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Abstract Understanding the controls on the amount of surface meltwater that refreezes, rather than
becoming runoff, over polar ice masses is necessary for modeling their surface mass balance and ultimately
for predicting their future contributions to global sea level change. We present a modified version of a physically
based model that includes an energy balance routine and explicit calculation of near-surface meltwater
refreezing capacity, to simulate the evolution of near-surface density and temperature profiles across
Devon Ice Cap in Arctic Canada. Uniquely, our model is initiated and calibrated using high spatial resolution
measurements of snow and firn densities across almost the entire elevation range of the ice cap for the
summer of 2004 and subsequently validated with the same type of measurements obtained during the
very different meteorological conditions of summer 2006. The model captures the spatial variability across
the transect in bulk snowpack properties although it slightly underestimates the flow of meltwater into
the firn of previous years. The percentage of meltwater that becomes runoff is similar in both years;
however, the spatial pattern of this melt-runoff relationship is different in the 2 years. The model is found to be
insensitive to variation in the depth of impermeable layers within the firn but is very sensitive to variation in
air temperature, since the refreezing capacity of firn decreases with increasing temperature. We highlight that
the sensitivity of the ice cap’s surface mass balance to air temperature is itself dependent on air temperature.

1. Introduction

Summer air temperatures over polar ice masses are predicted to continue rising throughout the next century
[Meehl et al., 20071]. Efforts to deduce the effect of this rise on runoff, and hence mass balance, must consider
meltwater refreezing and retention, else runoff will be overestimated significantly [Bougamont et al., 2007;
Janssens and Huybrechts, 2000; Pfeffer et al., 1991]. Uncertainty in the amount of runoff increases into the
future as melt extent and duration change further. Previous studies have quantified the importance of
meltwater retention and its impact on mass balance. Wright et al. [2007] showed that at Midre Lovénbreen in
Svalbard the inclusion of refreezing within mass balance calculations could counteract the effect on runoff of
increasing air temperature at the rate of 0.1°C per decade, while at the scale of the Greenland Ice Sheet,
Pfeffer et al. [1991] estimate that neglecting refreezing could lead to an overestimation in runoff of around
4 cm of sea level rise over the next 150 years.

The quantification of meltwater refreezing is also important for the interpretation of remote sensing data sets.
Satellite radar altimetry has long been used to observe the surfaces of large ice masses [e.g., Partington et al.,
1989], since by measuring surface elevation change across the dry snow zone, annual accumulation can be
inferred by assuming or measuring a value for surface density. Across the rest of the accumulation zone,
however, the refreezing of meltwater to form ice layers within the near-surface stratigraphy has a strong effect
on the surface and near-surface reflectivity to radar waves, introducing a substantial uncertainty to the altimetry
method [Scott et al., 2006]. A further complication lies in the conversion of elevation changes to mass changes,
for which knowledge of any subsurface density change is required [Brathwaite et al., 1994]. Many previous
models deal with dry densification [Herron and Langway, 1980; Zwally and Li, 2002] or wet densification that
allows meltwater to refreeze within the same annual layer in which it is created [Reeh et al., 2005]. However,
percolation of meltwater into the firn of previous years, known as internal accumulation, may also be important.
Better knowledge of the spatial and temporal variations in near-surface refreezing of meltwater within the snow
and firn will reduce the uncertainty in altimetry products due to these complications.
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Large-scale parameterizations of meltwater refreezing and retention have been developed to investigate the
effect of refreezing on mass balance and to predict the sensitivity of ice sheets to future climate change
[Van Angelen et al., 2013]. Janssens and Huybrechts [2000] presented four simple snowpack retention schemes
suitable for incorporation into large-scale ice sheet models. Their schemes produced similar total amounts
of meltwater retention and runoff, but with the more complex, more physically based parameterizations
showing a much larger spatial variation. This is in contrast to the results of Bougamont et al. [2007] who
showed that more detailed schemes allow more refreezing and are more sensitive to climate change.
Modeling carried out by Van den Broeke et al. [2008] on the K-transect, at 67°N in west Greenland shows the
variation in meltwater retention with altitude, with an insignificant amount at the lowest elevations but over
90% in the middle of the ablation zone. The various modeling studies do not agree on the sensitivity of
refreezing to climate. This is in part because of uncertainties in the most important refreezing processes
but is also due to the lack of in situ observational data against which to calibrate and validate models.
Consequently, model comparison exercises have limited themselves to discussion of the consistency of
results from different models [Bougamont et al., 2007; Reijmer et al., 2012]. Thus, there is a need for models of
refreezing and runoff to be calibrated and validated against in situ field observations. Furthermore, since
there is a strong spatial variability in refreezing and retention, if models are to be extrapolated across ice
sheets and transferrable across different ice masses, they should be tested against measurements spanning a
wide range of snow facies and meteorological conditions.

