4,440 research outputs found

    Dynamical stability of a thermally stratified intracluster medium with anisotropic momentum and heat transport

    Full text link
    In weakly-collisional plasmas such as the intracluster medium (ICM), heat and momentum transport become anisotropic with respect to the local magnetic field direction. Anisotropic heat conduction causes the slow magnetosonic wave to become buoyantly unstable to the magnetothermal instability (MTI) when the temperature increases in the direction of gravity and to the heat-flux--driven buoyancy instability (HBI) when the temperature decreases in the direction of gravity. The local changes in magnetic field strength that attend these instabilities cause pressure anisotropies that viscously damp motions parallel to the magnetic field. In this paper we employ a linear stability analysis to elucidate the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy) on the MTI and HBI. By stifling the convergence/divergence of magnetic field lines, pressure anisotropy significantly affects how the ICM interacts with the temperature gradient. Instabilities which depend upon the convergence/divergence of magnetic field lines to generate unstable buoyant motions (the HBI) are suppressed over much of the wavenumber space, whereas those which are otherwise impeded by field-line convergence/divergence (the MTI) are strengthened. As a result, the wavenumbers at which the HBI survives largely unsuppressed in the ICM have parallel components too small to rigorously be considered local. This is particularly true as the magnetic field becomes more and more orthogonal to the temperature gradient. In contrast, the fastest-growing MTI modes are unaffected by anisotropic viscosity. However, we find that anisotropic viscosity couples slow and Alfven waves in such a way as to buoyantly destabilise Alfvenic fluctuations when the temperature increases in the direction of gravity. Consequently, many wavenumbers previously considered MTI-stable or slow-growing are in fact maximally unstable. (abridged)Comment: 15 pages, 7 figures, accepted by MNRAS; typos fixed and minor corrections made; color figures available at http://www-thphys.physics.ox.ac.uk/people/kunz/Kunz11_colorfigs.pd

    Buoyancy Instabilities in a Weakly Collisional Intracluster Medium

    Full text link
    The intracluster medium of galaxy clusters is a weakly collisional, high-beta plasma in which the transport of heat and momentum occurs primarily along magnetic-field lines. Anisotropic heat conduction allows convective instabilities to be driven by temperature gradients of either sign, the magnetothermal instability (MTI) in the outskirts of non-isothermal clusters and the heat-flux buoyancy-driven instability (HBI) in their cooling cores. We employ the Athena MHD code to investigate the nonlinear evolution of these instabilities, self-consistently including the effects of anisotropic viscosity (i.e. Braginskii pressure anisotropy), anisotropic conduction, and radiative cooling. We highlight the importance of the microscale instabilities that inevitably accompany and regulate the pressure anisotropies generated by the HBI and MTI. We find that, in all but the innermost regions of cool-core clusters, anisotropic viscosity significantly impairs the ability of the HBI to reorient magnetic-field lines orthogonal to the temperature gradient. Thus, while radio-mode feedback appears necessary in the central few tens of kpc, conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Magnetically-aligned cold filaments are then able to form by local thermal instability. Viscous dissipation during the formation of a cold filament produces accompanying hot filaments, which can be searched for in deep Chandra observations of nearby cool-core clusters. In the case of the MTI, anisotropic viscosity maintains the coherence of magnetic-field lines over larger distances than in the inviscid case, providing a natural lower limit for the scale on which the field can fluctuate freely. In the nonlinear state, the magnetic field exhibits a folded structure in which the field-line curvature and field strength are anti-correlated.Comment: 20 pages, 20 figures, submitted to ApJ; Abstract abridge

    Domestic Life in Dutch New Amsterdam A Social Studies Curriculum for Third and Fourth Grade Children

    Get PDF
    This thesis presents a social studies curriculum for third and fourth grade students on the domestic life of New Amsterdam. Beginning with the geography of the region, the study focuses on the role that the environment has on meeting basic human needs of shelter, food and clothing. Based on a framework of objectives and ideas, the study is divided into three major units: shelter, food and clothing. Meeting each basic need required of New Amsterdam residents a vast amount of time and dedication. As children experience this curriculum, they can begin to understand the effort and many layered processes the initial Dutch settlers had to complete on a daily basis. Throughout the study students will extend and deepen their understandings by comparing the life in New Amsterdam to contemporary life in New York City. This study has been compiled from multiple resources that include journals, nonfiction texts, historical fiction, cookbooks, online resources, and maps. The curriculum is designed to offer children an opportunity to experience the daily life of New Amsterdam through sensory experiences, readings, videos, field trips and expressive writing

