8,859 research outputs found
Orientation and temperature dependence of domain wall properties in FePt
An investigation of the orientation and temperature dependence of domain wall properties in FePt is presented. The authors use a microscopic, atomic model for the magnetic interactions within an effective, classical spin Hamiltonian constructed on the basis of spin-density functional calculations. They find a significant dependence of the domain wall width as well as the domain wall energy on the orientation of the wall with respect to the crystal lattice. Investigating the temperature dependence, they demonstrate the existence of elliptical domain walls in FePt at room temperature. The consequences of their findings for a micromagnetic continuum theory are discussed. (c) 2007 American Institute of Physics
Invariant expectations and vanishing of bounded cohomology for exact groups
We study exactness of groups and establish a characterization of exact groups
in terms of the existence of a continuous linear operator, called an invariant
expectation, whose properties make it a weak counterpart of an invariant mean
on a group. We apply this operator to show that exactness of a finitely
generated group implies the vanishing of the bounded cohomology of with
coefficients in a new class of modules, which are defined using the Hopf
algebra structure of .Comment: Final version, to appear in the Journal of Topology and Analysi
Single Spin Asymmetries in Semi-Inclusive Electroproduction: Access to Transversity
We discuss the quark transversity distribution function and a possible way to
access it through the measurement of single spin azimuthal asymmetry in
semi-inclusive single pion electroproduction on a transversely polarized
target.Comment: 5 pages, Latex using aipproc.sty (included), to appear in proceedings
of "Second Workshop on Physics with an Electron Polarized Light Ion
Collider", Sept. 14-16, 2000, MIT, Cambridge, US
Laser induced magnetization switching in films with perpendicular anisotropy: a comparison between measurements and a multi-macrospin model
Thermally-assisted ultra-fast magnetization reversal in a DC magnetic field
for magnetic multilayer thin films with perpendicular anisotropy has been
investigated in the time domain using femtosecond laser heating. The experiment
is set-up as an optically pumped stroboscopic Time Resolved Magneto-Optical
Kerr Effect magnetometer. It is observed that a modest laser fluence of about
0.3 mJ/square-cm induces switching of the magnetization in an applied field
much less than the DC coercivity (0.8 T) on the sub-nanosecond time-scale. This
switching was thermally-assisted by the energy from the femtosecond pump-pulse.
The experimental results are compared with a model based on the Landau
Lifschitz Bloch equation. The comparison supports a description of the reversal
process as an ultra-fast demagnetization and partial recovery followed by
slower thermally activated switching due to the spin system remaining at an
elevated temperature after the heating pulse.Comment: 8 pages, 10 figures, to be submitted to PR
Low-energy interactions of Nambu-Goldstone bosons with mesons in covariant chiral perturbation theory
We calculate the scattering lengths of Nambu-Goldstone bosons interacting
with mesons in a covariant formulation of chiral perturbation theory, which
satisfies heavy-quark spin symmetry and analytical properties of loop
amplitudes. We compare our results with previous studies performed using heavy
meson chiral perturbation theory and show that recoil corrections are sizable
in most cases.Comment: 3 figures and 4 table
Gaussian approximations for stochastic systems with delay: chemical Langevin equation and application to a Brusselator system
We present a heuristic derivation of Gaussian approximations for stochastic
chemical reaction systems with distributed delay. In particular we derive the
corresponding chemical Langevin equation. Due to the non-Markovian character of
the underlying dynamics these equations are integro-differential equations, and
the noise in the Gaussian approximation is coloured. Following on from the
chemical Langevin equation a further reduction leads to the linear-noise
approximation. We apply the formalism to a delay variant of the celebrated
Brusselator model, and show how it can be used to characterise noise-driven
quasi-cycles, as well as noise-triggered spiking. We find surprisingly