This paper aims to address these inadequacies by modifying a physically based model that simulates the
evolution of the snow and near-surface firn and applying it to an ice cap where detailed snow and firn
measurements are available across the range of snow facies, at the start and end of two summer melt
seasons. The model is calibrated using the field measurements in 1 year, validated against measurements
from another, and the sensitivity of the model to internal and external controls is examined. We model
changes in the thermal structure and density profile of the snowpack at high vertical resolution so that the
surface extents of the different accumulation zone facies (i.e., dry snow zone, percolation zone, and wet
snow zone) [Benson, 1962] can be defined each summer for which the model is run. The model output
predicts the amounts of melting, refreezing within the snow and near-surface firn, and runoff over the season,
allowing a calculation of mass balance that includes the effect of internal accumulation.

In this paper, we first describe the model and its modifications for this work, before outlining its calibration
with data from Devon Ice Cap (DIC) in Arctic Canada. Results for the calibration and validation periods are
shown for a range of spatial scales, and the sensitivity of the model to changes in the internal stratigraphy of
the snow and firn and to air temperature are shown. We finish with a discussion of these results and their
implications within the context of previous work.

2. Model Description

2.1. Summary

Our model has its origins in the work of Greuell and Konzelmann [1994]. Their model, applied to the Greenland
Ice Sheet, was later adapted for application to the Academy of Sciences Ice Cap, Russian High Arctic
[Bassford, 2002], and to Midre Lovénbreen, Svalbard [Wright, 2005]. We now outline the main components of
the model, detailing some of its assumptions and simplifications, before highlighting the modifications we have
made that differ from previous applications.

The model calculates time-evolving energy and mass balance for a series of points down a linear transect,
based on a small number of input measurements and specified parameters. At each point the model consists
of a one-dimensional vertical grid representing the surface snowpack and the firn (or ice) underneath.

The surface energy balance [Hock, 2005],
&=G1—a)+L+Qn+Q, (1)

is solved by evaluating each factor in turn using weather station data and parameterizations. Q;, Qp, and Q;
are the total surface, sensible, and latent heat fluxes respectively (W m~2); G is global solar radiation (W m~2);
a is the surface albedo; and L is the longwave radiation balance (W m~—2). Q,, the surface heat flux, combines
the energy used for surface temperature change and melt, and heat energy conducted to/from the
subsurface. Fluxes toward the surface are positive. The calculation of the surface energy balance requires
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three variables as input: air temperature, global (incoming solar) radiation, and relative humidity. These
meteorological data are available at hourly resolution and were downscaled to the model time step of 15 min.

The surface mass change is calculated by determining accumulation, melt (driven by energy balance), and
runoff. The density and temperature profiles at each point evolve over the model run. This occurs in three
stages: the addition of accumulation, the generation of meltwater, and the adjustment of the subsurface
density and temperature profiles, taking account of refreezing and thermal conduction of heat.

Time series of accumulation from weather stations (again, available at hourly resolution and downscaled
to match the model time step of 15 min) are combined with user-defined lapse rates for precipitation and
air temperature, considered to be taken at a reference height of 2 m (T, ,) to calculate an accumulation
record at each grid point. A threshold air temperature, compared to T, ,,, determines whether measured
accumulation is in the form of snow or rain. Snowfall is added to the top of the grid, whereas rainfall
immediately begins to percolate downward through it. Added snowfall causes the top grid cell to thicken
(while melting causes it to thin). Fresh snow takes the density of p,, and the bulk density of the top cell is
modified to incorporate the new material. The amount of snow/firn converted to meltwater is based on the
integral of Q; (equation (1)) over the 15 min model time step. Q; first raises the surface temperature to the
melting point and then causes the generation of melt.

The final part of the model deals with the percolation and refreezing of meltwater and thermal conduction
between cells and the effects these processes have on the density and temperature profiles. The refreezing
process is dealt with first. Liquid water, from both melting and rainfall, percolates downward through the grid,
refreezing within each cell until either the density of the cell reaches that of ice, or the latent heat release
from the refreezing balances the cold content in the cell, so that it is warmed to the melting point. The model
then calculates the modification to T, the vertical temperature profile of the grid (K), due to latent heat release
from refreezing meltwater. The model attempts to achieve a balance between accuracy and simplicity, and
therefore, some processes are omitted. In particular, the model simplifies the mechanics of water percolating
through a snowpack, e.g., by assuming matrix flow and neglecting the rapid transfer of water downward
without refreezing by “finger flow” [Campbell et al., 2006].

2.2. Model Modifications

Bassford et al. [2006] and Wright et al. [2005] used a vertical grid cell size of 5 cm for all material above glacier
ice then allowed cell size to increase exponentially with depth, with the lowest cell given a vertical size of
around 2 m. This was undertaken so that density and temperature profiles would have the highest resolution
close to the surface, where temporal and spatial gradients are strongest, while calculations could be carried
out to depth without compromising computational efficiency. However, the percolation and refreezing of
meltwater often creates ice lenses and layers with thicknesses on the order of 1 cm or less [e.g., Bell et al.,
2008]. Thus, in an attempt to improve the ability of the model to simulate different accumulation zone facies,
our model sets the vertical grid cell size to 1 cm for all cells. To offset the increased computational time, the
grid is not extended to the 20-25 m depth below the base of the snowpack employed by previous model
versions [Bassford et al., 2006; Greuell and Konzelmann, 1994; Wright et al., 2005] but extends initially only to a
depth of 3 minto the firn below the snowpack so that calculations are quickened. Three meters was chosen
as it was the smallest whole number of meters that provided enough depth that all of the measured
impermeable layer depths could be incorporated into the model. Preliminary tests showed that the thermal
evolution of the snow and firn above the impermeable layer was not dependent on the depth of the model
grid, with a negligible change when the grid depth was varied up to 30 m.

