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of which must be large in order to justify an effective low-energy approximation involving

only the light field, ℓ. (Typically only one of these — the mass of the heavy field transverse

to the trough — is used in the literature when justifying the truncation of heavy fields.)

We explicitly compute the resulting effective field theory, which has the form of a P (ℓ,X)

model, with X = −1
2(∂ℓ)

2, as a function of these scales. This gives the leading ways

each scale contributes to any low-energy dynamics, including (but not restricted to) those

relevant for cosmology. We check our results with the special case of a homogeneous roll

near the valley floor, placing into a broader context recent cosmological calculations that

show how the truncation approximation can fail. By casting our results covariantly in field

space, we provide a geometrical criterion for model-builders to decide whether or not the

single-field and/or the truncation approximation is justified, identify its leading deviations,

and to efficiently extract cosmological predictions.
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1 Introduction

Scalar fields have long been posited by particle physicists and cosmologists, although exper-

imental evidence for their existence has come only very recently [1, 2]. Their discovery has

likely taken so long because in the absence of any symmetries that prevent them, quantum

corrections often make it difficult to make scalars very light compared with other particles,

an observation that is called the ‘hierarchy problem’ when applied to scalars associated

with electroweak symmetry breaking.

Cosmologists also frequently invoke scalar fields because certain features of their classi-

cal dynamics are known to be useful for describing the very early universe. For instance, al-

though Hot Big Bang cosmology provides an excellent account of current observations [3, 4],
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it also provides evidence for there being two separate epochs during which the expansion

of the universe accelerated rather than decelerated with time. We appear to have entered

one of these epochs comparatively recently (dominated by Dark Energy), while another

(possibly Inflationary [5–7]) epoch of primordial acceleration seems to have taken place at

a much earlier time. Scalar fields are usually proposed to provide the dynamics that could

drive such accelerated expansion, though the propensity of scalars to be heavy has made

it difficult to embed these models convincingly into a fundamental theory. At present,

string theory provides the most precise framework for doing so [8–16], although not yet

with decisive success [17].

Yet one lesson does emerge from attempts to marry cosmology with fundamental

physics– fundamental theories contain many scalars in their low-energy spectrum, and

although it is hard to make them light enough to be interesting for cosmologists, once

a mechanism succeeds in doing so for one it usually also does so for others. Further-

more, heavy fields can sometimes play surprisingly large roles in low-energy dynamics [18–

24], requiring a refined understanding of how decoupling is operative in multiple-field and

time-dependent contexts (for a review of EFTs, including a discussion of gravity and time-

dependent situations, see [25–27]).

In this paper we embrace the point of view that multiple scalars are likely to be relevant

to cosmology (and elsewhere), and explore as systematically as possible the dynamics of

light scalar fields in the presence of other, heavier scalars. To this end we start with multi-

scalar interactions whose scalar potential has the shape of a trough or ditch: shallow in the

general direction of the light fields, but steeply rising in the transverse, heavy directions.

By explicitly integrating out the heavy scalars, we identify which parameters control its

decoupling and which features of the heavier scalars influence low-energy dynamics in

potentially observable ways.

We find, as already noted in [19–21], that when the trough is not straight1 the low-

energy theory generally is not well-described by the ‘truncation approximation’, within

which the heavy fields are simply set to vanish. Perhaps more surprisingly, this can remain

so even as the mass,m, of the heavy field goes to infinity. This is possible because potentials

that support curved troughs necessarily involve multiple scales, including the radius of

curvature of the trough’s bottom (relative to a target-space geodesic) and the curvature

scale of the target space’s Riemann tensor, as well as how quickly these quantities vary

along the trough. Generically all of these scales must be large to ensure that heavy fields

decouple, and so justify a low-energy effective theory.

Concretely, we explicitly construct the leading effective couplings within the effective

theory for the case of one heavy (h) and one light (ℓ) scalar, defined by the eigenbasis of the

mass matrix at a particular point at the trough’s bottom.2 Even in this simple case there

are at least three important scales in the low-energy potential: the heavy mass, m; and

both the target-space radius of curvature, ρ, and the curvature, κ, of the trough’s bottom

(relative to a target-space geodesic). Because these are geometrical, they are covariant

1More precisely, when the trough bottom is not a geodesic of the target-space metric (see below).
2As we see below, this basis need not coincide with the tangent and the normal to the trough at this point.
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under field redefinitions and so can be computed equally well in any coordinate system

that is convenient.

Our main result is the effective description that captures all of the low-energy effects

of the heavy field. This is given by a single-scalar theory with the following action, out to

4-derivative level:

Seff(ℓ) = −
∫

d4x
√−g

[

Veff(ℓ) +
1

2
(∂ℓ)2 +Heff(ℓ) (∂ℓ)

4 + · · ·
]

, (1.1)

where (expanding out to quartic order in ℓ) the effective coupling functions are

Veff = V0 + V1ℓ+
1

2
µ2effℓ

2 +
1

6
geffℓ

3 +
1

24
λeffℓ

4 + · · · , (1.2)

and Heff = H0+· · · and so on. More generally, were we to work to higher order in fields and

derivatives, we would arrive at a low-energy effective theory that would be a higher-order

polynomial function ofX := −1
2(∂ℓ)

2 (with ℓ-dependent coefficients, in general): a so-called

P (ℓ,X) model — or k−inflationary theory [28] in a cosmological context.3 The regime of

validity of the expansions made in obtaining the effective theory (1.1) are discussed in §3.
What is important is that the effective couplings of the low energy theory are explicitly

calculable as functions4 of m, κ and ρ, evaluated as an expansion about a particular point,

ϕ, on the trough’s bottom. The leading contributions are given by

µ2eff ≃ U ′′ − U
′2

κ2m2
,

geff ≃ U ′′′ − 2U
′2m′

κ2m3
,

λeff ≃ U ′′′′ − 3U ′κ′

κ3
+

4U ′U ′′

κ2m2

(

4m′

m
+

3κ′

κ

)

− 16U
′2κ′m′

κ3m3
− 6U ′U ′′′

κ2m2
(1.3)

− 2U ′2

κ2m2

m′2

m2
+

U
′2

κ4m2

(

6 + 3λnnn − 11κ
′2 + 4κκ′′

)

,

and

H0 ≃
1

2κ2m2
, (1.4)

where U(ϕ) is the value of the scalar potential at the trough’s bottom, and primes denote

differentiation with respect to arc length (as measured by the target-space metric) along

the trough. The quantity λnnn measures how the walls of the trough deviate from a perfect

parabola.

Provided κ, ρ andm are sufficiently large, these effective interactions describe any low-

energy process, including (but not restricted to) predictions for — and fluctuations about

— cosmological evolution. Because the low-energy theory is a single-scalar model, these

3Such an effective description was previously advocated in [18], where the effective coupling Heff was

generated by non-canonical kinetic couplings in the parent theory (see also [29], which studied the regimes

of validity of this effective description). In what follows we generalize and give context to these findings in

a manner that is invariant under field redefinitions.
4Strictly speaking, at this order in 1/m the parameter ρ turns out to appear among interactions involving

more than 4 powers of ℓ, although it can arise in quartic (or lower) powers of ℓ at higher order in 1/m.
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predictions are very easily obtained by specializing well-known formulae for single-field

inflationary models to the above couplings, thereby extending these single-field predictions

to a broader class of multi-field models.

In particular, the implications for fluctuations about cosmological solutions — such

as for non-gaussianity — can be obtained in either of two equivalent ways. When the

above theory is directly viewed as the effective theory of inflation — in the spirit of Wein-

berg [30] — predictions for fluctuations can be simply extracted using existing single-field

calculations [32–34] for general P (ℓ,X) models. Alternatively, one can use the effective

theory for single-field cosmological fluctuations5 [30, 31], for which we provide the leading

contribution to the effective coefficients, Mn(t), as functions of geff , λeff and Heff .

