10,375 research outputs found
Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys
We examine the motion of light fields near the bottom of a potential valley
in a multi-dimensional field space. In the case of two fields we identify three
general scales, all of which must be large in order to justify an effective
low-energy approximation involving only the light field, . (Typically
only one of these -- the mass of the heavy field transverse to the trough -- is
used in the literature when justifying the truncation of heavy fields.) We
explicitly compute the resulting effective field theory, which has the form of
a model, with , as a function of these
scales. This gives the leading ways each scale contributes to any low-energy
dynamics, including (but not restricted to) those relevant for cosmology. We
check our results with the special case of a homogeneous roll near the valley
floor, placing into a broader context recent cosmological calculations that
show how the truncation approximation can fail. By casting our results
covariantly in field space, we provide a geometrical criterion for
model-builders to decide whether or not the single-field and/or the truncation
approximation is justified, identify its leading deviations, and to efficiently
extract cosmological predictions.Comment: 28 pages + 3 appendices, references added and typos corrected,
matches published versio
Fluctuations and Pinch-Offs Observed in Viscous Fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal several phenomena that were not observed in previous experiments. At low
flow rates, growing fingers undergo width fluctuations that intermittently
narrow the finger as they evolve. The magnitude of these fluctuations is
proportional to Ca^{-0.64}, where Ca is the capillary number, which is
proportional to the finger velocity. This relation holds for all aspect ratios
studied up to the onset of tip instabilities. At higher flow rates, finger
pinch-off and reconnection events are observed. These events appear to be
caused by an interaction between the actively growing finger and suppressed
fingers at the back of the channel. Both the fluctuation and pinch-off
phenomena are robust but not explained by current theory.Comment: 6 pages, 3 figures; to appear in Proceedings of the Seventh
Experimental Chaos Conferenc
Fluctuations and Pinch-Offs Observed in Viscous Fingering
Our experiments on viscous (Saffman-Taylor) fingering in Hele-Shaw channels
reveal several phenomena that were not observed in previous experiments. At low
flow rates, growing fingers undergo width fluctuations that intermittently
narrow the finger as they evolve. The magnitude of these fluctuations is
proportional to Ca^{-0.64}, where Ca is the capillary number, which is
proportional to the finger velocity. This relation holds for all aspect ratios
studied up to the onset of tip instabilities. At higher flow rates, finger
pinch-off and reconnection events are observed. These events appear to be
caused by an interaction between the actively growing finger and suppressed
fingers at the back of the channel. Both the fluctuation and pinch-off
phenomena are robust but not explained by current theory.Comment: 6 pages, 3 figures; to appear in Proceedings of the Seventh
Experimental Chaos Conferenc
GaAs (AlGaAs)/CuInSe2 tandem solar cells. Technology status and future directions
Mechanically stacked, high efficiency, lightweight, and radiation resistant photovoltaic cells based on a GaAs thin film top and CuInSe2 thin film bottom cells were developed, and are considered one of the most promising devices for planar solar array applications. The highest efficiency demonstrated so far using the 4 sq cm design is 23.1 pct. AM0, one sun efficiency when measured in four-terminal configuration. The current status of the GaAs(AlGaAs)/CuInSe2 tandem cell program is presented and future directions that will lead to cell efficiencies higher than 26 pct. Air Mass Zero (AM0). A new 8 sq cm cell design developed for a two terminal and voltage matched configuration to minimize wiring complexity is discussed. Optimization of the GaAs structure for a higher end-of-life performance and further improvement of tandem cells by utilizing AlGaAs as an top absorber are described. Results of environmental tests conducted with these thin film GaAs/CuInSe2 tandem cells are also summarized
Effective Actions, Boundaries and Precision Calculations of Casimir Energies
We perform the matching required to compute the leading effective boundary
contribution to the QED lagrangian in the presence of a conducting surface,
once the electron is integrated out. Our result resolves a confusion in the
literature concerning the interpretation of the leading such correction to the
Casimir energy. It also provides a useful theoretical laboratory for
brane-world calculations in which kinetic terms are generated on the brane,
since a lot is known about QED near boundaries.Comment: 5 pages. revtex; Added paragraphs describing finite-conductivity
effects and effects due to curvatur
The trauma memory quality questionnaire:Preliminary development and validation of a measure of trauma memory characteristics for children and adolescents
It has been suggested that post-traumatic stress is related to the nature of an individual's trauma memories. While this hypothesis has received support in adults, few studies have examined this in children and adolescents. This article describes the development and validation of a measure of the nature of children's trauma memories, the Trauma Memory Quality Questionnaire (TMQQ), that might test this hypothesis and be of clinical use. The measure was standardised in two samples, a cross-sectional sample of non-clinic referred secondary school pupils (n=254), and a sample participating in a prospective study of children and adolescents who had attended a hospital Accident and Emergency department following an assault or a road traffic accident (n=106). The TMQQ was found to possess good internal consistency, criterion validity, and construct validity, but test-retest reliability has yet to be established
Field-calibrated model of melt, refreezing, and runoff for polar ice caps : Application to Devon Ice Cap
Acknowledgments R.M.M. was supported by the Scottish Alliance for Geoscience, Environment and Society (SAGES). The field data collection contributed to the validation of the European Space Agency Cryosat mission and was supported by the Natural Sciences and Engineering Research Council, Canada, the Meteorological Service of Canada (CRYSYS program), the Polar Continental Shelf Project (an agency of Natural Resources Canada), and by UK Natural Environment Research Council consortium grant NER/O/S/2003/00620. Support for D.O.B. was provided by the Canadian Circumpolar Institute and the Climate Change Geoscience Program, Earth Sciences Sector, Natural Resources Canada (ESS contribution 20130371). Thanks are also due to the Nunavut Research Institute and the communities of Resolute Bay and Grise Fjord for permission to conduct fieldwork on Devon Ice Cap. M.J. Sharp, A. Gardner, F. Cawkwell, R. Bingham, S. Williamson, L. Colgan, J. Davis, B. Danielson, J. Sekerka, L. Gray, and J. Zheng are thanked for logistical support and field assistance during the data collection. We thank Ruzica Dadic, two other anonymous reviewers, and the Editor, Bryn Hubbard, for their helpful comments on an earlier version of this paper and which resulted in significant improvements.Peer reviewedPublisher PD
Neutrino Oscillations, Fluctuations and Solar Magneto-gravity Waves
This review has two parts. The first part summarizes the current
observational constraints on fluctuations in the solar medium deep within the
solar Radiative Zone, and shows how the KamLAND and SNO-salt data combine to
make the experimental determination of the neutrino oscillation parameters
largely insensitive to prior assumptions about the nature of these
oscillations. As part of a search for plausible sources of solar fluctuations
to which neutrinos could be sensitive, the second part of the talk summarizes a
preliminary analysis of the influence of magnetic fields on helioseismic waves.
Using simplifying assumptions which should apply to modes in the solar
radiative zone, we find a resonance between Alfven waves and helioseismic
g-modes which potentially modifies the solar density profile fairly
significantly over comparatively short distance scales, too narrow to be ruled
out by present-day analyses of p-wave helioseismic spectra.Comment: Plenary talk presented at AHEP 2003, Valencia, Spain, October 200
- âŠ