, the (B/Bl) ratio is plotted as the curve
marked with crosses in Figure 5. In examining these curves, it is obvious that the
basic weak coupling condition (12), |Bij < Bi’ Bj’ is not satisfied at almost all fre-
quencies. For f < 7000 Hz, the computed (B/ﬂl) values are greater than unity. The
highest value is 11.4. Since equations (32, 33) are derived based on the weak coupling

condition, th

e above data do not serve a positive proof as to ihe applicability or in-
applicability of the SEA to the two-plate system. On the other hand, the extraordinarily

high ratio of (B/ ,31) suggests that substantial coupling exists between the connected

plates. This observation casts doubt on the validity of the predicted responses based
on the SEA. Additional experimental observations on the same connected structure

are described subsequently.

Experiments on the Tvso-Plate System

A structure identical to the two-plate configuration described in Reference 4 and

illustrated in Figure 3 of this report was fabricated and tested. Preliminary damping
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tests were performed on the structure prior to the response tests. In the responsc

tests, a shaker with sinusoidal and 1/3-octave frequency band inputs was used to sup~
ply the excitation force at various locations of the base plate. Fine poiyvinyl chloride
pellets were spread over the base plate to visualize the deflection pattern of the plate.

The basic instraumentation system of the tests is shown schematically in Figure 6.

In the 1/3-octave response tests, the average response ratio of the two con-
nected plates is acquired through a number of acceleromster readings. The data
are plotted in Figure 7 in terms of 10 log (vi/vg) for two locations of excitation. Sim-
ilar data obtained in Reference 4 are also plotted in the same figure. Referring to the
figure, the three sets of data correlate fairly well for frequencies above 4000 Hz.
Below 4000 Hz, substantial deviations are observed between Lyon and Eichler data
and our data. The discrepancy is believed due to minor differences in the method of
fabrication and the supporting conditions for which the low-frequency modes are scnsi-
tive. The fairly consistent response data in the high-frequency region is partially con-

tributed to the more diffused wave patterns in the plates,

The modal density of a plate is given in Reference (34) as:
fy = V3A /C t 38
n (f) = V3A/C (38)

where Ap is the area of the plate, tp is the plate thickness, and Cp is the longitudinal
wave speed of the plate material. Equation (38) gives np (f) - .129 modes/Hz for the
base plate so that we are dealing with more than 115 modes in the 1/3-octave band at
4000 Hz center frequency. Our experiments show that under sinusoidal excitation, a
clear deformation pattern exists which represents a superposition of a number of
strong modes (Figure 8). This selection of the prominent modes is believed to be
dictated by the boundary conditions, including the substructure interface. A 1/3-octave
excitaiion yields a reéognizable deformation pattern which resembles to a certain de-

gree the pattern of the sinusoidal excitation (Figure 9).

At Jower frequencies, features similar to those described above are observed
when the plate is subject to the 1/3-octave and sinusoidal excitations, For 1/3-octave
excitation, the wave pattern tends to break into smaller grids than those of the sinu-
s0idal excitation, which suggests a higher degree in the superposition of modes, as
it should be, In either case, the effects of the interface of the vertical plate to its

deformation patterns are pronounced, Figures 10 and 11 are the visualized patterns



of sinusoidal and 1/3-octave excitations at 2000 Hz., We were able to obtain a fairly
clear deformation patiern with 5000 Hz sinusoidal excitation and a much diffused pat-
tern with 1/3-octave excitation. Above 5000 Hz, no clear pattern was recognizable

when we used the pellet visualization technique.

It is worthy of mentioning that because of the usual spectral makeup of the
acoustic loads and the high damping constant at very high frequencies, significant
responses of the typical acrospace structure usually appear in the low and moderate
frequency region. (See, for instance, Figures ” wnd 10, Reference 28.) In view of
the spectral distribution of the major responscs in aerospace structures, and to the
uncertainty regarding the applicability of the weak coupling condition of the conneccted
substructures at moderate frequencies, it is considered advisable to perform certain
prcliminary investigations prior to the application of SEA. In the preliminary investi-
gation  the extent of coupling of the substructures, the degree of dependence of the
mede shapes on the structure interface(s), and the natural constraints should be care-
fully evaluated. The preliminary data may then be used to determine the applicability

and limitations of SEA.
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EVALUATION OF TIIE MODAL METHOD

The modal method, as applied to random acoustic excitation of structures, is
based on the assumption that the responses may be represented in terms of the infinite
number of natural modes of the structure (References 31, 32, and 33). The formulation
takes the form of either single or double infinite scries. In the series, each term rep-
resents the modal response (as a function of frequency) which is determined by the
modal force and the modal impedance, For practical structures, it is well known that
the infinite series converges, The rate of convergency is dependent on the modal fre-
quency distribution, the modal impedance, the frequency range of interest, etc. The
convergence of the series justifies its truncation during compuiation, In order to
truncate the infinite series for modal response computation in a rational manner, it is
necessary to estimate the truncation error based on the modal data. in this section, a
method is described to calculate the truncation error for plate and shallow shell struc-
tures under specified random loads, Similarly, when the finite element approach is
used, the responses of the structure at selected locations are presented in terms of
the modal! matrices. Since the number of modes used is equal to the matrix column

number, the matrix presentation implies a modal truncation.

The modal method is most suitable in determining the responses in the low-
frequency region, The upper limit of oparation of the method is influenced by the

following factors:

1. When the finite element approach is employed, the number of modes used

in the modal analysis is restricted by:

a. The amount of the structural details available in the analysis
b. The capacity and accuracy of the eigenvalue routire

¢. The computer capacity and processing time requirement,

2, The modal truncation limits the application of the modal method only to the

frequency range where the natural modes are properly covered,

o
.

Corresponding to the highest frequency natural mode, the modal pattern hits

a characteristic wave number, i,e., atyvpical wave length,  When the finite
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element methed is applied, this wavelength has to be a multiple of the typi-
cal length between two neighboring reference joints in order that sufficient
accuracy may be retained in both the eigen vectors and the eigen frequen-
cies, This condition limits the application of the modal method up to a

certain wave number,

Modal Method Formulation Using the Finite Element Method

In the matrix formulation, the equation of motion of a damped elastic structure

is:
[] {5} + [ {w) « (K] {w} = frm} 39)
where w is the matrix of nodal point deflection components, M is the mass matrix,

C is the damping matrix, K is the stiffress matrix of the structure, and f(t) is the

matrix of external nodal point forces.

In the modal analysis, the nodal displacements w are approximated by the finite

series of the eigen vectors in the fc'owing matrix form:

fwi = [Q] {ew} (40)
where Q is a rectangular matrix whose columns are the eigen vectors. The analysis

satisfies the following orthogonality conditions:

[@" (M) (@]
@7 (k) (q]

where “_'i represents the eigen frequency of the i-th eigen vector. In order to simplify

FIJ (41)
@ 4

the problem, the generalized damping matrix is usually assumed to be a diagonal

matrix:
Q)T fc] (@] = 2[) &) (43)

where )’i rcpresents the damping ratio of the i-th mode.

