1,009 research outputs found

    Nonlinear single-electron tunneling through individually coated colloid particles at room temperature

    Get PDF
    Single-electron tunneling (SET) has been observed with nanometer coated colloid gold particles at room temperature. We have made the smallest (3-nm) thiol- and silicon dioxide (SiO2)-coated gold particles, from which we obtained SET signals using a scanning tunneling microscope (STM)images reveal individual particles supported by an atomically flat metal surface. The STM tip is used to obtain SET signals from the individual particles, whose shapes have been characterized. The current-voltage curves of the particles exhibit well-defined Coulomb staircases that resemble those obtained at 4.2 K, indicating a strong Coulomb repulsive interaction at room temperature. The clear Coulomb staircases are due to a nonlinearity in the current steps. We suggest a possible mechanism for the nonlinearity in terms of many-body excitations in the particle. We have also identified the region of the particles, where the SET signal originates, using current-imaging-tunneling spectroscopy. We describe the advantages of using the coated nanometer particles for making devices for room-temperature operations

    Investigation of dimensionality reduction in a finger vein verification system

    Get PDF
    Popular methods of protecting access such as Personal Identification Numbers and smart cards are subject to security risks that result from accidental loss or being stolen. Risk can be reduced by adopting direct methods that identify the person and these are generally biometric methods, such as iris, face, voice and fingerprint recognition approaches. In this paper, a finger vein recognition method has been implemented in which the effect on performance has of using principal components analysis has been investigated. The data were obtained from the finger-vein database SDMULA-HMT and the images underwent contrast-limited adaptive histogram equalization and noise filtering for contrast improvement. The vein pattern was extracted using repeated line tracking and dimensionality reduction using principal components analysis to generate the feature vector. A ‘speeded-up robust features’ algorithm was used to determine the key points of interest and the Euclidean Distance was used to estimate similarity between database images. The results show that the use of a suitable number of principal components can improve the accuracy and reduce the computational overhead of the verification system

    Titanium dioxide-based 64 degrees YX LiNbO3 surface acoustic wave hydrogen gas sensors

    Get PDF
    Amorphous titanium dioxide (TiO2) and gold (Au) doped TiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route, mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64° YX LiNbO3 SAW transducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310°C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature

    Titanium dioxide based 64° YX LiNbO3 surface acoustic wave hydrogen gas sensors

    Get PDF
    Amorphous titanium dioxide (TiO2) and gold (Au) doped TiO2-based surface acoustic wave (SAW) sensors have been investigated as hydrogen gas detectors. The nanocrystal-doped TiO2 films were synthesized through a sol-gel route,mixing a Ti-butoxide-based solution with diluted colloidal gold nanoparticles. The films were deposited via spin coating onto 64\ub0 YX LiNbO3 SAWtransducers in a helium atmosphere. The SAW gas sensors were operated at various temperatures between 150 and 310 \ub0C. It was found that gold doping on TiO2 increased the device sensitivity and reduced the optimum operating temperature

    Anomalous power laws of spectral diffusion in quantum dots: A connection to luminescence intermittency

    Get PDF
    We show that the wandering of transition frequencies in colloidal quantum dots does not follow the statistics expected for ordinary diffusive processes. The trajectory of this anomalous spectral diffusion is characterized by a root t dependence of the squared deviation. The behavior is reproduced when the electronic states of quantum dots are assumed to interact with environments such as, for example, an ensemble of two-level systems, where the correlation times are distributed according to a power law similar to the one generally attributed to the dot's luminescence intermittency

    Chlorine isotope composition in chlorofluorocarbons CFC-11, CFC-12 and CFC-113 in firn, stratospheric and tropospheric air

    Get PDF
    The stratospheric degradation of chlorofluorocarbons (CFCs) releases chlorine, which is a major contributor to the destruction of stratospheric ozone (O3). A recent study reported strong chlorine isotope fractionation during the breakdown of the most abundant CFC (CFC-12, CCl2F2, Laube et al., 2010a), similar to effects seen in nitrous oxide (N2O). Using air archives to obtain a long-term record of chlorine isotope ratios in CFCs could help to identify and quantify their sources and sinks. We analyse the three most abundant CFCs and show that CFC-11 (CCl3F) and CFC-113 (CClF2CCl2F) exhibit significant stratospheric chlorine isotope fractionation, in common with CFC-12. The apparent isotope fractionation (εapp) for mid- and high-latitude stratospheric samples are (-2.4±0.5) ‰ and (-2.3±0.4) ‰ for CFC-11, (-12.2±1.6) ‰ and (-6.8±0.8) ‰ for CFC-12 and (-3.5±1.5) ‰ and (-3.3±1.2) ‰ for CFC-113, respectively. Assuming a constant isotope composition of emissions, we calculate the expected trends in the tropospheric isotope signature of these gases based on their stratospheric 37Cl enrichment and stratosphere-troposphere exchange. We compare these projections to the long-term δ(37Cl) trends of all three CFCs, measured on background tropospheric samples from the Cape Grim air archive (Tasmania, 1978 – 2010) and tropospheric firn air samples from Greenland (NEEM site) and Antarctica (Fletcher Promontory site). From 1970 to the present-day, projected trends agree with tropospheric measurements, suggesting that within analytical uncertainties a constant average emission isotope delta is a compatible scenario. The measurement uncertainty is too high to determine whether the average emission isotope delta has been affected by changes in CFC manufacturing processes, or not. Our study increases the suite of trace gases amenable to direct isotope ratio measurements in small air volumes (approximately 200 ml), using a single-detector gas chromatography-mass spectrometry system