intricate dependence of the typical frequency of quasi-cycles on the delay
period.Comment: 14 pages, 9 figure
Implications of the X-ray Variability for the Mass of MCG-6-30-15
The bright Seyfert 1 galaxy \mcg shows large variability on a variety of time
scales. We study the \aproxlt 3 day time scale variability using a set of
simultaneous archival observations that were obtained from \rxte and the {\it
Advanced Satellite for Cosmology and Astrophysics} (\asca). The \rxte\
observations span nearly sec and indicate that the X-ray Fourier Power
Spectral Density has an rms variability of 16%, is flat from approximately
10^{-6} - 10^{-5} Hz, and then steepens into a power law
with \alpha\aproxgt 1. A further steepening to occurs
between 10^{-4}-10^{-3} Hz. The shape and rms amplitude are comparable to what
has been observed in \ngc and \cyg, albeit with break frequencies that differ
by a factor of 10^{-2} and 10^{4}, respectively. If the break frequencies are
indicative of the central black hole mass, then this mass may be as low as
. An upper limit of ks for the relative lag
between the 0.5-2 keV \asca band compared to the 8-15 keV \rxte band was also
found. Again by analogy with \ngc and \cyg, this limit is consistent with a
relatively low central black hole mass.Comment: 5 pages, 3 figures, LaTeX, uses emulateapj.sty and apjfonts.sty,
revised version, accepted for publication in ApJ Letter
An engineered Tetrahymena tRNA(Gln) for in vivo incorporation of unnatural amino acids into proteins by nonsense suppression
A new tRNA, THG73, has been designed and evaluated as a vehicle for incorporating unnatural amino acids site-specifically into proteins expressed in vivo using the stop codon suppression technique. The construct is a modification of tRNAGln(CUA) from Tetrahymena thermophila, which naturally recognizes the stop codon UAG. Using electrophysiological studies of mutations at several sites of the nicotinic acetylcholine receptor, it is established that THG73 represents a major improvement over previous nonsense suppressors both in terms of efficiency and fidelity of unnatural amino acid incorporation. Compared with a previous tRNA used for in vivo suppression, THG73 is as much as 100-fold less likely to be acylated by endogenous synthetases of the Xenopus oocyte. This effectively eliminates a major concern of the in vivo suppression methodology, the undesirable incorporation of natural amino acids at the suppression site. In addition, THG73 is 4-10-fold more efficient at incorporating unnatural amino acids in the oocyte system. Taken together, these two advances should greatly expand the range of applicability of the in vivo nonsense suppression methodology
Voter models on weighted networks
We study the dynamics of the voter and Moran processes running on top of
complex network substrates where each edge has a weight depending on the degree
of the nodes it connects. For each elementary dynamical step the first node is
chosen at random and the second is selected with probability proportional to
the weight of the connecting edge. We present a heterogeneous mean-field
approach allowing to identify conservation laws and to calculate exit
probabilities along with consensus times. In the specific case when the weight
is given by the product of nodes' degree raised to a power theta, we derive a
rich phase-diagram, with the consensus time exhibiting various scaling laws
depending on theta and on the exponent of the degree distribution gamma.
Numerical simulations give very good agreement for small values of |theta|. An
additional analytical treatment (heterogeneous pair approximation) improves the
agreement with numerics, but the theoretical understanding of the behavior in
the limit of large |theta| remains an open challenge.Comment: 21 double-spaced pages, 6 figure
Anomalous diffusion and generalized Sparre-Andersen scaling
We are discussing long-time, scaling limit for the anomalous diffusion
composed of the subordinated L\'evy-Wiener process. The limiting anomalous
diffusion is in general non-Markov, even in the regime, where ensemble averages
of a mean-square displacement or quantiles representing the group spread of the
distribution follow the scaling characteristic for an ordinary stochastic
diffusion. To discriminate between truly memory-less process and the non-Markov
one, we are analyzing deviation of the survival probability from the (standard)
Sparre-Andersen scaling.Comment: 5 pages, 3 figure
- …