The insertion of equations (40) -~ (43) into equation (39) leads to the matrix equation

for the generalized coordinate £(t):

(€} +2Fr) Fad Lét + 52 1ed = [T {rwl (1)

19



In the frequency domain, the Fourier transform of w may be simply expressed in

terms of the Fourier transform of externa! forces as:
T
s, wl = lells b - [Q Fiwd [Q] {5 ] (45)

The i-th clement of the diagonal admittancs matrix H (w) is defined as

Hj (v) = l/Lujz -+ 2iu wj }'_i} 46)

Furthermore, the structure response PSD for random loading may be computed based

on the matrices described above:

| T * y rs T o
(6, ] =[Q] Fu(w), [Q] [s.(«»)] [Q] [H (v)] (@] (47)
The asterisk above a matrix indicates the complex conjugate of the matrix. The
diagonal clements of the matrices ¢ represent the PSD values, while the off-diagonal

terms represent the cross-PSD values.

o

With matrix ¢w( w) determined, the mean-square values of deflections . “inay

be obtained by integrating the corresponding diagonal elements of b numerically.

Truncation Error In Modal Analysis

In the following, a method is established to compute the truncation error in the
modal analysis of a plate or double-curved panel under random acoustic excitation,
The panel modal response is represented by an infinite series. In evaluating the
spectral response data, the error introduced due to the truncation of the infinite series
is computed based on the wave number presentation. Using this approach, the trunca-
tion error of the modal method is established at the resonance frequencies of the panel
as a function of the ratio of the resonance frequency versus the cutoff frequency. Various
types of the input acoustic spectra may be applied in the process. For illustration
purpose, error analyses are performed on a simply supported plate and a shallow

spherical shell subjected to uniform intensity random loads.

In the modal formulation, the power spectrum density (PSD) of deflection at
location i may be expressed in the following form (also see eguation (47)):

NN

r ! .
ES Y H. v H {u\ !
By s ) = D Z Q;; Qi Retoy, (Hpw) H Wy (48)
H =1 ¢=1 L iy (@ @ <y




where
w = frequency in rad/sec
w = cutoff frequency, i.e., upper bound of natural frequencies in

N
modal truncation

fi

o (w)

v cross PSD of modal forces Fj and F[
it

At the resonance frequencies ap p=1, 2, . .. N)of the structure, the response

PSD has the following approximate peak values:

-1 -1 N
2 (ay2a’ @ 5 ) @) |
T » * Q.° (4925 o, (W )+Q. (r.@ EQ Iml; (0-'D 1 @,
¢w1i(wp wy) 1p( D p) Fp P ip (p p) mv R,
1%
$°Q?2 o]
+ 2.Q5e. @ ) H@ ! (49)
=T TR B
1%
where
17p,u7 SwN'
The error of the response PSD due to modal truncation is:
88, | ) = Q (y—z)_l Q. Im [¢ @) H @)
W @ = : w ; : [- F H
wiop’ N ip \'PP/ R M L"fp pJ
w 2 2
+ Q, (@,) |H, @) (50)
2. i The e Ll i
The relative error due to truncation is simply:
€ = A¢W..(UD’UN)/¢W..(BD’(‘)N) (51)

11 11

Truncation Ercors For Double Curved Panels

In general, the asymptotic expression of the natural frequencies & may be used

for the modes of vibration having sufficiently large wave numbers. For a rectangular
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clastic shell clement whose orthogonal curvilinear coordinates x and y coincide with

the lines of principal curvatures, the asymptotic frequency equation is (Reference 35):

2 R, R
—~-2 D (2 .2 Eh \ 2 1/ .
5% = ki vkg) B o2 (52)
<k +‘ )
1 72
- -

where Rl and R2 are the radii of curvature of the middle surface, E the Young's modu-
lus, p the density of the material, D the plate stiffness, h the thickness, and kl’ k2 the
wave numbers. It has been shown by Bolotin (Reference 41) that in the absence of a
dynamic edge effect in which the boundary conditions have a considerable effect on the
mode shapes in the interior of the shell, the wave numbers of shallo.. shells can be

approximated by

kl = mn/a + 0(1), m = 1,2, ...

k, = nmb + 0(1), n =12 ... (53)

where a and b are the edge lengths. The term 0(1) represents a term of the order of

unity. It is cxpected that corresponding to the cut-off frequency of the shallow shell,

either k1 or k2, or both, are of an order of magnitude much greater than unity. If the

houndary is simply supported, the asymptotic solution coincides with the exact one and
the wave numbers I«:1 and k2 are given as:

ky = mn/a, ky = n7/b (54)

Following the same 1cosoning, it is noted that M (Wpy s @y s the total number of
4 AN

modes whose natural frequencics are within the frequency band (w\, Wy ), may be
1 2
determined approximately on the (l«:1 , l«:2 ) plane. Specifically, area integration is

carried out in the first quadrant of the plane which is bounded by the k

1 k2 axes and

the two curves defining w = wy and w = YNt The equation for M is given below:
1 2
/ Voo 1 T . -
Mwy, s wy | = i | dk, dk, (59)
\ A‘l .\2/ ux\l uug q,, 1 z

o
2



where ak, - m/a and 8k, = m/b. Applying the transformation

k, = r cosé
1 (o
(06)
k2 = rsin 6
the following is reached:
Mlwy > wy ) = B [ rar de (57)
vl 1 1 2/ T é_}

Similarly, the error of the response PSD due to modal truncation may be derived

based on equations (46), (50), (52), (56),and (57):

o0 Q.

¢, (&, wy) =
Wi pPTON

!
)
~
———

O
=

o
-

€
ol

t?2 0 (p_h_
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”

4 ph 4 _ N
+ (r + ﬂ—a - Ep) Im [¢Fpl (wp)}J r dr dé {58)

where 1/2
U.:[p%r4+a(g)} (59)
2
2 . 2
2 1

5. - /pm2 g2 (61)
o ]



r ;. . 2—1/2
k. k2
( 1p+ 2p
& (k 2, o E AT T, (62)
K . = 6
b p fep) D T, e
Kp K
L “¥/
o, 1/4
r (wN) l(ph/D) luN - a(o)“ (63)

Th« integration is carried out over the first quadrant of the (kl’ k2) plane, the

details of which are described in the subsequent sections.

Random Pressure Loads

Consider the case of a simply supported shallow shell element with double curva-
tures under uniform intensity random loads ¢, (w) (psi)z/Hz. The random loads are

spaiially deterministic, i.e., thev are in perfect spatial correlation.