The remainder of the paper is organized as follows. The next section, §2 (with details

in appendix B) shows how to characterize shallow troughs geometrically in order to identify

the relevant scales in a way that is covariant under field redefinitions (see appendix A). §3
(with details in appendix C) then (classically) integrates out the heavy field in the trough to

derive the low-energy effective theory, eqs. (1.1) through (1.4) in terms of trough properties

and examines its domain of validity. Next, §4 tests this effective theory by applying it to

several non-gravitational situations where dynamics can be compared between the full

multi-scalar system and its effective description. §5 then describes the applications to

cosmology, illustrating the simplicity of the effective theory’s use by giving explicit formulae

for inflationary primordial fluctuations and non-gaussianity. Finally, §6 briefly summarizes

our conclusions.

2 Covariant characterization of multi-field troughs

This section defines the multi-scalar action of interest and quantifies what it means for the

scalar potential to have a trough along which the potential is constant or slowly varying.

The goal is to characterize covariantly the geometrical properties of the slowly varying

directions of the potential in terms of derivatives of the potential V .

2.1 General form for multi-scalar actions

Consider the following general action describing N mutually interacting scalar fields, φa

within a curved spacetime:6

S = −
∫

d4x
√−g

{

V (φ) + gµν
[

1

2
Gab(φ) ∂µφ

a∂νφ
b +

M2
p

2
Rµν

]

+ · · ·
}

. (2.1)

This describes the most general Lorentz-invariant interactions possible amongst these

scalars at the two-derivative level,7 and is completely characterized by the interaction

5The authors of ref. [19–21] compute the effective theory for the fluctuations directly, without passing

through the intermediate step of eqs. (1.1) through (1.4).
6Conventions: our metric is ’mostly plus’ and we adopt Weinberg’s curvature conventions [39], that

differ from MTW conventions [40] only by an overall sign in the definition of the Riemann tensor.
7We do not write the non-minimal coupling F (φ)R, where R = gµνRµν is the spacetime Ricci scalar,

because this can be removed by transforming to Einstein frame through an appropriate Weyl rescaling:

gµν → A(φ) gµν .
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potential, V (φ), and the target-space metric, Gab(φ) (which is a positive-definite symmet-

ric matrix). Here Mp is the reduced Planck mass defined in terms of Newton’s constant

by M2
p = (8πGN)

−1 which only plays a role for applications where couplings to gravity are

important (such as to cosmology).

Our interest is in making perturbative (typically semi-classical) predictions in the

immediate vicinity of a field-point, ϕa, and so usually at this juncture we would expand

the action in powers of φa − ϕa. However it is useful to emphasize the invariance of

physical predictions under field redefinitions, and this is not well-served by such a linear

split between φa and ϕa. A nonlinear alternative exists — δφa = δφa(φ, ϕ) with δφa → 0

as φa → ϕa — that preserves covariance under field redefinitions, where δφa geometrically

represent Gaussian normal coordinates in field space. A brief review of this formalism is

given in appendix A.

Recall that under a generic local field redefinition, φa → φa + ζa(φ) (for ζa(φ) an

arbitrary, infinitesimal, locally invertible collection of functions), V (φ) transforms as a

scalar: δV = V, a ζ
a, while Gab(φ) transforms as a metric tensor: δGab = Gab, c ζ

c + Gac ζ
c
, b +

Gcb ζ
c
, a, where commas denote differentiation (V, a := ∂V/∂ϕa and so on). When expanded

in terms of the covariant quantity δφa, the Lagrangian can be written in terms of covariant

derivatives and curvatures of the metric Gab. For instance, the expansion of the scalar

potential gives

V (φ) = V (ϕ) + V, a(ϕ) δφ
a +

1

2
V; ab(ϕ) δφ

aδφb +
1

3!
V; abc(ϕ) δφ

aδφbδφc + · · · , (2.2)

where semicolons denote covariant derivatives constructed using the Christoffel symbols,

γabc(ϕ), built from first derivatives of the target space metric, Gab(ϕ). An expansion of the

metric to quartic order similarly gives the standard normal-coordinate expression [41]

Gab ∂µφ
a ∂µφb =

[

Gab(ϕ) +
1

3
Racbd(ϕ) δφ

cδφd
]

(∂µδφ
a)(∂µδφb) + · · · , (2.3)

where Ra
bcd is the Riemann tensor built from Gab.

In the special case where there are only two fields — a case we explore in more detail

below — the target-space curvature tensor is particularly simple:

Rabcd =
1

2 ρ2
(Gad Gbc − Gac Gbd) , (2.4)

characterized by a single function, the target-space radius of curvature,8 ρ(ϕ).

We next suppose the scalar V has a trough-like shape with a local minimum in several

strongly varying directions, but varying slowly along others. For simplicity we describe in

detail here a system involving only N = 2 fields, but the generalization to more than two

is straightforward. We first characterize more precisely what it means for the potential V

to have a trough. Because this is most easy to do when the trough is perfectly level — i.e.

when V is perfectly constant along its bottom — we first do so in this simpler case.

8In our conventions if the target space were a two-sphere, then ρ2 > 0.
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2.2 Perfectly level troughs

Given any smooth potential it is always possible to define equipotential curves, i.e. trajec-

tories in field space, φa = χa(σ), along which V is constant: V [χ(σ)] = V0 for all σ. We

define a level trough as an equipotential curve, χa(σ), with two additional properties:

(i) The potential gradient vanishes everywhere along the curve: V, a[χ(σ)] = 0 for all σ

and for all a;

(ii) All eigenvalues of the ‘mass’ matrix Aa
b := Gac V; cb are non-negative, and at least

one eigenvalue is strictly positive. This condition is required to distinguish troughs

from ridges. Notice that because the eigenvalue condition, Aa
be

b = λ ea, is a tensor

equation the eigenvalues λ are scalars under field redefinitions.

As is shown in detail in appendix B these conditions imply that the two independent

eigenvectors of Aa
b can be cleanly identified. First, there is a zero eigenvector given by

the tangent, χ̇a, to the trough’s bottom. Here, and in what follows, over-dots denote

differentiation with respect to σ, where dσ2 := Gab dχ
adχb denotes target-space proper dis-

tance along the trough’s bottom. The nonzero eigenvector is proportional to the covariant

directional derivative of χ̇a along the trough:

Dχ̇a

dσ
:= χ̈a + γabcχ̇

bχ̇c . (2.5)

Because Dχ̇a/dσ is orthogonal9 to χ̇a — see appendix B for details — it is convenient

to define the orthonormal basis, {χ̇a, nb}, in field space, with

Dχ̇a

dσ
:=

na

κ
, (2.6)

defining the radius of curvature, κ(ϕ), of the bottom of the trough10. (Notice that κ→ ∞
corresponds to the case of a ‘straight’ trough, for which the valley floor defines a target-

space geodesic, Dχ̇a/dσ = 0.) In terms of χ̇a := Gabχ̇
b and na := Gabn

b we therefore have

V; ab = m2(ϕ)nanb , (2.7)

everywhere along the trough’s bottom, where m2(ϕ) = V; ab n
anb > 0 is the nonzero eigen-

value of Aa
b required by condition (ii) above.

As shown in detail in appendix B, differentiating eq. (2.7) with respect to σ along

the bottom of the trough, gives the following expression for the potential’s third covariant

9Using the target-space metric, Gab.
10In decomposing field excitations with respect to the basis defined by the tangent and normal to the

trough of the potential, we derive independent Frenet-Serret relations [42, 43] to those introduced in [44],

who define excitations tangent and normal to a background solution (in the context of inflation). We do so

as we are interested in understanding how the scales of the parent theory enters the effective theory that

describes all low energy processes, and not just those corresponding to perturbations around cosmological

evolution.
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derivatives,

V; abc = 2mṁ
(

nanbχ̇c + nbncχ̇a + ncnaχ̇b

)

−m
2

κ

(

naχ̇bχ̇c + nbχ̇aχ̇c + ncχ̇aχ̇b

)

+ Vnnn nanbnc , (2.8)

where Vnnn := V; abc n
anbnc and ṁ := dm/dσ. This uses that V; abc is completely symmetric

when evaluated along the trough’s bottom, since

V; cba − V; cab = Rd
cabV, d (2.9)

vanishes because V, d also vanishes there, using condition (i) above. Among other things,

eq. (2.8) gives the quantities ṁ and κ in terms of derivatives of V , with

1

κ
= − 1

m2
V; abc n

a χ̇bχ̇c := −Vntt
m2

and ṁ =
1

2m
V; abc n

anbχ̇c :=
Vnnt
2m

. (2.10)

Expressions for higher derivatives of V are similarly obtained by repeated differentia-

tion, with explicit expressions for the fourth derivatives given in appendix B. Notice that

these higher derivatives need not be completely symmetric in their indices if the target-

space metric is not flat, since (for example)

V; dcba − V; dcab = Re
cabV; de +Re

dabV; ec , (2.11)

and so on.

