442 research outputs found

    Organic Apple Production in Washington State: An Input-Output Analysis

    Get PDF
    This paper provides an Input-Output (I/O) based economic impact analysis for organic apple production in Washington State. The intent is to compare the economic “ripple” effect of organic production with conventional production. The analysis is presented in two scenarios: first we compare the economic impact of organic versus conventional apple production for a l demand increase of one million US$ as measured in sales. The second analysis looks at the economic impact of organic and conventional apple production in terms of given unit of land (405 hectares of production). Both state-wide output (sales) and employment (jobs) impacts are estimated under each scenario. Results are presented in terms of direct, indirect, and induced economic impact. Organic apple production was more labor intensive than conventional production. While, the organic apple sector used less intermediate inputs per unit of output than conventional production it also produced higher returns to labor and capital. As a result, the indirect economic effect was lower for the organic sector than the conventional sector, but the induced economic effect was higher for organic. Given the organic price premium, the economic impact (direct, indirect and induced) was larger for organic apple production than conventional apple production.conventional and organic apple production, multiplier effects, output, and employment effects, IMPLAN

    Universality and the five-dimensional Ising model

    Full text link
    We solve the long-standing discrepancy between Monte Carlo results and the renormalization prediction for the Binder cumulant of the five-dimensional Ising model. Our conclusions are based on accurate Monte Carlo data for systems with linear sizes up to L=22. A detailed analysis of the corrections to scaling allows the extrapolation of these results to L=\infinity. Our determination of the critical point, K_c=0.1139150 (4), is more than an order of magnitude more accurate than previous estimates.Comment: 6 pages LaTeX, 1 PostScript figure. Uses cite.sty (included) and epsf.sty. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Measures of genetic diversification in somatic tissues at bulk and single-cell resolution.

    Get PDF
    Intra-tissue genetic heterogeneity is universal to both healthy and cancerous tissues. It emerges from the stochastic accumulation of somatic mutations throughout development and homeostasis. By combining population genetics theory and genomic information, genetic heterogeneity can be exploited to infer tissue organization and dynamics in vivo. However, many basic quantities, for example the dynamics of tissue-specific stem cells remain difficult to quantify precisely. Here, we show that single-cell and bulk sequencing data inform on different aspects of the underlying stochastic processes. Bulk-derived variant allele frequency spectra (VAF) show transitions from growing to constant stem cell populations with age in samples of healthy esophagus epithelium. Single-cell mutational burden distributions allow a sample size independent measure of mutation and proliferation rates. Mutation rates in adult hematopietic stem cells are higher compared to inferences during development, suggesting additional proliferation-independent effects. Furthermore, single-cell derived VAF spectra contain information on the number of tissue-specific stem cells. In hematopiesis, we find approximately 2 Ă— 105 HSCs, if all stem cells divide symmetrically. However, the single-cell mutational burden distribution is over-dispersed compared to a model of Poisson distributed random mutations. A time-associated model of mutation accumulation with a constant rate alone cannot generate such a pattern. At least one additional source of stochasticity would be needed. Possible candidates for these processes may be occasional bursts of stem cell divisions, potentially in response to injury, or non-constant mutation rates either through environmental exposures or cell-intrinsic variation

    Anisotropy of the interface tension of the three-dimensional Ising model

    Get PDF
    We determine the interface tension for the 100, 110 and 111 interface of the simple cubic Ising model with nearest-neighbour interaction using novel simulation methods. To overcome the droplet/strip transition and the droplet nucleation barrier we use a newly developed combination of the multimagnetic algorithm with the parallel tempering method. We investigate a large range of inverse temperatures to study the anisotropy of the interface tension in detail.Comment: 19 pages, 9 figures, 6 table

    Logarithmic corrections in the two-dimensional Ising model in a random surface field

    Full text link
    In the two-dimensional Ising model weak random surface field is predicted to be a marginally irrelevant perturbation at the critical point. We study this question by extensive Monte Carlo simulations for various strength of disorder. The calculated effective (temperature or size dependent) critical exponents fit with the field-theoretical results and can be interpreted in terms of the predicted logarithmic corrections to the pure system's critical behaviour.Comment: 10 pages, 4 figures, extended version with one new sectio

    Nonmonotonical crossover of the effective susceptibility exponent

    Full text link
    We have numerically determined the behavior of the magnetic susceptibility upon approach of the critical point in two-dimensional spin systems with an interaction range that was varied over nearly two orders of magnitude. The full crossover from classical to Ising-like critical behavior, spanning several decades in the reduced temperature, could be observed. Our results convincingly show that the effective susceptibility exponent gamma_eff changes nonmonotonically from its classical to its Ising value when approaching the critical point in the ordered phase. In the disordered phase the behavior is monotonic. Furthermore the hypothesis that the crossover function is universal is supported.Comment: 4 pages RevTeX 3.0/3.1, 5 Encapsulated PostScript figures. Uses epsf.sty. Accepted for publication in Physical Review Letters. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm

    Medium-range interactions and crossover to classical critical behavior

    Full text link
    We study the crossover from Ising-like to classical critical behavior as a function of the range R of interactions. The power-law dependence on R of several critical amplitudes is calculated from renormalization theory. The results confirm the predictions of Mon and Binder, which were obtained from phenomenological scaling arguments. In addition, we calculate the range dependence of several corrections to scaling. We have tested the results in Monte Carlo simulations of two-dimensional systems with an extended range of interaction. An efficient Monte Carlo algorithm enabled us to carry out simulations for sufficiently large values of R, so that the theoretical predictions could actually be observed.Comment: 16 pages RevTeX, 8 PostScript figures. Uses epsf.sty. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm
    • …
    corecore