The /-th mode shape at location i (x, v) of the shell element is:

Q A sin kli x sin k2[y (64)

4
where
-1/2
A zeehab) % Ky, =i m/a, Ky =y b, (65)
The corresponding natural frequency is given by equation (52). The cross-PSD

of the modal forces F, and F_ is:
l m

)
¢p W 16 ¢ (w) A (ku Kos Kim %2m) (66)

m,_ - odd integers. (67)

where k., = 2 ete s /o, M
a 2 St fp by My Ty

v

Based on equation (58), the truncation error of the center deflection PSD of the

element may be expressed as:

2 o1
A (5 . sh H < 2
W(up’ wN) 4 ¢ (w ) A ( ) 5 (klp kZp Ep)
9 172
k1 kz E +2rzcoqesm9(4‘%a)

[ / p cp P rdr de (68)
iy {4 oh .02 g 2
1 o oo o« K / Y COS H s oM

24



In equation (68), the factor in the denominator of the integrand

\

2 /
[(r4+%l-a—ﬁé) + 4)'[. Eﬁlr‘lv' %1-0>}

has heen replaced by (r4 ' %h-a - Eé) approximately since 7 << 1 and & >UP. The
appreximation tends to muake the compuled truncation error on the conservative side
since the impedance magnitude is reduced. Furthermore, the value of Ak1 Akz ab/rrz
has been replaced by ab/(47r2). This is because only the odd wave numbers contribute

to the response.

Figure 12 shows the modal distribution of the element in the wave number domain,

The double integrals are cacried out over the shaded area in Figure 12(a).

It is noted that the narrow strips next to the kl’ k2 axes are excluded from the
area of integration. The exclusion, which forestalls the divergence of the integrand

or equation (68}, is justifiable because no natural frequencies exist in these strips,

The boundary of the area of integration is defined by the following:

AB : 0505;91 ro(e) 7/ sin @)
AN . A
: 815 0_/92 I‘O(U) I‘(wN)
- us
D: B,<6 =3 r () m/(a cos 6) (69)

The angles '81 and B, are determined by the equations which follow:

_1/4
2 2
sin B8 v:_l__‘ng_[w2_g<cos BI;SID 31‘)}
1 bro(ﬁl,b biD| N » R2 Rl I
5 , 2 -14
= m m lph 2 E cos /32 sin /32
s B " FTr 8y alD|NTP\ R, R (70)
a ro(ﬂz) a ; ]

From equations (68) through (70), it is noted that the integration over the areas

0=6c= B, and B, =6 < ZE will yield very complicated expressions for §. In order to

simplify the problem, only the shaded area shown in Figure 12(b) is integrated, i.c.,

roLON 3 Since 5 and — - o all quantities in e ari
PRL R \wN), ;51 <8 < p2. Since Py and 5 /.‘12 are small quantities in comparison
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with ZE when Wy is sufficiently large, the approximation is considered acceptable.
With this simplification, the integral in equation (68) may be carried out with respect

to r as shown below:

_ ~ i 4/ab -1
8o @ wy) ™ 2 8,@) A7) (kypky 3
6( / \J'/z ¢
(R Kk @ [ 2 ]1/2
f ph 1p "2p 'p 1 AR C))
2 ; 1/2 2 _ 52
1 [Ug -a (9)] cos™ sin’8 IQZ - a(o)] 2(‘2 “p
_ 1/2 ¢ 2 _
3 {wg - 01(9)! [.Q a{a)ll/z - wrz) + 0(9).l
* iz 0 ) VI 7z, J
4[w - (9)] l6p~ a(6) I-Q - a(6) +Dp- a(6)
r ,\[—2
1 | #op-ald) 1/2 2-a2"%0
+ = = 5 - () £n 175
2 2 _ ,
[as - a(o)] cos 8 sin#é ? “p R+ a9
~2
W+ (6 —
+ P 2 in 9o de (71)
“'p _Q+Up

1/2
2= l;’% r4(wN) + a (9)]

The integration with respect to 6 in equation (71) may be carried out in

close form for a shallow spherical shell, For this case, the truncation error of center

deflection PSD is:

— _ - 4 ab 1
A¢W(’A)pa UI\T) - 2¢O(wp\ A ﬂ2 > )2
9 1/2
K k. @b !'_D_ (w2 _ >11/4 1 . <wN "0)
Ip2p 7 |ph! N | (2 )15 2(w2,-52)
w - Q N n
N
/ .
R N ) N N
3 m b N P R NP
2 1/2°7 . 1/2, 172 = (.2 -2
4{wp - u} <ug —a) wg - a) + (,,12) —a wp(wN up)
1/2 2 —
1/2 W, -a’ W a .- W r ° 1/2
- — in X 7 P 5— In X p — }[n i_l_g_lph (u“, -&ﬂ (72)
/ -2 (RS N 21 N
P WDy, + Z"Jp N P m



where a E/(pRZ), R - R1 = R2, and the value of a is assumed to be smaller than the
square of the lowest circuiar frequency. Based on equations (49) and (72), the relative
error in response PSD due to truncation may be expressed in the following nondimen-
sional form. In the formulation, equation (52) dealing with the natural frequencies has

been made use of.

2 N Y R I N S A BN TR
(&, u) © vy Py P, — 5 |p, P, e (—.L) (1 - ou’) 1+ —57
0o Pl 2(1_0)...[ 172 o @ 2(1_‘12)
1/2 1/2
2 1/2 2
, _3__(1—11 U) m 1-9 (A-#v0G) =-wud-9 |, _l_( H_ 1-0)
w\ 1-0 2 1/2 2 1.2
(1-0) (1-u0) +u(l-o)
1/2 bo )
1/2 1-uo 1+0 l-y] [ 0o 2 1/21
- C /n + /n mi{——©1-u"0) !
1+lez 2 1+u 2y J
-1
pp(2}\:p ) 1()
1+4712~Z 172 i ; 274 %2 (73)
oy /.2 \ 2 91
- Ay = 1) +495A
Ap¥l Ap<pl 11112[ ¢ ) £ ’”
where
o (oh/D)/ 25 a2
b b/a <1
2
o & . 120-v)
o2 272 o2
P o)
n R/a >>1
u W /uN <1
Apo E/e
E=h/a