Surface albedo is calculated as a function of the density of the top 10 cm of the grid in a similar manner to that
of Greuell and Konzelmann [1994], but without the dependency on cloud cover as cloud data were unavailable.
In our calculations of the longwave radiation balance, the atmospheric emissivity, ¢, is calculated; thus,

¢ ) x (14 0.22¢%) v)

2 m

=1.72 1000
T

where c is the fractional cloud cover, given a constant value (see section 4.1), and e is the atmospheric water
vapor pressure (Pa), calculated following Oerlemans [1992]. This formulation was developed for use with DIC
by A. Gardner (personal communication, 2010) and is based on Brutsaert [1975] and Kustas et al. [1994].
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Our model uses Q; to modify the temperature of the top grid cell only. It is therefore simpler than the method
of Greuell and Konzelmann [1994], which divided G into surface-absorbed (36%) and subsurface-absorbed
(64%) components, with the subsurface component absorbed at depth within the grid according to an
exponential function. The reasoning behind this simplification is that the wavelengths of solar radiation that are
absorbed by snow are absorbed within the top few millimeters, while more deeply penetrating wavelengths
are scattered back to the surface [Brandt and Warren, 1993]. Since the top cell always has a vertical extent

of at least 1 cm, our model simplifies the calculation by allowing only this top grid cell to interact with the
atmosphere through the surface energy balance. Bugnion and Stone [2002] and Van den Broeke et al. [2008] use
the same simplification for a snow surface.

The original model version [Greuell and Konzelmann, 1994] was applied to a single point, while further work
[Bassford et al., 2006; Wright et al., 2005] applied the model to a grid or flow line of points. We also apply the
model to sets of points, along which field data have also been collected.

3. Data

We applied the model to the Cryosat calibration/validation transect of DIC (Figure 1). Measurements used to
run the model are presented in Bell et al. [2008]. Detailed stratigraphic logging of snowpack structure and
density was carried out at ~1 km intervals along a 47 km transect over an elevation range between ~480 m
and ~1800 m above sea level (asl), in the spring (premelt) and autumn (during/after melt) of 2004 and 2006.
Measurements characterize the seasonal snowpack variability across the full spectrum of surface facies
between the percolation and ablation zones [Benson, 1962]. The spring data characterize the snow/firn
before the summer melt, and the autumn data characterize the metamorphosed snow/firn following summer
melt, percolation, and refreezing processes. At each site (numbering 38 in 2004 and 37 in 2006; Figure 1),
snowpits were dug down to the surface layer demarcating the end of the previous summer. This layer was
easily identified as a hard, icy, and continuous layer located beneath the autumn hoar and was used as a
reference surface for the bottom of each year’s snowpits. Once this layer was identified in spring, ablation
stakes were emplaced and used as markers to ensure this same horizon was used as a common reference
for any depth change identified upon remeasurement in the following autumn. Standard snowpit
stratigraphic procedures were followed [Colbeck et al., 1990]. Snowpit stratigraphy, density, grain size, grain
type, hardness, and temperature were logged on north facing pit walls. Density measurements involved
weighing a sample of known volume (100 cm?®) from each stratigraphic layer. Harper and Bradford [2003]
found that measurement errors associated with this type of density sampling were 10%. In spring seasons,
pits were dug at 1 km intervals along the full length of the transect. In autumn seasons, pits were dug as
far along the length of the transect as was possible owing to snowpack removal, saturation, or time
constraints of digging pits dominated by thick (>10 cm) ice layers at lower elevations. These ice features were
allocated a density of 800 kg m > since it was not possible to measure their density directly in the field,
and the ice was often observed to contain bubbles [see Bell et al., 2008, Figures 9 and 10].

Automated weather stations (AWSs) were set up along the transect in spring 2004 at 1801 m asl and 1415 m asl.
Combined with 15 HOBO temperature data loggers, spaced approximately every 3 km, these measured
temporal and spatial variation in air temperatures (T, ,,) along the transect. The AWS also measured relative
humidity (H) and incoming solar radiation (G). Ultrasonic depth gauges on the AWS measured changes in
surface height, from which time series of accumulation were calculated. The temperature and accumulation
records were used to calculate lapse rates used to extend the measurements across the entire transect.