2.3 Tilted troughs

Of more interest, particularly in cosmology, is the situation where the trough is not com-

pletely level, but with a slope along the trough that is much shallower than the directions

up the trough’s sides.

This situation is handled as above, but with the generalization that derivatives along

the trough direction are parametrically small rather than zero. Defining U(σ) as the value

of the potential along the trough bottom, we have

U(σ) := V [χ(σ)] , (2.12)

and because the curve χa(σ) runs along the bottom of the (no-longer level) trough, its

tangent is parallel to the potential gradient along the bottom: χ̇a ∝ GabV, b. Because

of this we replace condition (i) of the flat trough with the following conditions for the

potential gradient

V, a χ̇
a = U̇ and V, a n

a = 0 , (2.13)

everywhere along the valley floor.

Successive differentiation — see appendix B — of these equations again allows the

derivation of expressions for higher derivatives of the potential. In particular, differentiating

eqs. (2.13) gives the following expression for the second-derivative matrix

V; ab = Ü χ̇aχ̇b +
U̇

κ

(

naχ̇b + nbχ̇a

)

+m2 nanb , (2.14)
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where, as before, we define m2(σ) := V; ab n
a nb and the radius of curvature by Dχ̇a/dσ =

na/κ, with χ̇a and nb being the orthonormal basis adapted to the trough bottom.

In particular, eq. (2.14) shows that na and χ̇a need no longer be eigenvectors of

the matrix Aa
b, and m2 need no longer be an eigenvalue. Explicit diagonalization gives

the eigenvalues

M2
± =

1

2

(

m2 + Ü ± (m2 − Ü)
√

1 + β2
)

, (2.15)

with corresponding (orthonormal) eigenvectors

ea+ = na cos θ + χ̇a sin θ

ea− = −na sin θ + χ̇a cos θ , (2.16)

where

sin θ := (sgn U̇) ·
√

1 + β2 − 1
√

2(1 + β2 −
√

1 + β2)

cos θ := (sgn U̇) · β
√

2(1 + β2 −
√

1 + β2)
, (2.17)

and

β =
2U̇

κ(m2 − Ü)
. (2.18)

These simplify once restricted to the regime of interest: m2 much bigger than deriva-

tives of U . In particular, in this limit

β ≃ 2 U̇

κm2

[

1 +
Ü

m2
+ · · ·

]

≪ 1 , (2.19)

and so the ‘heavy’ eigenvalue becomes

M2 :=M2
+ ≃ m2 +

U̇2

κ2m2
+O

(

1

m4

)

, (2.20)

while the ‘light’ one is

µ2 :=M2
− ≃ Ü − U̇2

κ2m2
+O

(

1

m4

)

. (2.21)

The mixing angle is similarly small in this limit,

tan θ =

√

1 + β2 − 1

β
≃ β

2
≃ U̇

κm2
, (2.22)

and so the corresponding eigenvectors take the approximate forms: ea+ ≃ na+ 1
2 βχ̇

a+O(β2)

and ea− ≃ χ̇a − 1
2 βn

a +O(β2).

Formulae for the third derivatives of V are obtained by successive differentiation, and

are derived in detail in appendix B. Because the trough is not precisely flat, the third

– 8 –
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derivatives are in general no longer completely symmetric. Specializing eq. (2.9) to tilted

troughs gives (for two fields)

V; abc χ̇
a χ̇b nc − V; abc χ̇

a nb χ̇c = 0 ,

V; abc n
a χ̇b nc − V; abc n

a nb χ̇c =
U̇

2ρ2
, (2.23)

which shows that ordering only matters when V; abc is contracted with two n’s and one χ̇.

Appendix B shows that the third derivatives evaluate to

V; abc χ̇
aχ̇bχ̇c = Ü̇ − 2 U̇

κ2

V; abc χ̇
aχ̇bnc = V; abc χ̇

anbχ̇c = V; abc n
aχ̇bχ̇c = −m

2

κ
+

2 Ü

κ
− κ̇ U̇

κ2
(2.24)

V; abc n
anbχ̇c = 2mṁ+

2 U̇

κ2

V; abc χ̇
anbnc = V; abc n

aχ̇bnc = 2mṁ+
2 U̇

κ2
+

U̇

2ρ2
,

where

− κ̇

κ2
=

d

dσ

(

Gab n
aDχ̇

b

dσ

)

= Gab n
aD

2χ̇b

dσ2
, (2.25)

and V; abc n
anbnc is not in general related to κ, m and derivatives of U .

For later purposes it is useful also to have expressions for the completely symmetrized

derivatives:

V(ttt) := V; (abc) χ̇
aχ̇bχ̇c = Ü̇ − 2 U̇

κ2

V(ttn) := V; (abc) χ̇
aχ̇bnc = −m

2

κ
+

2 Ü

κ
− κ̇ U̇

κ2
(2.26)

V(tnn) := V; (abc) n
anbχ̇c =

2

3
V; abc χ̇

anbnc +
1

3
V; abc n

anbχ̇c

= 2mṁ+
2 U̇

κ2
+

U̇

3ρ2
,

as well as the contractions of the symmetrized derivative, V; (abc), with the eigenvectors ea±,

in the small-β limit. For instance Vh := V, ae
a
+ ≃ 1

2βU̇ ≃ (U̇2/κm2) and Vℓ := V, ae
a
− ≃ U̇ ,

Vhh =M2, Vℓℓ = µ2 and Vℓh = Vhℓ = 0. For small β the third derivatives are

Vℓℓℓ := V; (abc) e
a
−e

b
−e

c
− ≃ Vttt −

3β

2
V(ttn) ≃ Ü̇ +

U̇

κ2
, (2.27)

Vℓℓh := V; (abc) e
a
−e

b
−e

c
+ ≃ V(ttn) +

β

2
Vttt − β V(tnn) ≃ −m

2

κ
+

2 Ü

κ
− U̇

κ

[

4ṁ

m
+
κ̇

κ

]

, (2.28)

Vℓhh := V; (abc) e
a
−e

b
+e

c
+ ≃ V(tnn) −

β

2
Vnnn + β V(ttn) ≃ 2mṁ− U̇

[

λnnn
κ2

− 1

3ρ2

]

,

Vhhh := V; (abc) e
a
+e

b
+e

c
+ ≃ Vnnn +

3β

2
V(tnn) ≃

m2

κ
λnnn +

6 U̇ṁ

κm
, (2.29)

– 9 –



J
H
E
P
0
1
(
2
0
1
3
)
1
3
3

where the quantity λnnn defined by

Vnnn :=

(

m2

κ

)

λnnn , (2.30)

typically remains bounded as m2 gets large. Notice that these reduce to the usual expres-

sions for straight troughs, κ → ∞, with a flat target space, ρ → ∞. For some extensions

of these expressions to higher derivatives and to 1/m2 corrections, see appendix B.

3 The low-energy effective theory

The previous section shows that there are three separate, possibly large, scales that instan-

taneously characterize the properties of a trough-shaped potential along its bottom: the

scale m2(ϕ) defining the trough’s transverse steepness; the scale κ(ϕ) defining the radius

of curvature of the trough’s valley floor; and the Riemann radius of curvature, ρ(ϕ), of the

target-space geometry. There are also the derivatives of these quantities along the trough,

as well as third and higher derivatives of V in the direction(s) normal to the trough.

3.1 Light and heavy states in a trough

We now assume all of these scales to be much larger than the energy scales of interest,

such as the fractional rates of change of quantities along the trough’s bottom. We wish

to identify the low-energy effective theory that governs the dynamics along the trough in

this limit. Our goal is to trace the leading way that each of these scales shows up in the

low-energy effective interactions once heavy degrees of freedom are integrated out (at the

classical level). In particular, we wish to see how their presence alters the naive truncation

approximation, in which the heavy fields are simply set to zero.