Based on equation {73), the relative truncation errors of the fundamental modc
for a spherical shallow element with ¥ = 0.04 are plotted in Figure 13 against ”-1 (the
ratio of the cutoff frequency vs the natural frequency) corresponding to various curva-
ture ratios a/R. The figure shows that the element with the smaller curvature ratio
yields less errors. For a typicel 48 inches by 36 inches by 0.118 inch steel panel

with ¥ = 0,04, the relative errors of the fundamental modes are less than 0.1'7 when

the cutoff frequency is only one and one-half times the natural frequency. Figure 14
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shows the relative truncation errors of the (1, 1) and (3, 3) modes of a flat plate with
different » values (¥ = 0.04, 0.01, 0.005). The figure indicates that the relative trunca-
tion errors are reduced with a reduced damping factor. It also shows that the error
corresponding to a higher mode is larger than that of the lower mode when ¢ and ¥ arc
unchanged. Therefore, in order to retain a certain accuracy in the computed spectral
data, the cutoff frequency should hc chosen based on the relative error of the highest

frequency of interest.
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D = bending rigidity of the plate or shell
g = loss factor |
Z = impedance function of the plate or shell

The impedance functions Z are given below based on the simplified plate and shell
equations:

1, Infinite plate (based on the classical plate equation):

2
z= (i} + ka) - k§ (79)
where
k: - mw2/DQ + ig) (80)

m = mass per unit area

2. Large shallow shell surface (a large shallow shell is one corresponding to
which a>>h, a>»é, where a is the basic linear dimension of the shell,

h s the thickmess, and & is the height of a typical arc on the shell middle

surface):

2
z- (i +k2) - kb 120 - vB)/ REY? | (8)

where
R = radius of the spherical shell

h = thickness of the spherical shell
v = Poisson's ratio
The deformation function Sy, (x, y,w) of the infinite plane, which is the inversed

transformation of Fw (kl’ k2, w), may be obtained based on equations (75) and (77).
The power spectral density of the deformation function w is given by

2
Sulks Vo 0) = fim T8, &x.y.0)] 4 (82)

T—>
where 2T is the range of integration in the Fourier transform between w, t.

An Infinite Plate Strip Under Random Acoustic Load

The problem involving an infinite plate strip or a semi-infinite plane may be
solved through the introduction of line loads to the infinite plane. The line loads,
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which may be transverse shear or bending moment, etc., are determined in such a manner

that the displacement and stress distributions at the selected line location are identical
to the boundary conditions of the plate strip or the semi-infinite plane, After the line
loads are determined, the deformation function K, (kl' k2’ w) in the wave number
domain can be computed based on equation (77). In the following, a working example
is presented which deals with the acoustic response of an infinite strip with two par-
allel simply s;xpported edges. ‘

The infinite strip, which is subjected to a uniform-intensity, spacewise correlated,

and timewise random load, is shown in Figure 15(a). The loads acting on the corre-

sponding infinite (x, y) plane which are used to simulate the plate strip are defined
below:

1. Random acoustic loads
S, (X.¥, w)= S (w) x| = = a, |yl s> a
f *J f - 2™ =2
= Ix) > —;- aor |y|>% a (83)

2. Line force Pl(y. w)

A along the lines x =+ —;—a(1+c)
Line moment Ml(y.u) )

where P1 and M 1 are unknown functions which will be determined to satisfy the
boundary conditions at x = + % a, We note that Pl, M1 functions are delta functions

along the x direction with unkown y distribution. The Fourier transform of the random
load is

1 sin —; k1 a sin—; k2a 1 ) P
= . +
I"f (kl. k2, u) o 28f (w) kl kz + cos > kla (1+¢) pl (kzo w)

1
+ k1 sin Ekl a(l+e) FMl(kz' w) (84).

Since the geometry and the applied loads on the plate are symmetric w.r.t.
the y-axis, the simply supported boundary conditions may be reduced to two which

involve two unknowr: functions FP (kz. w)and F {k,,., w) as follows:
1 -

M

1
sin %kza _
28w) —3 1, (ky) + Fp (ky, w) [ (ky) + Fp, (k), w) I3 (k) = 0 (85)
2 1 1
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sin lk a

22 =0 86
where
I k) = — 1 21-e 1% _n2q4e 2 87
10 == T[N (e T)-nfase T en
0 1 2
I, k,) = L |n 1+e—711a) + -q2a) 88)
2 %2 2 [ 2 -n,{1+e (
4k n.n
(o] 1 2
-n.a  -n,a
Lky) = —75 [e ' - 2| (89)
4k
(o]
™ -nza -qla
I, &y = 2 Ing(1+ve “)-n@1+e ), (90)
o]
-n.a -n,a
. _T 2 1 2 2
I (k,) 2 7, "(+e T)enl(1ve )l 1)
(o]
- 2 2
and 1 T\ke -k
Ny = k22+k2
o D(+ig D ~
The above equations lead to:
1 )
Fp (ky, w) = 25¢(v) smzkza s :1 tanh 02-—:—2- tanh ”1] (92)
1 2 2" (72 1
siagka oy i
Far (Kpiw) = 284w) K 7 ~ o~ tanh - tanh 7, (93)
1 2 2-1 |1 2

Based on equat_a (77), (84), (92), and (93), the Fourier transform of the deforma-
tion function Fw(k1’ kz, w) of the infinite strip is obtained.




Plates and Shallow Shells of Finite Dimensions Under Random Acoustic Loads

The finite plate or shallow shell may be treated in a similar manner as that of
the infinite plate strip. In dealing with the finite plate, the line load functions at the
boundaries are to be determined iteratively, This is because of the coupling between

the line functions at intersecting boundaries.

We have performed analysis aleng the scheme described above, It seems that
there are certiain shortcomings inherent in the approach dealing with a finite structure
where the Fourier transformation from the space domain to the wave number domgzin

is carried out. The shortcomings include:

Y

The need of iteration in determining the line functions at the houndary

2. Poor convergence
3. Lengthy numerical computations
4. Complicated integral evaluation,

In the following, a working example is presented which deals with the random
vibration of & square plate with simply supported edges. The plate is under a uniform

intensity. spacewise correlated, and timewise random load (Figure 15(b)).

The Fourier transform of the load is:

1 .1,
sin 5 kla sin ~k9a

- - . 1 9 2 - - ;1 - e -
Ff(l\l. kg. W) = B uof(w) kl k2 cos 5 kla(l €) FP(kz, w)
1 1
+ ai —_— + — }
kl sin =5 kla(l+6) FM(kz,w) cos kza(l*re) Fp(k‘l"")
N 1 - v \ _ ™ H 4
+ kz sin kza (1+¢) FM(KI,QE/) = l‘f(kQ, Rys w) (94)
Since the geomeltry and the applied loads on the plate ave doubly symmetric to the

two unknown functions Fp(kg‘ w) and FM (k2. w) as follows:
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:sinl—ka
28 (0) —2-2 | (k)+F_(k I (k) +
£ ) 3 (&) T Fp ey w ) Iy (kg) + Fpy (ky, w) I (k

2 1
1 © k“F (k,w) i5ka
+COS‘?k23- (I+¢)>£°° PZ 1 e 2 1 dkl

2)