    Factors controlling nitrate in ice cores: Evidence from the Dome C deep ice core

    Get PDF
    In order to estimate past changes in atmospheric NOx concentration, nitrate, an oxidation product of NOx, has often been measured in polar ice cores. In the frame of the European Project for Ice Coring in Antarctica (EPICA), a high-resolution nitrate record was obtained by continuous flow analysis (CFA) of a new deep ice core drilled at Dome C. This record allows a detailed comparison of nitrate with other chemical trace substances in polar snow under different climatic regimes. Previous studies showed that it would be difficult to make firm conclusions about atmospheric NOx concentrations based on ice core nitrate without a better understanding of the factors controlling NO3− deposition and preservation. At Dome C, initially high nitrate concentrations (over 500 ppb) decrease within the top meter to steady low values around 15 ppb that are maintained throughout the Holocene ice. Much higher concentrations (averaging 53 ppb) are found in ice from the Last Glacial Maximum (LGM). Combining this information with data from previous sampling elsewhere in Antarctica, it seems that under climatic conditions of the Holocene, temperature and accumulation rate are the key factors determining the NO3− concentration in the ice. Furthermore, ice layers with high acidity show a depletion of NO3−, but higher concentrations are found before and after the acidity layer, indicating that NO3− has been redistributed after deposition. Under glacial conditions, where NO3− shows a higher concentration level and also a larger variability, non-sea-salt calcium seems to act as a stabilizer, preventing volatilization of NO3− from the surface snow layers

    Effect of Increased Nitrogen Application Rates and Environment on Protein, Oil, Fatty Acids, and Minerals in Sesame (Sesamum indicum) Seed Grown under Mississippi Delta Conditions

    Get PDF
    Information on the effect of nitrogen fertilizer rates and environment on sesame seed composition and nutrition is scarce. The objective of this research was to investigate the effects of nitrogen fertilizer application rates on sesame seed yield, protein, oil, fatty acids, and mineral nutrition. A two-year (2014, 2015) field experiment was conducted. Nitrogen fertilizer (urea ammonium nitrate) solution (UAN, 32% N) was applied by side dressing to four sesame varieties (S-34, S-35, S-38, S-39) at rates of 44.7, 67.2, 89.6 and 112.0 kg\ub7ha-1. Rate of 44.7 kg\ub7ha-1 was used as control since this rate is traditionally recommended in the region. Increasing nitrogen application rates resulted in higher protein and oleic acid contents in two varieties in 2014, and in all varieties in 2015. Increased protein and oleic acid were accompanied by lower total oil and linoleic acid. Increased nitrogen application also resulted in higher seed N, S, B, Cu, Fe, and Zn in 2014 in S-34 and S-35, but either a decline or no clear change was observed in seed levels of these nutrients in S-38 and S-39. In 2015, increased nitrogen application resulted in significantly higher seed N in all varieties, and higher S, B, Cu, Fe, and Zn in some varieties. A significant positive correlation was observed between nitrogen application rate and yield, and with seed levels of protein, oleic, acid, N, B, Cu, Fe, and Zn. A significant negative correlation was observed between nitrogen application rate and seed oil and linoleic acid. Thus, increased nitrogen fertilizer application resulted in higher seed protein, oleic acid, and some mineral nutrients, but lower oil and linoleic acid. However, this effect depended on variety and environmental conditions. Because higher protein and oleic acid are desirable traits for sesame seed nutritional value and oil stability, regional breeders should select sesame varieties for efficient fertilizer response

    Millennial changes in North American wildfire and soil activity over the last glacial cycle

    Get PDF
    Climate changes in the North Atlantic region during the last glacial cycle were dominated by the slow waxing and waning of the North American ice sheet as well as by intermittent, millennial-scale Dansgaard-Oeschger climate oscillations. However, prior to the last deglaciation, the responses of North American vegetation and biomass burning to these climate variations are uncertain. Ammonium in Greenland ice cores, a product from North American soil emissions and biomass burning events, can help to fill this gap. Here we use continuous, high-resolution measurements of ammonium concentrations between 110,000 to 10,000 years ago from the Greenland NGRIP and GRIP ice cores to reconstruct North American wildfire activity and soil ammonium emissions. We find that on orbital timescales soil emissions increased under warmer climate conditions when vegetation expanded northwards into previously ice-covered areas. For millennial-scale interstadial warm periods during Marine Isotope Stage 3, the fire recurrence rate increased in parallel to the rapid warmings, whereas soil emissions rose more slowly, reflecting slow ice shrinkage and delayed ecosystem changes. We conclude that sudden warming events had little impact on soil ammonium emissions and ammonium transport to Greenland, but did result in a substantial increase in the frequency of North American wildfires
    • …
    corecore