In order to do so we must identify the heavy and light degrees of freedom, and inte-

grate out the heavy one. To this end we expand the expansion field, δφa in a basis that

diagonalizes the mass matrix, Aa
b = Gac V; cb, writing

δφa = ℓ ea− + h ea+ . (3.1)

By virtue of the above definitions the expansion, eq. (2.2), of the scalar potential becomes:

V (φ) = V (ϕ) +
(

Vℓ ℓ+ Vh h
)

+
1

2

(

M2 h2 + µ2 ℓ2
)

+
1

6

(

Vℓℓℓ ℓ
3 + 3Vhℓℓ hℓ

2 + 3Vhhℓ h
2ℓ+ Vhhh h

3
)

+ · · · , (3.2)

whereM2(ϕ) ≃ m2+(U̇2/κ2m2) and µ2(ϕ) ≃ Ü−(U̇2/κ2m2) while Vℓℓℓ(ϕ) = V; (abc) e
a
−e

b
−e

c
−,

Vℓℓh(ϕ) = V; (abc) e
a
−e

b
−e

c
+ and so on are the symmetric derivatives of V as evaluated at the

end of the previous section. In terms of these fields the expansion of the kinetic term,
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eq. (2.3), similarly is

− 1

2
Gab(φ) ∂µφ

a ∂µφb = −1

2

[

Gab(ϕ) +
1

3
Racbd(ϕ) δφ

cδφd
]

∂µδφ
a ∂µδφb + · · ·

= −1

2
(∂δφ)2 +

1

12 ρ2

[

δφ2(∂δφ)2 − (δφ · ∂δφ)2
]

+ · · · (3.3)

= −1

2

[

(∂ℓ)2 + (∂h)2
]

+
1

12ρ2

[

ℓ2(∂h)2 + h2(∂ℓ)2 − 2hℓ(∂ℓ)(∂h)
]

+ · · · ,

which uses eq. (2.4) for the target-space curvature.

3.2 Integrating out the heavy fields

The next step is to integrate out the heavy field to obtain the low-energy effective theory

of the light field along the bottom of the trough. In the classical approximation the heavy

field is integrated out by eliminating it from the action using its equations of motion:11

Seff(ℓ) = S[ℓ, h(ℓ)], where h(ℓ) is the adiabatic ground state satisfying δS/δh = 0 [25, 26].

We summarize the main steps here, with more details given in appendix C.

To start, it is useful to integrate by parts in order to write the classical action as follows,

L√−g = −1

2
∂µℓ ∂

µℓ− Vtr(ϕ, ℓ) +
1

2
h∆hh− J(1)h− 1

3
J(3)h

3 − 1

4
J(4)h

4 , (3.4)

where the ‘truncated’ potential is

Vtr(ϕ, ℓ) := V (ϕ, ℓ, h = 0) = U(ϕ) + (j + Vℓ)ℓ+
µ2

2
ℓ2 +

1

6
Vℓℓℓ ℓ

3 +
1

24
Vℓℓℓℓ ℓ

4 (3.5)

and we couple an external current, j, to the light field, ℓ. The kinetic operator for h is

∆h := Ω−M2, where

Ω :=

(

1− ℓ2

6ρ2

)

�

and M2 := M2 + Vhhℓ ℓ+
1

2
Vhhℓℓ ℓ

2 − 1

2ρ2
∂µℓ∂

µℓ− 1

3ρ2
ℓ�ℓ . (3.6)

Finally, the J(i) are given by

J(1) := Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vhℓℓℓ ℓ

3

J(3) :=
1

2
Vhhh +

1

2
Vhhhℓ ℓ (3.7)

and J(4) :=
1

6
Vhhhh .

The equation of motion of the field h then is,

∆hh = J(1) + J(3)h
2 + J(4)h

3 , (3.8)

11For time-dependent solutions there generically is more than one such solution, in which case it is the

solution corresponding to having h in its adiabatic vacuum that should be used [25, 26].
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which can be solved iteratively to give h = ∆−1
h J(1)+ · · · , where the ellipses involve powers

of J(3) and J(4). We insert this back into the classical action, and expand ∆−1
h in powers

of 1/M2 to get the following expression (see appendix C for details)

Leff = L(0) +
L(1)

M2
+

L(2)

M4
+

L(3)

M6
+O

(

1

M8

)

, (3.9)

where

L(1)

M2
=

1

2M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vhℓℓℓ ℓ

3

)2

(3.10)

L(2)

M4
= − 1

2M4

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vhℓℓℓ ℓ

3

)2(

Vhhℓ ℓ+
1

2
Vhhℓℓ ℓ

2

)

(3.11)

− ℓ2

2M4
(∂ℓ)2

(

Vhℓℓ +
1

2
Vhℓℓℓ ℓ

)2

+
1

12ρ2M4
(∂ℓ)2

(

Vh −
1

2
Vhℓℓ ℓ

2 − 1

3
Vhℓℓℓ ℓ

3

)2

and

L(3)

M6
=

1

2M6

(

Vh +
ℓ2

2
Vℓℓh

)2(

Vℓhhℓ+
ℓ2

2
Vℓℓhh

)2

+
1

6M6
(Vhhh + Vℓhhhℓ)

(

Vh +
ℓ2

2
Vℓℓh +

ℓ3

6
Vℓℓℓh

)3

+
V 2
h

2M6

(

1

4ρ4
(∂ℓ)4 +

1

9ρ4
ℓ2�ℓ�ℓ+

1

3ρ4
(∂ℓ)2ℓ�ℓ

)

+
V 2
h

2ρ2M6
(∂ℓ)2

(

ℓ

3
Vℓhh +

ℓ2

2
Vℓℓhh

)

+
Vh
2M6

VℓhhVℓℓℓhℓ
2(∂ℓ)2 (3.12)

+
(∂ℓ)2

M6

(

VhVℓℓh −
V 2
h

6ρ2

)

(

Vℓhhℓ+ Vℓℓhhℓ
2
)

+
1

ρ2M6

(

VhVℓℓh −
V 2
h

6ρ2

)(

(∂ℓ)4

2
+
ℓ2

3
(�ℓ)2 +

5

6
ℓ�ℓ(∂ℓ)2

)

+
1

2M6

(

V 2
ℓℓh −

VhVℓℓh
3ρ2

)

(

(∂ℓ)4 + ℓ2(�ℓ)2 + 2ℓ�ℓ(∂ℓ)2
)

,

and so on.

Finally, we trade the explicit derivatives of V appearing in these expressions — includ-

ing the mass eigenvalues M2 and µ2 — in favour of the trough-related quantities U(ϕ),

m(ϕ), κ(ϕ) and their derivatives along the trough, as well as ρ(ϕ) and transverse derivatives

like Vhhh and so on, using the following results from earlier sections (and appendix B)

Vℓ = U̇ , Vh ≃ U̇2

κm2
, Vhh =M2 ≃ m2 +

U̇2

κ2m2
, Vℓℓ = µ2 ≃ Ü − U̇2

κ2m2
, (3.13)
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while Vhℓ = 0. Third derivatives are similarly given by

Vℓℓℓ = Ü̇ +
U̇

κ2
− 3U̇

m2κ2

[

Ü − U̇

(

2ṁ

m
+
κ̇

κ

)]

,

Vℓℓh = −m
2

κ
+

2Ü

κ
− U̇

κ

(

4ṁ

m
+
κ̇

κ

)

+
U̇

m2κ

[

Ü̇ − 4Üṁ

m
− U̇

κ2

(

5

2
− λnnn

)

− 2U̇

3ρ2

]

,

Vℓhh = 2mṁ− U̇

(

λnnn
κ2

− 1

3ρ2

)

+
U̇

m2κ2

[

Ü
(

2− λnnn

)

− U̇

(

7ṁ

m
+

2κ̇

κ

)]

, (3.14)

Vhhh =
m2

κ
λnnn +

6U̇ṁ

κm
+

U̇

m2κ

[

6Üṁ

m
+

3U̇

κ2

(

1− 1

2
λnnn

)

+
U̇

ρ2

]

,

which extends the earlier expressions to higher order in 1/m2, and where λnnn is as defined

in eq. (2.30). Expressions for fourth derivatives are similarly given in appendix C.