2 1
1 0 kl Fo.ok,, w) i~k.a
"'!:2sin—zhkza(He)i‘oo MZ 1 e 21 4 =0 (95)

sin ;~k2a
28 (w) &, I (kg) * Fpy(ky, w) I (ko) + Fpp (ky, w) Iy (k)

1
2F (K, ) i1k a
R PP Y [ L U
-0

A |
i=—k.a
e 271

1 ® Fy g w)
+k2 sin —5- k2a (I+¢)f — dl*:1 =0 (96)
~ 00

For a first approximation, it may be assumed that the influence of a line load on
the boundary conditions is most significant to the boundary at which the line load is
located or otherwise is parallel to the line load. The effect is less significant to a
boundary which is perpendicular to the line load. By ignoring the above described
secondary effect in a first approximation, the problem is reduced to that of an infinitely
long plate strip with width a and simply supported edges along x = i%a. It is sub-
jected to the half-surface loads Sf(w). In this manner, FP (kz, w) and FM (kz, w) are

equal to one-half of the value FP and FM as given in equations (92) and (93).
1 1

The second iternation may be initiated as follows:
. FM (kzv w) = FL{1 (kzv w) + FB (kzv w) (98)

1 1
where 5 FP1 + F, and EFMI + Fp are the corrections on the first approximated

i >N

.1 1
solution §FP1 (k2, w) and EFMI (kZ’ w). Substituting equations (87), ($8) iniv eyuaiions

(95), (96) and dropping the integrals which involve F, and F‘g gives the two equations
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governing the corrections F, (kz, w) and Fﬂ ( k2, w). These equations are very
lengthy and are detailed as equations (99), (100) on the next page. The integrals in
equations (99). (100) are evaluated by the residue theorem before the two simultaneous
equations are solved. The numerical result shows that the corrected terms F, and

F‘9 are of the same order of magnitude of FP and FM . Because of the complicated
1 1

integral evaluation, the lengthy numerical computation: and the poor convergence
property of the problem, no additional iteration was carried out beyond the second

round.

TR [

O ool i R mwu.&m”bﬁmﬁ,,m“ﬁm ‘nni PRI, ik AR s E‘i'!‘i i@%’-ﬂkﬁ plios 0t




SH AR A g g e L g NI G RIS e n e,

con e L RS OIS RING | A 0 i 4 g e s R e L L T RNt Ve e v

C 1 Z
“g- 1T = 'b oazoym
z A K A t= Y4
o 4 L (4 (4 (4 (4 4 Il %1
) Y- N+, Y quis ysod °b - ysoo yurs “b| °b*b
(oot . v NAN ¢ v 2% elb €% elb o .
0="%p 9 urs °y 4
de £, & yuis (4 ysod .2 ysod ¢ yurs %) _¢ urs av_ H aNu_
L 2% elb 2% &b ely »
wou_ - A Nx + Nau_v M quis m ysoo % __28 ysoo w qus |2l
. z (4 2% z'b €% &b g o
Pz ° z Z 2 o 1 ﬂm 00 Mo x
B =1 yuis yuis urs 'y J ey
L &% e'b ely x
@ % @ G4 C% ) Y
b
(66)
wov_ - A Nu_ + va ¢ qurs m ysoo % - NN Ysoo m yurs Iy Ncawﬁu_
¢ &% ®'b B b b Hime
0= f% 3 (4 4 urs Nu_ +
uﬁx Imuﬁ M quis w Ysoo Tp - M Yso0o m qars Nu w..H ms - amv_
€°b 8b 8°b b 3 | S
o
3 y - « qu_ + NH&V M quis m ysoo o - M ysoo m quis Iy Nvﬁvf_
e’ Db e°b b W=,
I 2 £ goo °
*oa, e ° 2 Z z Z 2 M2+
.Y =1 yuis quis —— urs ~ By
I 2% elb By
@ ¥ C b1, E P2 @ 4




3.

7.

9.

10,

11,

12,

13,

REFERENCES

Lyon, R.H., and Maidanik, G., ""Power Flow Between Linearly Coupled Oscilla-
tors," J. Acoust, Soc, Am, 34, 623-639, May 1962,

Smith, P.W., Jr., "Response and Radiation of Structural Modes Excited by Sound,"
J. Acoust, Soc, Am, 34, 827, 1962,

Maidanik, G., '"Response of Ribbed Panels to Reverberant Acoustic Fields,"
J. Acoust, Soc. Am, 34, 809-826, 1962,

Lyon, R.H., and Eichler, E., '"Random Vibration of Connected Structures,"
J. Acoust, Soc. Am, 36, 1344~1354, July 1964,

Crocker, M. J,, and Price, A.J., '"Sound Transmission Using Statistical Energy
Analysis," J, Sound and Vibration, 9 (3), 469-486, September 1969,

Lyon, R.H., "An Energy Method for Prediction of Noise and Vibration Transmis-
sion," Shock, Vibr, and Assoc. Environments, Bull. No. 33, Pt, II, pp. 13-25, 1964.

Lyon, R.H., and Maidanik, G,, ""Statistical Methods in Vibration Analysis,"
AIAA Journal 2, 1015-1024, June 1964,

Smith, P, W., Jr., and Lyon, R.H., ""Sound and Structural Vibration," NASA
CR-160, March 1965,

Lyon, R,.H., and Scharton, T.D., '"Vibrational-Energy Transmission in a Three-
Element Structure," J, Acoust, Soc. Am, 38, 253-261, August 1965,

Eichler, E., "Thermal Circuit Approach to Vibrations in Coupled Systems and the
Noise Reduction of a Rectangular Box,'" J. Acoust. Soc. Am. 37, 995-1007, 1965,
Ungar, E.E,, "Fundamentals of Statistical Energy Analysis of Vibrating Systems,"
AFFDL-TR-66-52, May 1966,

Ungar, E.E., "Mechanical Vibrations,' Sec. 6 of Mechanical Design and Systems
Handbook, McGraw-Hill Book Co., Inc., New York, 1964,

Ungar, E, E., "Statistical Energy Analysis of Vibrating Systems," J. Eng, Ind. 89,
No. 4, 626-632, 1967,

37

s SRR R T i

§ *.@mﬂiam:mn

el

LT ST STVER

AT ST bbb s 3457




14, Lyon, R.H., "Statistical Analysis of Power Injection and Response in Structures
and Rooms,' J. Acoust. Soc. Am. 45, 545-563, March 1969,

15. Noiseux, D,U,, "Measurement of Power Flow in Uniform Beams and Plates,
dJ. Acoust, Soc. Am, 47, 238~247, January 1970.