    The HBI in a quasi-global model of the intracluster medium

    Full text link
    In this paper we investigate how convective instabilities influence heat conduction in the intracluster medium (ICM) of cool-core galaxy clusters. The ICM is a high-beta, weakly collisional plasma in which the transport of momentum and heat is aligned with the magnetic field. The anisotropy of heat conduction, in particular, gives rise to instabilities that can access energy stored in a temperature gradient of either sign. We focus on the heat-flux buoyancy-driven instability (HBI), which feeds on the outwardly increasing temperature profile of cluster cool cores. Our aim is to elucidate how the global structure of a cluster impacts on the growth and morphology of the linear HBI modes when in the presence of Braginskii viscosity, and ultimately on the ability of the HBI to thermally insulate cores. We employ an idealised quasi-global model, the plane-parallel atmosphere, which captures the essential physics -- e.g. the global radial profile of the cluster -- while letting the problem remain analytically tractable. Our main result is that the dominant HBI modes are localised to the the innermost (~<20%) regions of cool cores. It is then probable that, in the nonlinear regime, appreciable field-line insulation will be similarly localised. Thus, while radio-mode feedback appears necessary in the central few tens of kpc, heat conduction may be capable of offsetting radiative losses throughout most of a cool core over a significant fraction of the Hubble time. Finally, our linear solutions provide a convenient numerical test for the nonlinear codes that tackle the saturation of such convective instabilities in the presence of anisotropic transport.Comment: MNRAS, in press; minor modifications from v

    Washington Observations

    Get PDF
    Este texto presenta tres partes sobre la construcción ciudadana de Bogotá. La primera de ellas habla sobre su geografía física, sus colores, sus sitios, sus paisajes. La segunsa, sobre percepción ciudadana en población, estética, hábitos y vida cotidiana. La última de ellas deja ver cómo es percibida Bogotá por los ciudadanos de otras ciudades. Este enfoque se sitúa en el ciudadano como constructor de sus percepciones con las cuales ve el mundo y lo hace mientras lo percibe

    Effect of image tilt of a virtual image display on simulated transport touchdown performance

    Get PDF
    An evaluation of the visual effect of image tilt of a refractive lens display system is presented. The system was used to present a rudimentary computer generated out the window scene to the pilot of a flight simulator during approach, flare, and touchdown. Comparisons are made of sink rate at touchdown and performances for untilted and tilted displays. Sixty four landings with each condition for a total of 128 touchdowns were made by 3 subjects. Performance measures, such as the flare and touchdown footprints, were recorded and analyzed. The visual effect of the image tilt was investigated for a terrain model board scene

    Garnet–monazite rare earth element relationships in sub-solidus metapelites: a case study from Bhutan

    Get PDF
    A key aim of modern metamorphic geochronology is to constrain precise and accurate rates and timescales of tectonic processes. One promising approach in amphibolite and granulite-facies rocks links the geochronological information recorded in zoned accessory phases such as monazite to the pressure–temperature information recorded in zoned major rock-forming minerals such as garnet. Both phases incorporate rare earth elements (REE) as they crystallize and their equilibrium partitioning behaviour potentially provides a useful way of linking time to temperature. We report REE data from sub-solidus amphibolite-facies metapelites from Bhutan, where overlapping ages, inclusion relationships and Gd/Lu ratios suggest that garnet and monazite co-crystallized. The garnet–monazite REE relationships in these samples show a steeper pattern across the heavy (H)REE than previously reported. The difference between our dataset and the previously reported data may be due to a temperature-dependence on the partition coefficients, disequilibrium in either dataset, differences in monazite chemistry or the presence or absence of a third phase that competed for the available REE during growth. We urge caution against using empirically-derived partition coefficients from natural samples as evidence for, or against, equilibrium of REE-bearing phases until monazite–garnet partitioning behaviour is better constrained

    Redesigning Engineering Education

    Get PDF
    In developing the PLAN, WPI sought to address concerns inherent to its then traditional curriculum that was rigid, unresponsive to differences among students, and was compartmentalized by independent departments so that intellectual growth was fragmented. The PLAN was an entirely new and different educational program responsive to the needs of students and society while nurturing sensitivity to the ideas and values of our society. It included fundamental departures from the traditional elements of technical education including: A. The achievement of competence rather than the accumulation of credits. B. Individual freedom and responsibility in planning the program of study. C. A large component of project and independent study learning. D. Emphasis on education as a cooperative venture between faculty and students. Frequently, changes to engineering curricula involve the addition of new material to a well-established body of knowledge. Deciding which components to eliminate becomes the central issue in curricula reform. To adopt and implement the PLAN, the WPI community necessarily employed a more fundamental approach by focusing on learning rather than information transfer. Additionally, the PLAN has been a dynamic entity undergoing continual and substantive revision in the best spirit of continuous improvement. In the following sections the processes invoked in the adoption and revision of the PLAN by the WPI community are outlined in the hope they may help guide other faculties in embracing substantive revision
    corecore