The results obtained by substituting these expressions into eqs. (3.10) through (3.12)

are most succinctly expressed in terms of an expansion in derivatives of ℓ. As is shown in

detail in appendix C, it is always possible to perform a local field redefinition so that the

result up to four derivatives has the form

Leff√−g = −V̂eff(ϕ, ℓ)−
1

2
Geff(ϕ, ℓ)(∂µℓ ∂

µℓ) +Heff(ϕ, ℓ)(∂µℓ ∂
µℓ)2 + · · · , (3.15)

and so the content of the above calculation is to give expressions for the leading contri-

butions to the functions V̂eff , Geff and Heff . (The freedom to perform field redefinitions

ensures that only two of these functions are independent, as we show in detail below.) We

now quote the expressions for these functions that are relevant for terms in Leff involving

at most four powers of the light field, ℓ.

The effective scalar potential is given by (see appendix C for details)

V̂eff(ℓ) = U(ϕ+ ℓ) + j ℓ+
ℓ3

6

(

U̇

κ2

)(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

6U̇ṁ

m3

)

+ℓ4

[

− U̇ κ̇

8κ3
+

Ü

6κ2
+

U̇ Ü

κ2m2

(

2ṁ

m
+

5κ̇

6κ

)

− 2U̇2κ̇ṁ

3κ3m3
− Ü2

2κ2m2
(3.16)

− U̇ Ü̇

4κ2m2
+

U̇2

24κ4m2

(

6 + 3λnnn − 11κ̇2 + 4κκ̈
)

− 2U̇2

κ2m2

ṁ2

m2

]

+O(ℓ5) ,

while the kinetic function is

Geff(ℓ) ≃ 1 +
ℓ2

κ2

(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

8U̇ṁ

m3

)

, (3.17)

and the 4-derivative term has coefficient

Heff(ℓ) =
1

2κ2m2
+O(ℓ) . (3.18)

As remarked above, since there is only a single light field only two of these three

functions are independent. This is usually expressed by performing a field redefinition,
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ℓ→ ℓ̂ to a ‘canonical’ basis chosen to set the kinetic function to unity: Geff(ℓ)(∂ℓ)
2 = (∂ℓ̂)2.

The required redefinition satisfies

∂µℓ̂ :=
√

Geff(ϕ, ℓ) ∂µℓ ≃
[

1 +
ℓ2

2κ2

(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

8U̇ṁ

m3

)

+ · · ·
]

∂µℓ , (3.19)

which has as solution

ℓ̂ ≃ ℓ+
ℓ3

6κ2

(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

8U̇ṁ

m3

)

+ · · · . (3.20)

Notice that once this is used (and dropping the ‘caret’ over ℓ) the effective scalar potential

changes to

Veff(ϕ, ℓ) ≃ V̂eff(ϕ, ℓ)− (U̇ + j)
ℓ3

6κ2

(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

8U̇ṁ

m3

)

− Üℓ
4

6κ2

(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

8U̇ṁ

m3

)

+ · · ·

≃ U(ϕ+ ℓ) + j ℓ− ℓ3

(

U̇2ṁ

3κ2m3

)

+ℓ4

[

− U̇ κ̇

8κ3
+

U̇ Ü

κ2m2

(

2ṁ

3m
+

κ̇

2κ

)

− 2U̇2κ̇ṁ

3κ3m3
− U̇ Ü̇

4κ2m2
(3.21)

+
U̇2

24κ4m2

(

6 + 3λnnn − 11κ̇2 + 4κκ̈
)

− 2U̇2

κ2m2

ṁ2

m2

]

+ · · · ,

where the ellipses denote terms involving higher powers of ℓ̂ or 1/m2, and the new term

involving j is absorbed into a redefinition of j. Expression (3.18) forHeff remains unchanged

by this field redefinition to the order in ℓ to which we work.

Notice that there are two interesting special cases for which all of the differences

between Veff(ϕ, ℓ) and U(ϕ + ℓ) vanish. First, they do so (even for finite m and κ) for a

level trough with all derivatives of U vanishing. This is required in order for the full theory

and the effective theory to agree on the value of the potential at its minimum (and so also

on measurable quantities like the curvature of spacetime, say). Second, they also vanish in

the limit of a straight trough, where κ→ ∞, in which case a truncation of V (ℓ, h) to h = 0

would have been a good approximation. What is perhaps noteworthy is the appearance

of terms that are suppressed only by 1/κ and not by 1/m, and so which survive even for

infinitely steep troughs for which m2 → ∞ with κ fixed.

Of course, we equally well could have made an alternative choice of variables, ℓ̂→ ℓ̌ for

which Veff(ϕ, ℓ̌) = U(ϕ+ ℓ̌) + ǰℓ̌, at the expense of making the kinetic term non-canonical.

For troughs that are not flat, what counts physically is neither Veff or Geff separately, but

their relative form and we see that generically either Veff 6= U(ϕ+ ℓ) or Geff 6= 1.

In summary, we see that (for two scalar fields) the most general possible effective

interactions governing the dynamics of the light field at low energies (and out to quartic
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order in ℓ) along a potential trough are given by eq. (3.15) with Geff(ℓ) = 1, Heff =

1/(2κ2m2) and Veff given by eq. (3.21). What makes this effective theory so useful (as

for any low-energy effective theory) is that these interactions can be used to describe all

physical processes involving at most quartic interactions that can appear at low energies

in the full theory. In particular, it identifies that only the combinations of κ, m and ρ

that appear in eqs. (3.18) and (3.21) can be relevant at low energies for a broad class of

physical situations.

3.3 Domain of validity

Before applying this effective theory to some simple illustrative examples it is worth recap-

ping the approximations on which its validity relies.

Semiclassical limit. First, because it is derived purely within the classical approxima-

tion, the effective field theory implicitly relies on there being small parameters that para-

metrically suppress quantum corrections. In the full theory this is often assured through

the existence of small dimensionless couplings, like gauge or quartic-scalar couplings. It

implicitly also relies on a low-energy approximation, both to justify the low-energy, single-

field approximation (see below) and to justify semiclassical methods in the full theory. For

instance, the energies to which the full two-field theory are applied must be small relative

to the higher energy scales being ignored (such as — but not restricted to — the Planck

scale) in order to suppress loops, and so is a precondition for justifying the semiclassical

treatment of gravity.

Low energies. The additional condition required to replace the full two-scalar system

with its one-scalar effective theory in the trough requires the energies of interest to be

low enough not to dynamically excite any heavy quanta.12 In practice, the validity of the

derivative expansion used in (3.15) requires all derivatives to be much smaller than the

high-energy scales. As we saw when inverting the heavy-field operator ∆h = Ω−M2 as a

power series in Ω/M2, the relevant scale controlling this low-energy expansion is set by

M2 =M2 + Vhhℓ ℓ+
1

2
Vhhℓℓ ℓ

2 − 1

2ρ2
∂µℓ∂

µℓ− 1

3ρ2
ℓ�ℓ , (3.22)

rather than directly by κ and m. In particular, the low-energy approximation (and the

effective field theory description derived here) can fail if the various terms in M2 cancel,

even if they are separately large. This is the reason the effective single-field approximation

fails in explicit examples [22], and we see it here as arising for the usual reason: a breakdown

of the large hierarchy of scales on which the decoupling of high scales is based.

Furthermore, even when an effective single-field description exists, it need not be the

one obtained by simply truncating the heavy fields [19–21]. As we see above, setting h = 0

requires Vh to vanish, but because Vh ≃ (U̇/κm)2 this need not be a good approximation.

12For time-dependent — such as cosmological — applications, ‘energies’ here means both adiabatic en-

ergies of perturbations and any measures of background time-dependence, such as the Hubble scale, H.
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For time-dependent problems, since effective theories only capture adiabatic evolution

the low-energy limit also requires the time scales for significant changes to low-energy

classical fields to be much larger than those, such as 1/m and 1/κ, set by high-energy scales.