16, Zeman, J,L., and Bogdanoff, J. L., ""A Comment on Complex Structural Response
to Random Vibrations," AIAA Journal 7, 7, 1225-1231, July 1969,

17, Newland, D, E., "Calculation of Power Flow Between Coupled Oscillators," '
J. Sound Vib. 3, 262-276, 1966,

18, Newland, D.E., "Power Flow Between a Class of Coupled Oscillators,' J. Acoust,
SOCQ A’m. ég, 553-565, March 1968.

e Bt o e

19, Heckl, M. A., "Wave Propagation on Beam~Plate Systems," J. Acoust, Soc. Am, 33,
640-G51, 1961,

20, Ungar, E.E., "Transmission of Plate Flexural Waves through Reinforcing Beams;
Dynamic Stress Concentrations," J. Acoust. Soc, Am. 33, 633-639, 1961.

ot sibimiaiibln s,

21, Manning, J.E., and Maidanik, G., 'Radiation Properties of Cylindrical Shells,"
J. Acoust, Soc. Am. 36, 1691~-1698, 1964,

o Wt SR,

FRETIR Y

22, Lyon, R.H., "Spatial Response Concentrations in Extended Structures,' Trans, v
ASME, J. Eng, for Ind,, Series B, 1967.

23, Dyer,‘I., '"Response of Space Vehicle Structures to Rocket Engine Noise,' Ch. 7 of
Random Vibration, Vol. 2, Ed. by S.H. Crandall, The MIT Press, Cambridge, '
Massachusetts, 1963,

24, Skudrzyk, E., '"Vibrations of a System with a Finite or an Infinite Number of
Resonances,' J, Acoust, Soc. Am,. 30, 1140-1152, 1958, ?

25, Kronauer, R.E., and Musa, S. A., "Exchange of Energy Between Oscillations in
Weakly Nonlinear Conservative Systems, J. Appl. Mech. 33, No. 2, 451~452, 1966. :.

.

26, Franken, P, A., and Lyon, R.H., "Estimation of Sound-Induced Vibrations by
Energy Methods, with Applications to the Titan Missile," Shock, Vibration, and
Associated Environments, Bull. No, 31, Part IlI, pp. 12-26, 1963,

27. Heckl, M.A., ""Measurements of Absorption Coefficients on Plates,' J. Acoust.
Soc. Am. 34, 803-808, 1962,

28, Lyon, R.H., "What Good Is Statistical Energy Analysis, Anyway?" Shock and
Vibration Digest, Vol. 2, No. 6, June 1970,

| 38 !




29,

30,

31.

32,

33.

34,

35,

36,

37.

38,

39,

40,

41,

42,

Kana, D.D., Chu, W.H., and Bessey, R. L., '""The Response of Cylindrical Shells
to Random Acoustic Excitation Over Broad Frequency Ranges,'" AIAA Paper
71-331, April 1971,

Cobble, M.H,, "Finite Transform Solution of the Damped Clamped-Clamped Beam
Having Distributed Load and Elastic Support, J. Acoust. Soc, Am, 40, 1529-1533,
December 1966,

Hurty, W, C., and Rubinstein, M, F., Dynamics of Structures, Prentice~-Hall, Inc,,
Englewood Cliffs, New Jersey, First Edition, 1965,

Nowacki, W., Dynamics of Elastic Systems, John Wiley and Sons, New York,
First Edition, 1963.

Hwang, C., and Pi, W.S., '"Random Acoustic Response of a Cylindrical Shell,"
AIAA Journal 7, 12, 2204-2210, December 1969.

Courant, R., and Hilbert, D., Methods of Mathematical Physics, Interscience
Publishers, Inc,, New York, N.Y., 1953, Vol, I, Chapter 6, pp, 429-431, 460.

Bolotin, V. V,, "On the Density of the Distribution of Natural Frequencies of Thin
Elastic Shells," J. Appl. Math, and Mech, 27, No, 2, 538-543 (Transl. from Soviet
Journal: Prikhadnaya Matematika y Mekhanika, 27, No. 2, pp. 362-364), 1963,

Bolotin, V. V., "The Density of Eigenvalues in Vibration Problems of Elastic
Plates and Shells,” Proc. of Vibration Problems, Warsaw 4, No. 6; 341-351, 1965,

Wilkinson, J.P,D., '"Modal Densities of Certain Shallow Structural Elements,"
J. Acoust, Soc. Am,, Vol. 43, No. 2, pp. 245-251, February 1968,

Sneddon, I.N,, Fourier Transforms, McGraw-Hill Company, New York, 1951.

Bendat, J.S., and Piersol, J.S., Measurement and Analysis of Random Data,
J. Wiley and Sons, Inc., New York, 1966,

Powell, A., "On the Response of Structures to Random Pressures and to Jet Noise
in Particular,'" Ch, 8 of Random Vibration, Vol. I, Ed, by S.H. Crandall, The MIT
Press, Cambridge, Massachusetts, 1963,

Bolotin, V,V., '""The Edge Effect in the Oscillations of Elastic Shells,'' PMM 24,
No. 5, pp. 831-834 (translation pp, 1257-1272), 1960,

Bolotin, Vv, V., Makarov, B. P., Mishenkov, G. V., and Shveiko, Iu, Iu., '"An Asymp-
totic Method for the Study of Natural Frequencies of Elastic Plates," Sbornik
Raschety na Prechnost!, Vol. 6, Mashgiz, 1960 (in Russian).

39

et inhithe 1.

A4

o b o




LS .-

A OO UG 5 N RS PSR P A o L — TS TP e o o

43,

44,

45,

Hart, F.D,, and Desai, V. D., ""Additive Property of Modal Density for a Compo-
site Structure," J. Acoust, Soc. Am, 42, 1203, November 1967,

Jacobs, L, D., and Lagerquist, D.R., ""Finite Element Analysis of Complex Panel
Response to Random Loads,'" AFFDL-TR~-68-44, October 1968,

Morse, P.M.,, and Ingard, K.U., Theoretical Acoustics, McGraw-Hill Book Co.,
New York, 1968,

-

ST VRPN IPEPED S S

RATERNT JIUTRAE | O DR

A s i i A s




LIST OF ILLUSTRATIONS

Figure Page
Energy Flow in Coupled Oscillators of Two Substructures ....... 42
Panel Response Relative to Mass Flow Law, Mint = 0,005 . coe0vee 42

1
2
3 Two-PlateTestspecimen.....l...l.........l....'..l. 43
4

Loss Factor and Absorption Coefficient of Undamped 57-mil Steel
Plateweldedtolls-milplate * 8 & 5 8 0 060 0 ¢ 0 0 8 0 00 00 0P S P g0 44

5  Ratio of (Damping Coupling Parameter/Modal Damping Factor) for
theTwo-Platesystem o @ & 5 6 5 06 6 0 60 0 5 20 0" OO 0 b0 0 00 e 45 ;‘