4. Model Application

Vertical grids of 1 cm resolution were initialised at each point for which spring snow and firn data were available.
For the snow portion of each grid, a density stratigraphy was based directly on measurements taken at each site.
The thermal profile at each site was determined from sets of temperature measurements with 10 cm vertical
resolution, collected at the two AWS sites and at each snowpit site below 1415 m asl (24 sets of measurements in
total for 2004, 22 for 2006). Gaps in the data sets were filled by altitude-based linear interpolation between
known profiles. The firn portion of each grid was based on less detailed data. The depth of the uppermost
impermeable layer within the firn of each grid was assigned using the firn core taken at each point. Inpermeable
layer depths were taken as equal to the top surface of the uppermost ice layer that exceeded 5 cm thickness
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Figure 1. (a) Digital elevation model of Devon Ice Cap (DIC), showing data collection sites. Inset shows position of DIC within the Queen Elizabeth Islands of arctic
Canada. Automatic weather stations used in this study are shown by squares and snow data collection sites by triangles. The outline of basin 40 [Burgess and Sharp,
2004] is also shown by a thick black line. Coordinates are universal time meridian (zone 17). (b) Catchment hypsometry for DIC basin 40, averaged for 100 m elevation
bands [from Burgess and Sharp, 2004].
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Figure 2. Uppermost impermeable layer depth found at each site, in both years of measurement. Error bars at certain sites
show kilometer-scale spatial variability, based on 1 km? nested grids.

within each firn core (Figure 2). The firn density profile was created by giving all cells above the impermeable
layer a density value of 550 kg m 3, the average density of the firn across all cores (to the nearest 50 kg m~),
and all below a value equal to the density of ice, p;. Firn temperature profiles were based on the theoretical
profiles presented in Paterson [1994, p. 206], calculated for the two AWS sites, and an altitude-based lapse rate
applied to calculate profiles for each grid.

4.1. Model Calibration and Validation

The data from the 2004 melt season were used to calibrate the model, which requires a number of user-defined
parameters. These parameters, shown in Table 1, were not constrained by data. Therefore, a strategy was
devised to determine which of these parameters were the most important, and their optimal values. The first
part of this strategy used a systematic equidistributed sample of the five-dimensional parameter space defined
in Table 1, and the second part used a Monte Carlo simulation.

4.1.1. Systematic Sample Phase

The model was run repeatedly using each combination of the parameter values shown in Table 1. Since each
parameter has nine possible values, the total number of model runs in this phase was 9°. The model output for
each run was compared with end-of-season measurements of snowpack water equivalent, height, and bulk
density. Normalized root-mean-square deviation (NRMSD) between model and measured values of each of
these three measurements were averaged to calculate a “goodness-of-fit” measure of the accuracy with which
the model run fit the data.

By observing the change in the goodness-of-fit measure caused by varying the snow-rain threshold temperature
and fractional cloud cover, we found the model to be insensitive to change in either of these parameters. The
model is most accurate using a value for the snow-rain threshold air temperature of between 0.4°C and 1.5°C, but
within that range precise selection matters little. Therefore, a value of 1°C was chosen. Bassford [2002] used a
value of 0°C on the Vavilov ice cap, and Wright [2005] used 1.6°C for Midre Lovénbreen. This range of values

Table 1. Parameters Used in Calibration of Model, With Bounds of Searched Parameter Space Shown, and Step Used for
Systematic Search

Name Symbol Bounds Step Unit
Albedo (fresh snow) Os 0.76-0.88 0.015

Albedo (ice) a; 0.41-0.65 0.03

Density (fresh snow) Ps 280-440 20 kg m3
Snow-rain threshold temperature —0.5-1.9 0.3 °C
Cloud cover c 0.1-0.9 0.1
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Figure 3. (top) Time series of air temperature (°C), alongside contour graphs showing the evolution of (middle) the density stratigraphy (kg m73), and (bottom) the

thermal profile (°C) for a site on the transect at 1259 m asl in (a) 2004 and (b) 2006.

illustrates the fact that the value chosen is a parameterization of many processes acting at the local scale. The
model is most accurate when a value for cloud cover between 10% and 40% is used, and again, variation within
these bounds makes little difference. Therefore, a value of 33% was selected, based on an estimate of the overall
average during fieldwork. The model was found to be much more sensitive to the three other parameters
from Table 1, namely, the density of fresh snow (p) and the albedos for snow and ice (as and «;, respectively).
These were optimized during the second phase of model optimization.

4.1.2. Monte Carlo Phase

A 1000 run Monte Carlo simulation was used to find optimal values for p,, o, and a;. Values for these three
parameters were randomly drawn for each run from independent rectangular (uniform) distributions with
bounds as shown in Table 1. As for the systematic phase, the NRMSD between modeled and measured values
of three output variables (snowpack water equivalent, height, and bulk density) were averaged for each run,
in order to quantify the goodness of fit. The optimal values found (together giving the run with the lowest
average NRMSD) for ps, a5, and o; were 0.41, 0.81, and 0.65, respectively.