Small fields. The explicit form given for the effective Lagrangian in eq. (3.15) also relies

on expanding in powers of ℓ, and in the presence of shallow troughs in the scalar potential

this is (by assumption) not required by the low-energy approximation. In practice the need

to expand in powers of ℓ arises from the complexity of solving the full field equations, even

in the limit where m is very large.

This complexity has two logically different sources. First, for the kinetic energies the

small-field limit enters when evaluating the target-space curvature only at the background,

ϕ, rather than also as a function of ℓ. This approximation implicitly requires ℓ not to be

large compared with the target-space radius of curvature: ℓ≪ ρ.

Secondly, and more generally, because J(1) ∼ m2ℓ2/κ grows with m2 there could be

contributions to the effective action to order 1/m2 coming from what are formally much

higher orders in the 1/m expansion, such as those arising from contributions like ∆L ∼
Jn
(1)J(n)/M2n

eff . However, these are also higher order in ℓ — being at least of order ℓ2n —

showing how ℓ ≪ κ is implicitly required to justify their neglect. This of course is an

artefact of having expanded around the point ϕ. In order to analyse the system far away

from ϕ (i.e. for large ℓ), it suffices to simply shift the expansion base point, ϕ.

4 Some flat examples

It is useful to compare the above expressions with concrete examples, to check their validity

against known systems before seeking new applications to cosmological models.

4.1 The mexican hat

Consider first the most familiar case of a curved trough: two scalar fields with a flat target

space mutually coupled through an O(2)-invariant ‘Mexican hat’ or ‘wineglass’ potential:

L√−g = −∂µΦ∗∂µΦ− V (Φ∗Φ) , (4.1)

where Φ = 1√
2
(X + iY) = 1√

2
Z eiϑ. The target-space metric for this model is flat, as is

explicit when written in terms of X and Y, for which the target-space Christoffel symbols

vanish. Consequently, in these coordinates V; a1...an = V, a1...an and so on.

In this section we choose the potential to have the explicit form

V (X ,Y) = V0 +
λ2

4

(

X 2 + Y2 − ν2

λ2

)2

, (4.2)

which has a level trough at V = V0 along the curve Z =
√
X 2 + Y2 = ν/λ. The unit

tangent and normal to this trough are

~eℓ =

(

− sinϑ

cosϑ

)

and ~eh =

(

− cosϑ

− sinϑ

)

, (4.3)
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where cosϑ := X/Z and sinϑ := Y/Z. These are also eigenvectors of the mass matrix,

Aa
b = δac V, cb,

A = −ν2I + λ2

(

3X 2 + Y2 2XY
2XY 3Y2 + X 2

)

, (4.4)

with eigenvalues µ2 = M2
− = −ν2 + λ2(X 2 + Y2) and M2 = M2

+ = −ν2 + 3λ2(X 2 + Y2).

Evaluated at the bottom of the trough these reduce to

M2
− = 0 and m2 :=M2

+ = 2ν2 , (4.5)

as usual. Clearly Vh = V, a e
a
h and Vℓ = V, a e

a
ℓ both vanish everywhere at the bottom of

the trough.

Since the trough is level, it follows that U̇ = Ü = 0 and from equation (2.10) that the

radius of curvature of the bottom of the trough is 1/κ = −Vhℓℓ/m2, where V,XXX = 6λ2X ,

V,XXY = 2λ2Y, V,XYY = 2λ2X and V,YYY = 6λ2Y. Combining definitions,

Vhℓℓ = −V,XXX s
2c− V,XXY(−2sc2 + s3)− V,XYY(c

3 − 2s2c)− V,YYY sc
2

= −λ2X (6s2c+ 2c3 − 4s2c)− λ2Y(6sc2 + 2s3 − 4sc2)

= −2λ2(X c+ Ys) = −2λ2
√

X 2 + Y2 , (4.6)

where c := cosϑ and s := sinϑ. Evaluated at the trough’s minimum,
√
X 2 + Y2 = ν/λ,

this allows κ to be simplified to

κ =
m2

2λν
=
ν

λ
, (4.7)

as expected. In particular, the O(2) symmetry ensures physical quantities do not vary

along the trough, so κ̇ = ṁ = 0 and so on. For reference, we list all the symmetrized

derivatives, Vi1···ik , (evaluated at the trough minimum) for the mexican hat potential:

Vℓℓℓ = 0 , Vhℓℓ = −2λν , Vhhℓ = 0 , Vhhh = −6λν ,

Vℓℓℓℓ = 6λ2 , Vhℓℓℓ = 0 , Vhhℓℓ = 2λ2 , Vhhhℓ = 0 , Vhhhh = 6λ2 , (4.8)

and Vi1···ik = 0 for k ≥ 5.

Specializing the low-energy effective Lagrangian, eq. (3.15), to this case we find

Leff√−g = −V0 −
1

2
∂µℓ ∂

µℓ+
1

2m2κ2
(∂µℓ∂

µℓ)2 +O
(

1

m4

)

= −V0 −
1

2
∂µℓ ∂

µℓ+
λ2

4ν4
(∂µℓ∂

µℓ)2 +O
(

1

m4

)

, (4.9)

where the second line uses the above calculations of m and κ. Notice that the symmetry

ℓ→ ℓ+ c of the low-energy theory ensures the existence of a conserved Noether current,

Jµ
eff = −N

[

1− λ2

ν4

(

∂λℓ∂
λℓ
)

]

∂µℓ+ · · · , (4.10)

which corresponds (up to a constant normalization, N ) to the current due to O(2) invari-

ance in the full theory

Jµ = −Z2 ∂µϑ . (4.11)
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Slowly rolling solutions

As an application of this Lagrangian, consider next the energetics of the slowly rolling

solution where the field Φ rotates around the bottom of the potential at constant angular

speed: i.e. Z is constant but ϑ = ωt. In this case the centrifugal force shifts Z away from

the minimum so that Z2 = X 2+Y2 = (ν2+ω2)/λ2. The potential evaluated at this shifted

position is

V − V0 =
ν4

4λ2
− ν2

2λ2
(ν2 + ω2) +

1

4λ2
(ν2 + ω2)2 =

ω4

4λ2
, (4.12)

and so the total energy density is

ε =
1

2
(X 2 + Y2)ω2 + V = V0 +

ω2ν2

2λ2
+

3ω4

4λ2
. (4.13)

The conserved ‘angular momentum’ of this motion is similarly given by

J0 = Z2ϑ̇ = (ν2 + ω2)
ω

λ2
, (4.14)

where in this section we temporarily use dots to denote time derivatives.

We next calculate this same energy density and conserved charge in the effective field

theory, to see how it arises there. For the slowly-rolling field configuration in the low-energy

theory, we solve �ℓ = 0 using the leading-order solution ℓ = fωt, for which ℓ̇ = ∂tℓ = f ω

is a constant. Evaluating Leff at this solution then gives

Leff√−g = −V0 +
ℓ̇2

2
+
λ2ℓ̇4

4ν4
+O

(

1

ν6

)

. (4.15)

To find the energy of this solution we compute the effective Hamiltonian density for

this system, which is

Heff = πeff ℓ̇− Leff , (4.16)

where the canonical momentum is defined by

πeff√−g :=
1√−g

δSeff

δℓ̇
= ℓ̇+

λ2ℓ̇3

ν4
+O

(

1

ν6

)

. (4.17)

Using this the Hamiltonian density becomes

Heff√−g = V0 +
ℓ̇2

2
+

3λ2ℓ̇4

4ν4
+O

(

1

ν6

)

, (4.18)

and so the energy density obtained by evaluating this at ℓ̇ = fω is

εeff = V0 +
ω2f2

2
+

3λ2ω4f4

4ν4
+ · · ·

= V0 +
ω2ν2

2λ2
+

3ω4

4λ2
+O

(

1

ν6

)

, (4.19)

where the second equality uses f = ν/λ to secure agreement of the ω2 term with its

counterpart in the exact result obtained from the full theory. Once this is done the ω4

term also agrees.
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The conserved charge is similarly given by

J0
eff = N

[

1 +
λ2ℓ̇2

ν4

]

ℓ̇ = N
(

1 +
ω2

ν2

)

νω

λ
, (4.20)

which again agrees with the full theory given the normalization N = f = ν/λ. These

examples show how it is the new O(1/ν4) effective interactions that bring the low-energy

theory the news of the energy shift that centrifugal motion brings for slow motion in the

full theory.