Doe

Instrumentation System Schematic . ..cccceccsoevsecoccees 46
Response Ratios for Undamped 57-mil Plate Welded to 118-mil

- Plate..............Q.I..'...'......'.........0.. 47 E
8 Deformation Pattern of the Base Plate under Sinusoidal Excitation, “~‘
v.: f = 4000 Hz ® 0 0 & 0 &6 5 © 0 0 0 5 0 0 2 8BS O B S OO S S G SO e 0 e s s e 48 'Lz
™ 9  Deformation Pattern of the Base Plate under 1/3-Octave :
Excltation’ fo = 4000 Hz ® 5 0 0 0 5 O 8 6 3 0 & O 0 O 8 5 P O A S PO S B b e 49 %

10  Deformation Pattern of the Base Plate under Sinusoidal Excitation,
f=2000Hz.l.......'............l..'l...'..'.!.l. 50 ;(

S i .y < o M " .; Con N ; - L * .
B v M N I REA 0 A O AR IR RIS 0 o 10 1o M WP s i me s

L2 T TIN

11  Deformation Pattern of the Base Plate under 1/3-Octave

Ex.citation’fo=2000Hz....I......l....l......'.'.... 51 g

12 Modal Distribution of a Double Curved Shallow Shell E£lement in the é ,
WaveNumbermmaln ® 0 0 0 00 8.0 0 8 0 0 00 0 0 5 SO O OSSN R G0 B 0 0o 52 ;
‘ 13  Truncation Errors of the Center Deflection of Simply Supported ;
S Shallow Spherical Panels under Uniform Intensity Random Acoustic E
" Pressure..‘...‘...Ol.l.....C...Q..'....l....l..l 53 é
14 Truncation Errors of Center Deflection of a Simply Supported ?

o Plate under Uniform Intensity Acoustic Pressure .....ccceo0e0¢. 54 I
T 15  An Infinite Plate Strip and a Square Plate under Random Acoustic 3

) Loads...l..l.......'....'.Q'...l.l..........ll. 55 I

&

g

41

i
;
i




i

B; 6,5, 6;- Z Gik 101y - B B,6;=5,3 +En,'(o,,
kaj 1= 4
OSCILLATOR B < % v; > =uij (-8 OSCILLATOR
X, > Y]
B, <x?> Bi<vi>
i i [} J

FIGURE 1. ENERGY FLOW IN COUPLED OSCILLATORS OF TWO SUBSTRUCTURES

M3 e i O s - ¢ Mﬂm il ¢l b G B EE [T T

fiacumpperitho SN e TRV EN MY U ) LA 1 NIRRT Mo b L N R 4 U+ P morirars e o r.

40
30 ]
g 20%1-@ |
Qa _\Gﬁ_e P ) é ’
[~ L
@ 10 — ERIN
3 Q 1/3 OCTAVE g
9 AVERAGE H
e o ;
g
' -10
; 20
100 1,00C f. 10,000 :
FREQUENCY (H2)
FIGURE 2. PANEL RESPONSE RELATIVE TO MASS LAW. Mint™ 0.005
(FROM REFERENCE 5)
i
L
i
o g
]




-
TR S | L LM T A e B e - ,:i:.,..,ia:..wiﬁxxs:,»e@.:si..._.m,_i.Si_ié:é;i;i!iﬁ!ﬂi!iigi;g;-i’

(¥ ION3YIA3Y YIL4V) NIWIDIGS 1§31 31VI1d OML € 3HNO:A

{.811°0) €6 11 133HS 1331S TVIYILVW ISVE

39VdUVYM TOHINOD B

3ZvH8 H3AS ‘ANIT

73318..8L1°0 SIHL ONOTV 83M

Z 'ON 3LV1d AAV3IH H31N3IO 2 3LVI0T]

|.V . h&E 05"
.b.m Ll E>t..8. l*l

‘NI DS 019 = V V3HY 2
(.£S0°0) ¥6 91 133HS 133LS IVINILVIN 83N

WNv3S
g3a1am

lla.lz

~£'SZ

21.1"
»
2' 8"

L ‘'ON 34Vd 13315 ..2500

<Lz 8Y

fane ¥l AT AT ARG B DO A 5 B P S i o e L B 0 SRR R



rn

1971

Yth 1
5)(10-2 —— —i—\—] —l-—V = X ]
2x1072
y
1072 /!
-3 /
5x 10 o8
2x10°3 A
/: \
~3 s X
10 — ,Nes
/ 1\'\*r ) —( \x
[~
x
Sy
5x 1074 5\
] /
\}/“\ e
2x107¢4 ol
500 1,000 2,000 5,000 10,000 20,000
FREQUENCY HZ

FIGURE 4. LOSS FACTO
57-MIL STEEL PLATE

RS AND ABSORPTION COEFFICIENT OF UNDAMPED

WELDED TO 118-MIL PLATE (FROM REFERENCE 4)

44

G R el s

i

gkl M

ERET

‘.

Bk o R AN G o 2o 0 s



PR g

50 L A
hy = 0.057 INCH | |
@emeg h, = 0.118 INCH BASED ON MEASURED 7 :s, FIGURE 4
O me =) hy = 0.118 INCH BASED ON THEORETICAL ¥ VALUES, EQ (35)
[ 3+
] 20 XeassennasaX h,%= 0.057 INCH BASED ON THEORETICAL ¥ VALUES, EQ (34)
Xo,
10 & o '---....&
o
.O
*, 1] "X
5 Xenves -x.‘ 5:
3 N\ * <
8
31
2
1.
0.5
0.2
200 500 1,000 © 2,000 5,000

FREQUENCY HZ

FIGURE 5. RATIO OF (DAMPING COUPLING PARAMETER/MODAL
DAMPING COEFFICIENT) FOR THE TWO-PLATE SYSTEM

""'1 45



GOODMAN V50 ACCELEROMETERS
SHAKER ENDEVCO 2222B
ACCELEROMETER
{ AMPLIFIER
— DYNAMICS MODEL 6442
- } ACCELEROMETER
S AMPLIFIER
TO ACC r'J DYNAMICS MODEL 6442
'[_’ AMP
TEST PANELS
\ N RECORDING OSCILLOGRAPH
rdrd CEC 5-124A
AC AMMETER
WESTON 370 BOOSTER AMPLIFIER
l SANDBORN 8%75A
AUDIO AMP
McINTOSCH 75
¢ AN LOG CONVERTER
r HP 7560A
L
BOOSTER AMP
HP 450A TRUE RMS TRACKING
VOLTMETER }— FILTER Locl::'?;\ls\égzmn
HP 3400A SD 101-A
Y
X-Y RECORDER
HP 135-A