4.1.3. Validation

The model was validated by running it for the 2006 melt season with the same parameter set that was
calibrated to the 2004 season. Year 2006 was substantially warmer than 2004: average air temperature
during the overlapping parts of the 2 years’ time series—a period of 53 days—was 1.5°C higher in 2006 than
in 2004. However, global radiation was lower in 2006 than 2004 which we interpreted as evidence that cloud
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Figure 4. Measured and modeled values for autumn snowpack at all points down the transect for (a) 2004 water equivalent,
(b) 2006 water equivalent, (c) 2004 surface height change, (d) 2006 surface height change, (e) 2004 bulk density, and (f) 2006
bulk density. Error bars on the measurements are based on kilometer-scale spatial variation, found from repeat measurements
within 1 km scale nested grids. The modeled values at 1290 m asl, the position shown in Figure 9, are marked by stars.

cover was higher in 2006 than 2004. A higher value of ¢ (50%) was therefore chosen to reflect these conditions,
based on the expectation that across such a large highly reflective surface as the DIC, cloudier conditions would
contribute to higher air temperatures. All other parameters were kept equal to the 2004 optimal parameter set
run, to provide an appropriate validation of the model and the selected parameters.

Measurement sites used for both calibration and validation fall into DIC drainage basin 40 (Figure 1) as defined
by Burgess and Sharp [2004] but do not include the lowest part of the basin. In order that whole-basin model
results could be generated and compared to other studies, extra points were added to extend the model

transect to sea level (with these extra points given the same density stratigraphy as the lowest measured point).

4.2. Sensitivity Testing

To gauge the sensitivity of melt-runoff relationships and the surface mass balance across the catchment to
changes in the external and internal influences, the model runs for both years were repeated, with changes in
the input data. Changes were made to the air temperature measurements used to drive the model, by
adding/subtracting a set perturbation uniformly across the entire time series. Perturbations used for this
purpose were up to +2°C in both years. Separately, the depth of the impermeable layer within the firn was
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Figure 4. (continued)

also modified, by multiplying all the depth measurements by a set value. This method of modifying the
depths was used so that the firn line remained at the same position on the transect. Values used varied
between 0 (equivalent to placing the impermeable layer directly beneath the snowpack, at the annual layer)
and 2 (a doubling of the impermeable layer depth).

5. Results

First, results at the point scale show the model’s summer evolution of temperature and density profiles.
Second, results on the scale of the measurement transect show the bulk snow and firn properties at each
point and the location of transitions between accumulation zone snow facies. We compare model output
with field measurements and observations. Knowing the ice cap hypsometry (e.g., Figure 1b), we distribute
transect results across the catchment for easier comparison to other catchment-wide studies. Third, we show
results from the sensitivity testing of the model to internal and external controls on the melt-runoff
relationship and surface mass balance.

5.1. Point-Scale Results

At each point on the transect, seasonal evolution of temperature and density in the surface snowpack

and underlying firn is modeled (shown in Figure 3 for a point at 1259 m asl). A time series of air temperature is
shown in each year above the changing density and thermal structure of the snowpack. When the surface
is heated, the warmth penetrates downward, while periods of lower surface temperature allow “cold content”
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Figure 4. (continued)

to be conducted downward, cooling the near surface and causing net heat transfer to be upward. Melting
occurs during warm periods, causing densification and ice layer formation at depths dependent on both
density stratigraphy and thermal structure at the time of melting.

For example, in 2004 (Figure 3a), a dense layer begins to form in the snowpack at around 80 cm above the annual
layer around day of year (DOY) 179, as air temperature begins to consistently hit daily maxima above 0°C and
becomes steadily more established through time, reaching a density of around 700 kg m ™~ by the end of the
season. A second layer begins to establish a few centimeters above it on DOY 202, as air temperatures rise back
above freezing after a 9 day colder period. DOYs 203 and 204 see meltwater reach its greatest depth below the
surface, just 59 cm above the annual layer, causing a brief period of densification on both sides of a stratigraphic
boundary there. The two main layers cease densification on DOY 212, the day on which regular daily maxima
above freezing cease. Thereafter, melting and refreezing are restricted to the top few centimeters below the
snow surface. The temperature evolution plot shows that the ice layer creation drives warming in the subsurface,
which reaches a peak of warmth at the end of the period of ice layer formation. This is due to both the release of
latent heat by the refreezing of meltwater and the concurrent high air temperatures.

5.2. Transect-Scale Results

Figure 4 shows the comparison between modeled and measured end-of-season bulk snowpack properties, at
all points on the transect in both years, in terms of snowpack water equivalent, snowpack height, and
snowpack bulk density. Root-mean-square difference (RMSD) values are shown in Table 2. Figure 5 shows the
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Table 2. Modeled and Measured Autumn Bulk Properties Across All Measured Sites and the Root-Mean-Square
Differences (RMSD) Between Them