4.2 The cowboy hat

An instructive variation on the previous example is the case of an O(2)-breaking potential,

wherein the circular trough is deformed to an ellipse.13 This deformation is simply achieved

by deforming the potential of eq. (4.2) to

V (X ,Y) = V0 +
1

4

(

λxX 2 + λyY2 − v2
)2
, (4.21)

which reduces to the case considered above if λx = λy = λ and v2 = ν2/λ.

The trough minimizing V in this case is the ellipse

λxX 2 + λyY2 = Z2
(

λ+ λ′ cos 2ϑ
)

= v2 , (4.22)

where λ := 1
2(λx+λy), λ

′ := 1
2(λx−λy) and, as before, X + iY := Z eiϑ. The mass matrix

along the trough has eigenvalues M2
− = 0 and M2

+ = m2, with

m2 = 2
(

λ2xX 2 + λ2yY2
)

= 2Z2
(

λ2 + λ′
2
+ 2λλ′ cos 2ϑ

)

=
2v2(λ2 + λ′2 + 2λλ′ cos 2ϑ)

λ+ λ′ cos 2ϑ
≈ 2λv2

[

1 +
λ′

λ
cos 2ϑ+O

(

λ′
2
)

]

. (4.23)

The corresponding eigenvectors are also the tangent and normal to the trough, and are

given by

~t = ~eℓ =

√
2

m

(

−λyY
λxX

)

and ~n = ~eh = −
√
2

m

(

λxX
λyY

)

. (4.24)

Notice in particular that if λ′ 6= 0 then ṁ 6= 0 along the trough’s bottom.

The trough’s radius of curvature is given by κ = −m2/V,ijkt
itjnk, where the required

third derivatives now are

VXXX = 6λ2xX , VXXY = 2λxλyY , VXYY = 2λxλyX , VYYY = 6λ2yY . (4.25)

After some algebra this gives

κ =
m3

2
√
2λxλyv2

≈ v√
λ

[

1 +
3λ′

2λ
cos 2ϑ+O

(

λ′
2
)

]

, (4.26)

13And so with the sombrero shape deforming into a cowboy hat, hence the name.
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which reduces to the mexican-hat expression, eq. (4.7), when λ′ = 1
2(λx − λy) → 0 and

v = ν/
√
λ. From this we see that κ̇ does not vanish along the trough bottom because ṁ

does not, and that
κ̇

κ
=

3 ṁ

m
. (4.27)

The low-energy effective Lagrangian derived for physics near the trough’s bottom again

satisfies U = V0 and so U̇ = Ü = 0, and because of this variables can be found for which

simultaneously Geff = 1 and Veff = V0. The leading contribution to the effective theory in

these variables is therefore again eq. (4.9):

Leff√−g = −V0 −
1

2
∂µℓ ∂

µℓ+
1

2m2κ2
(∂µℓ∂

µℓ)2 +O
(

1

m4
, ℓ5
)

= −V0 −
1

2
∂µℓ ∂

µℓ+
4λ2xλ

2
yv

4

m8
(∂µℓ∂

µℓ)2 +O
(

1

m4
, ℓ5
)

. (4.28)

where the second line uses the above calculations of m and κ, eqs. (4.23) and (4.26), with

ϑ→ ϑ0 now regarded as the point about which Leff is expanded.

A potential puzzle with this result is that to within the accuracy it is written it shares

the shift symmetry, ℓ → ℓ + c, of the circular case, which implies the existence of the

conserved current to within the same level of accuracy

Jµ
eff = −N

[

1−
16λ2xλ

2
yv

4

m8
(∂ℓ)2

]

∂µℓ+ · · · . (4.29)

Conservation of this current should only be an artefact of stopping at O(ℓ4) when writing

the effective Lagrangian, since there is no reason why Heff(ℓ) should be completely ℓ-

independent. Assuming there to be a term in Heff(ℓ) of order ℓ
2/m2κ4 we are led to expect

failure of current conservation to first arise at the 4-derivative level:

∂µJ
µ ∝

(

λ′N f5

m2κ4

)

ω4 =

(

λ′

λ2

)

ω4 . (4.30)

The potential puzzle arises once we ask at what level the previously conserved current,

Jµ, fails to be conserved in the full theory. This is governed by the ϑ field equation,

which states

∂µJ
µ = −∂µ

(

Z2∂µϑ
)

= λ′Z2 sin 2ϑ
[

Z2(λ+ λ′ cos 2ϑ)− v2
]

. (4.31)

Notice in particular that the right-hand side vanishes when evaluated along the trough’s

bottom, which is where eq. (4.22) is satisfied. Suppose now we take λ′ ≪ λ and perturb

about the slowly rolling solution of the mexican hat. Then eq. (4.31) can be linearized in

λ′ and simplifies to

∂µJ
µ ≃ λλ′Z2

(

Z2 − ν2

λ2

)

sin 2ϑ

≃ λ′ω2ν2

λ3
sin 2ϑ+O(ω4) , (4.32)
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where ϑ ≃ ωt. This seems to have the dependence on f = ν/λ and ω that would come

from the contribution to ∂µJ
µ
eff of a term like λ′ℓ2(∂ℓ)2 in the effective Lagrangian.

However, we used the freedom to redefine fields to set Geff = 1 in order to find a

current conserved up to order ω4 in the effective theory, so we should see if we can also do

so in the full theory. To this end imagine redefining the low-energy angular variable,

ϑ̂ := ϑ+
a

4
sin 2ϑ , (4.33)

and define

Ĵµ := −
(

Z2∂µϑ̂
)

≃ −Z2∂µϑ
(

1 +
a

2
cos 2ϑ

)

, (4.34)

so

∂µĴ
µ ≃ −∂µ

(

Z2∂µϑ
)(

1 +
a

2
cos 2ϑ

)

+ aZ2 sin 2ϑ ∂µϑ∂µϑ

≃
(

λ′

λ
− a

)

ω2ν2

λ2
sin 2ϑ , (4.35)

where the last approximate equality works to linear order in λ′, assumes a = O(λ′) and

linearizes as before about the λ′ = 0 solution ϑ ≃ ωt and Z2 ≃ (ν2 + ω2)/λ2. We see that

the choice a = λ′/λ defines a current, Ĵµ, whose non-conservation first arises at O(ω4)

when linearized in λ′, just as was the case for the low-energy effective theory.

5 Applications to inflationary models

We next consider non-flat troughs and ask whether and how the effective analysis presented

here can be used to describe the dynamics of multi-field inflationary models. Our goal is

twofold. First, we provide simple criteria for when a given multi-field model with a trough

is well-described by our effective Lagrangian. Second, we show how our effective action

provides a simple shortcut for calculating inflationary observables for multi-field models

using well-known results for single-field models.

Our starting point is the effective field theory computed out to quartic order in ℓ and

up to order 1/m2: eqs. (3.15), (3.18) and (3.21), which we repeat here for convenience

(with j = 0):

Leff√−g = −Veff(ϕ, ℓ)−
1

2
(∂µℓ ∂

µℓ) +Heff(ϕ, ℓ)(∂µℓ ∂
µℓ)2 + · · · , (5.1)

with

Heff(ϕ, ℓ) ≃
1

2κ2m2
+O(ℓ) , (5.2)

and

Veff(ϕ, ℓ) ≃ U(ϕ+ ℓ) + δV (ϕ, ℓ)

≃ U(ϕ) + U ′(ϕ) ℓ+
1

2
µ2eff(ϕ) ℓ

2 +
1

3!
geff(ϕ) ℓ

3 +
1

4!
λeff(ϕ) ℓ

4 + · · · , (5.3)
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with

µ2eff ≃ U ′′ − U
′2

κ2m2
,

geff ≃ U ′′′ − 2U
′2m′

κ2m3
,

λeff ≃ U ′′′′ − 3U ′κ′

κ3
+

4U ′U ′′

κ2m2

(

4m′

m
+

3κ′

κ

)

− 16U
′2κ′m′

κ3m3
− 6U ′U ′′′

κ2m2
(5.4)

− 2U ′2

κ2m2

m′2

m2
+

U
′2

κ4m2

(

6 + 3λnnn − 11κ
′2 + 4κκ′′

)

,

and so on. In this section only we switch to using primes to denote differentiation with

respect to trough arc length: e.g. κ′ := dκ/dσ = (dκ/dϕ)dϕ/dσ, and reserve over-dots for

FRW time derivatives.