I\o

SWEEP OSCILLATOR
SD 104-5

SPECTRUM
SHAPER
B&K 123

FREQUENCY
COUNTER
HP 5532A

NOISE SCURCE
ALLISON 650A

FIGURE 6. INSTRUMENTATION SYSTEM SCHEMATIC

a9

iv"i,-ui"-‘:r‘s‘:ﬂWﬁ Wi :‘u;w“ﬁ,u @

-

bl M oo s e oot ity [ S

G e s et i




L e gy

31vid TIW-8LL
01 Q3073M 31v1d TIN-LS AIdWVYANN HO4 SOILVH ISNOJSIY ‘£ 3HNOI4

ZH AON3IND3Y4

I i SR ey

000°0C 000°01 000°'s 000 000°L 00§ ooz
P
y. N /
/ a3
Vs
“, 7
f ooo &
assasse )
rx... Ay M«
P ooo o'
/ 00 0‘0
/ >
{
\ \
\{
|9}
€ 34NOIJ NI d3LVIIANI 34V 9 'V SNOILVYIO1
| 8.1V Q3LI0XI ‘'VIVQ 1ST] xeesasassaex
V 1V 03110X3 ‘VIVA 1S3 O o -—C)
V 1V Q3110X3 ‘P IDONIY3I4A3Y ‘11 IHNDI4 G el

N A A N

T,,1
(ZA/ZA) 907 ot

Ar?



7101362A

FIGURE 8. DEFORMATION PATTERN OF THE BASE PLATE UNDER

SINUSOIDAL EXCITATION, f = 4000 Hz



ZH 000% = °} ‘NOILVLIOX3 IAVLIO0 €/1
o H3ANN 31V1d 3Sv9 IHL 40 NH311VYd NOILVINHO43a ‘6 34NOI4

> (X, %.— .
L






8E9€T101¢Z

ZH 000Z = 4 ‘NOILVLIOX3 IAVLIIO €/1
H3IANN 31V1d 3SVE 3HL 40 NYIL1Vd NOILYINHO43a

,c,ﬁ‘4.~ < A‘.:«

-

A 200

L

34NOI4




(Q)

NIVNOd H3I8WNN JAVYM IHL NI LINIWIT3I T13HS MOTIVHS
G3AYNI 378N0A V 40 NOILNGIH1SIA TVAOW °ZL 34NDI4

-

N



T STEEL

“ 'm "im‘:ﬁ#jgrq{'-m " "’:-,« S e s e

36" ¥ =004
h = 0.118" i

b8 —]
- = R=80FT  &/2r =36302HZ _
c-====R=200FT /27 =19.208 HZ
— R @/ 27 =13.719HZ :

I ‘

5 x 1075

Wiy -

2x 10'5

ISR | RN IR,

1075

TRUNCATION ERROR OF CENTER DEFLECTION A ¢/

B
.:V
//
il
il
il
..:II

i A ot S i s s L

1078

2 3 4 5 6 7 8
CUTOFF FREQUENCY/NATURAL FREQUENCY

FIGURE 13. TRUNCATION ERRORS OF THE CENTER DEFLECTIONS OF

SIMPLY SUPPORTED SHALLOW SPHERICAL PANELS UNDER g
UNIFORM INTENSITY ACOUSTIC PRESSURE H
A -




i

= O/

TRUNCATION ERROR OF CENTER DEFLECTION

\ T —
\\ 26" STEEL
3 \ h=0.118"
10 -~
\\ fe— 48" —ef
A AN | wooe _|
\ \ ——— (1,1) @/27 = 13.719HZ
\Y N ———-(33 @/27 123471 HZ
\ \“
N\
\\ \ \\ \\)*o
4\ \\L N&
10 S " <
\ \\
\ \ ~
\ N So
5x 1079 3 N -,
\ N LN
N\ 4 ~
\ \ ‘o \\
N\ N O, \\..
N\ N ~-
2 x 10-5 \ \\ o
\ 2
o
N >
\ N
\\
\ N
\\
~
~
~,
\ \\ s
~
~
> ~
1076 *0.0 lL*i
\ \ =~
NE
- \
0
1o~7 ]
2 3 4 5 6 7 8

CUTOFF FREQUENCY/NATURAL FREQUENCY

FIGURE 14. TRUNCATION ERRORS OF CENTER DEFLECTION
OF A SIMPLY SUPPORTED PLATE UNDER UNIFORM INTENSITY

ACOUSTIC PRESSURE

A

oo S o b iy e ad

ey e L e .
B B b



31Vd 3LINIA V (9)

M

ﬂ

x
ﬂ3.>.§r N

BRI gl e

SAVO1 J1LSNOJV NOANYY HIANN
31V7d 3HVNOS V ANV dIH LS 31Vd ILINIIN! NV °SL 3HNOIS

(M'x) W

(mA)d d
A
! @ d 4 )
g
\\\\\\\\ \\\\\\ =
PR d R =
R v avs =
\\\\\\ \\\\\_ =
x Y e e
y 7/ 7 VARV, et
\\\ 7 7 =
\Aavu S s 7 A f—
r , m\\\\ g
v \\\\\\\\l

Lo e,

diyLS 3LINIINI NV ()

M
,
x
(e2°A) —EF CV—E
(mA) by __u
A
A
e | o
0V =
x “ 2 A —
e 3}_\ —
\ v/ =
A
e ot A o et e oo

85



	GeneralDisclaimer.pdf
	0009B02.pdf
	0009B03.pdf
	0009B04.pdf
	0009B05.pdf
	0009B05_.pdf
	0009B06.pdf
	0009B07.pdf
	0009B08.pdf
	0009B09.pdf
	0009B10.pdf
	0009B11.pdf
	0009B12.pdf
	0009C01.pdf
	0009C02.pdf
	0009C03.pdf
	0009C04.pdf
	0009C05.pdf
	0009C06.pdf
	0009C07.pdf
	0009C08.pdf
	0009C09.pdf
	0009C10.pdf
	0009C11.pdf
	0009C12.pdf
	0009D01.pdf
	0009D02.pdf
	0009D03.pdf
	0009D04.pdf
	0009D05.pdf
	0009D06.pdf
	0009D07.pdf
	0009D08.pdf
	0009D09.pdf
	0009D10.pdf
	0009D11.pdf
	0009D12.pdf
	0009E01.pdf
	0009E02.pdf
	0009E03.pdf
	0009E04.pdf
	0009E05.pdf
	0009E06.pdf
	0009E07.pdf
	0009E08.pdf
	0009E09.pdf
	0009E10.pdf
	0009E11.pdf
	0009E12.pdf
	0009F01.pdf
	0009F02.pdf
	0009F03.pdf
	0009F04.pdf
	0009F05.pdf
	0009F05_.pdf
	0009F06.pdf
	0009F07.pdf
	0009F08.pdf
	0009F09.pdf
	0009F10.pdf
	0009F11.pdf
	0009F12.pdf