Name Symbol Bounds Step Unit
Albedo (fresh snow) Os 0.76-0.88 0.015

Albedo (ice) o 0.41-0.65 0.03

Density (fresh snow) Ps 280-440 20 kg m—3
Snow-rain threshold temperature —0.5-1.9 0.3 °C
Cloud cover c 0.1-0.9 0.1

total amounts of melt, refreezing (within both the snowpack and the firn), and runoff in both years at all
modeled points. Note that the totals are cumulative so that, e.g., the refreezing within the snowpack at
the lower sites occurred early in the season, before subsequent removal of the snow and refrozen material.
The model output allows the elevation of the wet snowline and the runoff line to be determined. The wet
snowline is where percolating meltwater first warms the entire surface snowpack to the melting point and
begins to percolate into the subsnowpack firn [Benson, 1962]. The runoff line is the location above which no
meltwater runs off the ice cap. The modeled wet snowline can be compared with a measurement-based
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Figure 5. Modeled cumulative melt in terms of specific mass, split into a stacked area graph showing refreezing and runoff,
across the transect for the (a) 2004 and (b) 2006 model runs. The altitudes of the wet snow and runoff lines are shown.
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Figure 6. Percentage of melt becoming runoff at all points on the modeled transect.

estimate. The measurement-based values should be treated as minimum values, as heterogeneous percolation
can lead to penetration of meltwater past the annual layer without densification of the snow immediately
above it. Nevertheless, the wet snowline elevation found by the model is~90 m lower than a
measurement-based estimate in 2004, and ~ 140 m lower in 2006. The runoff line cannot be determined from
our field measurements.

The model predicts that the fraction of melt that becomes runoff changes down the transect from 0% at the
upper elevations to ~ 95% by sea level (Figure 6). The runoff line lies at ~1160 m asl in 2004 and ~1220 m asl
in 2006. Surface mass balance curves that include internal accumulation were produced for both years
(shown as the black, 0°C perturbation lines in Figure 8). Over the transect, 2006 is a generally less positive/more
negative mass balance year. The equilibrium line altitude (ELA) in 2006 is ~780 m asl (to nearest 10 m). In 2004,
it is possible to interpret two different figures for the ELA, the higher at ~770 m asl and the lower at ~640 m asl
(to nearest 10 m). Using the catchment hypsometry (Figure 1b), the total melt and runoff for the
2004 and 2006 summers was calculated. The total modeled surface mass balance of the Croker Bay
catchment for both years was +0.26 Gt in 2004 and +0.18 Gt in 2006.

5.3. Sensitivity Testing Results

The model sensitivity to impermeable layer depth was tested first. Very little change was discernible
in both the melt-runoff relationship, and the surface mass balance found in both years when the
impermeable layer depth within the firn was multiplied by values between 0 and 2, and the altitudes of
the wet snow and runoff lines do not change from those shown in Figure 5. Also, the fraction of melt
running off varies by less than 0.9% in 2004 and less than 1.2% in 2006. The surface mass balance is
similarly unaffected, varying by less than 0.0008 Gt and 0.0043 Gt in 2004 and 2006, respectively. What
small change does occur is as a result of the runoff increasing with a shallower impermeable layer and
decreasing with a deeper impermeable layer. This causes the surface mass balance to slightly increase
with increasing impermeable layer depth.

The model is much more sensitive to air temperature, as shown in Figure 7. For a negative air temperature
perturbation, the runoff fraction of melt remains similar in both years. However, for a positive air temperature
perturbation, the 2006 runoff fraction increases more steeply than the 2004 one (Figure 7a). This, of

course, ignores any potential change in the melt-runoff relationship due to changes in other meteorological
variables such as accumulation. The surface mass balance of the catchment is also highly sensitive to
temperature (Figure 7b). The variation in surface mass balance in each year fits very closely to a parabolic curve.
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Figure 7. (a) Change in runoff as a fraction of melt and (b) change in surface mass balance, across the modeled catchment
in both years, with change in air temperature.

Finally, surface mass balance curves for the perturbed model runs in both years are shown alongside the
curves for the unperturbed runs in both years in Figure 8. In 2004 (Figure 8a) the equilibrium line shows a very
small rise with temperature increase but a large lowering with lower temperatures. In 2006 (Figure 8b) the
equilibrium line varies more linearly with altitude, and in this year the gradient of the trend line best fitting
the relationship is 110 m °C™" (R>=0.9832).

6. Discussion

At any given point, the modeled autumn snowpack density profile is not ever likely to be an accurate
representation of the autumn measurement. This is due to the simplification of small-scale processes in the
model and the inability of kilometer-scale snowpit measurements to accurately reflect the complex reality of
snowpack density structure. For example, repeat snowpit measurements at AWS sites reveals differences in
percolation depths of many tens of centimeters over length scales of 10°-10° m [Bell, 2008]. Nevertheless, a
comparison of modeled and measured snowpack density profiles (e.g., Figure 9) indicates that most snowpack
densification in reality occurs at greater depths than in the model. This is also evident in the model’s apparent
underestimate of the elevation of the wet snowline, although some difference between the modeled and
measured values is to be expected as the wet snow “line” is really a broad zone of transition in snowpack
processes. However, these comparisons suggest that the model has a strong tendency to refreeze percolating
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meltwater at shallower depths than are seen in reality. Without some treatment of finger-flow percolation
the model is unlikely to be effective at characterizing the snowpack stratigraphy at any given location. In
addition, the model does not include the effects of the lateral transfer of percolating meltwater which was
clearly evident in 2006, below around 1350 m asl as surface runoff within a saturated snowpack [Bell et al., 2008,
Figure 7, p. 163]. It may simply not be possible to match measurements with model output at the point
scale. Obleitner and Lehning [2004], using a more detailed model, found that it too could not reproduce
stratigraphic detail [Obleitner and Lehning, 2004, Figure 7b] but that it replicated the bulk density well. Being
able to match trends in the bulk measurements across the transect is therefore perhaps a much more realistic
goal for the model than matching measurements at the point scale. In this respect our model does well, and
trends in bulk snowpack measurements (snow depth, average snow density, and snowpack water equivalent)
are generally matched by the model at the transect scale (Figure 4).

Colgan and Sharp [2008] found using firn cores that the 1989-2003 average elevation of the dry snowline
lay above the ice cap summit. Our model found melt at all sites on the transect, meaning that the modeled
dry snowline was also above the ice cap summit (though in 2004 modeled melt in the upper transect was
very low, dropping to < 3 kg m™? at the sites above 1700 m asl.).

A broad transition zone found by the model, between the area where no melt runs off and the area where a
very high fraction of melt runs off (Figure 6) is in agreement with other studies. Humphrey et al. [2012] found
that this transition zone is ~20 km wide on the Greenland Ice Sheet, ranging between ~1500 and ~1350 m asl.
This study finds a narrower transition zone on DIC, up to 14 km wide, but covering a larger elevation range
of ~300 m. We also find that the width and elevation range of the transition zone is variable between years
and depends on the definition of the “all runoff” zone, since even at low altitudes a small amount of refreezing
can occur early in the melt season while the snowpack remains cold.

The transect-scale results show that the model finds the equilibrium line to lie at similar altitudes in the two
modeled years, despite quite different meteorological conditions (Figure 8) and quite different overall
catchment surface mass balance (SMB) values. Although the ELA generally rises and falls with a decrease and
increase in surface mass balance, respectively, this is not always the case since the depth, structure, and
thermal regime of the near-surface firn play an important role in determining the extent to which surface
melt refreezes or becomes runoff [Koerner, 1970]. The effect of the underlying firn on refreezing and surface
mass balance profiles is developed further below in relation to the results from sensitivity testing, but it is
worth highlighting that the sensitivity of the ELA to air temperature is partly a function of meteorological
conditions during the preceding years.

The model suggests that the runoff/melt ratio and the surface mass balance are quite insensitive to the
impermeable layer depth. This result is caused by the relationship between refreezing within the firn
and that occurring within the annual snowpack. When the impermeable layer is placed at shallower
depths, the decrease in refreezing within the firn is not simply equalled by an increase in surface runoff
but is partly compensated for by an increase in refreezing within the annual snowpack. This is because
the heat supply provided by the refreezing within the firn, which would be conducted up into the
snowpack to lower the cold content there, is removed. The refreezing capacity of the annual snowpack
is thus increased.

Both years show a parabolic decrease in surface mass balance with increasing air temperature (Figure 7b)
which partly reflects the catchment hypsometry. Most of the catchment is located above 1000 m, so a larger
area of the catchment experiences melt and runoff as air temperature rises. However, the sensitivity of the
SMB and ELA to temperature rises is quite different in the 2 years. The 2004 runs with increased air
temperature cause a large increase in the amount of refreezing within the firn just above the equilibrium line
(up to 4.5 times for the “+2°C” run compared to the run without perturbation), suggesting that the presence
of the firn is mitigating the increase in air temperatures. The refreezing within the firn in 2006 does not
increase with air temperature to the same extent as in 2004, with the refreezing around the equilibrium line
increasing by a factor of less than 2 between the unperturbed run and the “+2°C” one. This is due to the firn in
2006 being already warmer when meltwater reaches it, and the greater amounts of refreezing in the
“standard” run to begin with. The reduction of refreezing capacity of warmer firn provides an accelerator in
the relationship between increasing air temperatures and increasing runoff when high air temperatures are
sustained from 1 year to the next.
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An investigation into the future sensitivity of the Greenland Ice Sheet to rising air temperatures throughout the
21st century was undertaken by Van Angelen et al. [2013]. This study coupled a snowpack/firn evolution

model with a regional climate model to show that the refreezing capacity of the firn across Greenland would
reduce with sustained rising air temperatures. Although recognizing the importance of warmer firn temperatures,
they proposed that the primary mechanism for reduced refreezing capacity was a long-term reduction in pore
space in the firn. Our sensitivity analyses support this general conclusion, but our modeled surface mass balance is
more sensitive to the temperature of the winter snowpack and firn than to the pore space available for refreezing
in the firn (which in our experiments is effectively controlled by the depth of the impermeable layer).

The sensitivity of the mass balance of the entire Canadian Arctic Archipelago to air temperature change
was found by Gardner et al. [2011] to be —430 kg m™2a~' K™". Figure 7 shows that the sensitivity itself
increases with a period of sustained increasing temperature. This effect may account for the extremely high
rates of mass loss observed across DIC and other ice masses in the Canadian High Arctic during the period
2005-2009 [Sharp et al., 2011], which was characterized by a succession of warm summers.

The unperturbed runs give values for the catchment surface mass balance of +0.26 Gt in 2004 and +0.18 Gt
in 2006. These compare well with the average rate of +0.15+0.05 Gta~ ' between 1963 and 2000 determined
using measurements of surface mass balance across the accumulation area by Mair et al. [2005]. In agreement
with the latter, Burgess and Sharp [2004] found that the catchment increased slightly in area between
1960 and 2000. However, the model predicts that all else being equal, the mass balance of the catchment
becomes negative for air temperatures around 2°C higher than those measured in 2006.

7. Conclusions

We modify an existing physically based snow and firn model to increase vertical resolution of snow and firn
temperature and density evolution throughout a summer melt season. We apply the model to a transect of
Devon Ice Cap to investigate the relationship between melt, refreezing, and runoff and the distributions of
surface snow facies along a ~45 km transect of the ice cap. Uniquely, our model is initialized, calibrated, and
validated with high-resolution field measurements including snowpack stratigraphies before and after summer
meltin two melt seasons, at kilometer-scale spatial resolution along the transect. By calculating the evolution of
the density stratigraphy and thermal profile at each point on the transect over the melt season, the model
determines final snowpack properties. Model runs were carried out for the 2004 and 2006 seasons down the full
measured transect. Model output from these runs was compared with autumn measurements.

The model produces values for melt, refreezing within the snow and firn, and runoff at each point for which it
is run. These are used to calculate altitudes for the wet snowline and runoff line, and for the equilibrium line
including the effects of internal accumulation. The model does a good job of matching the along-transect
trend of bulk snowpack variables, such as depth, density, and water equivalent and is capable of identifying
the broad transition zones between different surface snow facies. Successfully modeling snow facies
boundaries is beneficial to the process of retrieving the ice cap surface elevations from radar backscatter
returns [Scott et al., 2006]. Knowledge of how the bulk snowpack characteristics change through space and time
could provide the basis for development of an empirical correction to radar altimetry-derived surface estimates
[Thomas et al., 2008] or could be used to select the most appropriate surface retracker algorithm according to
the changing snow facies [Ferraro and Swift, 1995; Helm et al., 2007]. Our model cannot replicate measured
snowpack density stratigraphies at the point scale and underestimates the quantity of meltwater percolation
into the firn below the wet snowline. This suggests that the processes governing percolation are inadequate,
and modifications to simulate finger-flow percolation of surface generated meltwater should be considered.

Much more melt and runoff occur in 2006 than 2004, but the ratio of runoff to melt in the 2 years is similar.
Although the modeled mass balance is positive in both years, it is much higher in 2004 than 2006. Previous
work suggests that the catchment had a positive mass balance up to 2000, and our results suggest that this
continued up to 2006. Very high melt rates have been measured across DIC in the years from 2006 to 2012
which have resulted in a significant densification of the near-surface firn [Bezeau et al., 2013]. Increased mass
loss from the ice caps of the Canadian Arctic Archipelago (CAA) have been recorded during this period and
argued to be mainly due to increased meltwater runoff due to elevated summer air temperatures [Gardner et al.,
2011]. This finding was in part based upon the application of a temperature index melt model with a modified
meltwater retention scheme to annual snowpacks. The development of a spatially distributed version of our
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model across the DIC and other ice caps within the CAA will better determine the contribution of meltwater
runoff to mass loss during the period 2006-2012.

The sensitivity of the model to both internal and external controls was tested by separately varying the
impermeable layer depth and air temperature. The model is insensitive to variations in impermeable layer
depth, as change in refreezing within the firn is mitigated by an opposite change in refreezing within the
snow, due to the thermal connection between the two. The model is, however, highly sensitive to change in
air temperature, which changes the fraction of melt that becomes runoff and causes a parabolic change in
catchment surface mass balance. Change in the ELA in 2004 for a rise in air temperature is small as the firn
around the ELA is able to refreeze much of the extra meltwater. However, in 2006 the warmer conditions
cause the capacity of the snow and firn around the ELA to be exceeded quickly, and therefore, the ELA rises
much more quickly with temperature increase.

The effects of increased runoff/melt ratio and reduced refreezing capacity with increasing temperature could
cause a significant accelerator in the relationship between runoff and air temperature if high temperatures
are sustained for several years. Model-based projections of future surface mass balance that take this effect
into account will provide more robust estimates of the sensitivity of ice masses to air temperature rises. A
wider application of a distributed version of our model will (a) contribute toward a better assessment of the
mass loss sensitivity of the ice caps of the CAA and other ice masses to future climate change scenarios and
(b) help identify the relative importance of long-term changes in subsurface thermal and structural (density)
regimes to this sensitivity.
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