For cosmological applications we expect this kind of single-field description to apply

whenever all time-dependence scales are smaller than the parameters m, κ, ρ and so on. In

particular, we do not expect this type of single-field model to capture the ‘quasi-single-field

models’ [35–37] that satisfy m ≃ H.14

5.1 Basic inflationary observables

Suppose we now imagine ℓ to be the inflaton, with inflation driven by a slow roll along the

trough’s bottom. Imagine also choosing ϕ so that ℓ = 0 denotes the epoch of horizon exit of

some reference comoving scale. In this case the action, (5.1), is equivalent to a single-field

inflationary model, with scalar potential Veff and non-minimal Lagrangian function [28]

P (X, ℓ) = −Veff(ℓ) + X + 4HeffX
2. We may therefore use standard single-field formulae

for a P (X, ℓ) theory [33, 34] when making inflationary predictions.

In particular, it is clear that the presence of both Heff and δV imply the inflationary

slow-roll differs from a naive analysis that simply uses U as the inflationary potential along

the trough’s bottom. These differences track the influence of the heavy second field on the

low-energy inflationary dynamics. For instance, the slow-roll parameters defined by the

scalar potential at horizon exit are

ǫV :=
1

2

(

MpV
′
eff

Veff

)2

ℓ=0

≃ 1

2

(

Mp U
′

U

)2

:= ǫU

ηV :=

(

M2
pV

′′
eff

Veff

)

ℓ=0

≃
M2

pU
′′

U
−
M2

pU
′2

κ2m2U
:= ηU − 2ǫU

(

U

κ2m2

)

, (5.5)

showing ǫV agrees with ǫU while ηV and ηU can differ. Notice that ηV < ηU because U > 0

during inflation, and (if ǫU and ηU are comparable in size) the correction is sizeable if U is

comparable to κ2m2.

Furthermore, the presence of Heff in P (X, ℓ) implies an effective ‘speed of sound’,

c2s :=
P, X

P, X + 2XP, XX
=

1 + 8HeffX

1 + 24HeffX
≃ 1− 16HeffX ≃ 1− 8X

κ2m2
, (5.6)

14See however [38] for an interesting case study of the regimes that interpolate between those of [35–37]

and those of the single field effective description.
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which is smaller than unity because X = 1
2 ℓ̇

2 > 0. In terms of the trough and slow roll

parameters, using 3Hℓ̇ ≃ −U ′ and 3M2
pH

2 ≃ U we find that

c2s ≃ 1− 8ǫUU

3κ2m2
≃ 1−

8ǫUH
2M2

pl

κ2m2
. (5.7)

The Hubble scale as a function of the rolling field ℓ is [34]

H2 =

(

2XP, X − P

3M2
p

)

ℓ=0

≃ 1

3M2
p

[

Veff +X

(

1 +
6X

κ2m2

)]

, (5.8)

whose time-dependence governs the slow-evolution parameters relevant to basic inflationary

observables. We imagine this evolution to be slow because of the shallowness of the trough

bottom, and so take X/Veff ≪ 1. We then follow the small corrections from slow roll arising

from the effective interactions induced by the heavy field.

The relevant first rate of change of H is given by

ǫ := − Ḣ

H2
=
XP, X

M2
pH

2
=

3(X + 8HeffX
2)

Veff +X + 12HeffX2

≃ 3X

Veff

(

1− X

Veff
+ 8HeffX + · · ·

)

, (5.9)

which may be inverted to give X as a function of ǫ:

3X

Veff
≃ ǫ+

ǫ2

3

(

1− 8HeffVeff

)

, (5.10)

where to leading order in the slow-roll approximation we would have had (3X/Veff)ℓ=0 ≃
ǫV = ǫU .

A second useful slow roll parameter is given by η := ǫ̇
ǫH which is related to the param-

eters ηV and ǫ above, and can be rewritten to leading order as [34]

η =
ǫ̇

ǫH
= −2ηV + 4ǫ

≃ −2ηU +
4U

κ2m2
+

12X

Veff

(

1− X

Veff
+ 8HeffX

)

. (5.11)

Furthermore, we have s := ċs/(csH) ≃ 0, which vanishes in our case asHeff is ℓ-independent

only as a consequence of our having expanded Leff to quartic order in fields. The effective

theory obtained to all orders in fields (but to quartic order in derivatives) would in general

exhibit a varying speed of sound along the trough.

The utility of these expressions lies in the following general results for properties of

the spectra of primordial scalar and tensor fluctuations [34]:

Pζ(k) ≃
(

H2

8π2csǫM2
p

)

k

Ph(k) ≃
(

2H2

π2M2
p

)

k

, (5.12)
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where (· · · )k denotes evaluation at horizon exit for mode k. These expressions are valid

so long as the parameters ǫ, η, and in particular cs vary slowly enough15 (to quartic order

in fields, the latter is satisfied by default). Of particular observational interest are the

following expressions16

ns(k)− 1 :=
dPζ

d ln k
≃ (−2ǫ− η − s)k

nT (k) :=
dPh

d ln k
≃ −(2ǫ)k

and r :=
Ph

Pζ
≃ (16csǫ)k ≃ −8(csnT )k . (5.13)

We note that were we to compute the effective theory to all orders in fields (alternatively,

recompute the effective expansion to quartic order at each instant the mode of interest k

crosses the horizon), we could infer from the above the presence of features in the scalar

spectrum generated by a varying speed of sound. By current observational constraints [3, 4]:

ns = 0.968± 0.012 and r < 0.2 with no significant evidence for any spectral running.

5.2 Nongaussianity

We note that in addition to gravitational non-linearities, there are three sources of nonlin-

earity in the action (5.1) that can give rise to primordial non-gaussianity: the cubic scalar

potential term with coupling geff ; the quartic scalar potential term with coupling λeff ; and

the quartic derivative interaction with coefficientHeff . General bispectrum and trispectrum

predictions for the multi-scalar trough model are straightforwardly obtained by combin-

ing the above expressions for these couplings with existing single-field calculations [32–34],

whose validity relies on the condition that cs varies sufficiently slowly (ċs ≪ csH).

For example, for the primordial bi-spectrum we quote these as

〈ζ(k1)ζ(k2)ζ(k3)〉 =
(2π)7[Pζ(K)]2

∏

i k
3
i

δ3(~k1+~k2+~k3)
(

Aλ+Ac+Ao+Aǫ+Aη+As

)

, (5.14)

where K := k1 + k2 + k3 and the coefficients Ai are given by

Aλ =

{

1

c2s
− 1− λ

Σ

[

2− (3− 2γ) l
]

}

K

Āλ ,

Ac =

(

1

c2s
− 1

)

K

Āc , (5.15)

Ao =

(

1

c2s
− 1− 2λ

Σ

)

K

(

ǫFλǫ + ηFλη + sFλs

)

+

(

1

c2s
− 1

)

K

(

ǫFcǫ + ηFcη + sFcs

)

,

Aǫ = ǫĀǫ , Aη = ηĀη , and As = sFs ,

15We must go beyond quartic order in ℓ when the speed of sound varies more rapidly, while remaining

within the effective theory and preserving slow roll. (See also [19–21, 23, 24].)
16The k dependence of the spectral indices and the tensor to scalar ratio can be obtained (accurate up

to terms that are second order in the slow roll parameters) by simply evaluating the first order expressions

at the instant of horizon crossing.
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where γ = 0.577 . . . is the Euler-Mascheroni constant and the ki-dependent functions, Āλ,

Āc, Aǫ, Aη, Fs, Fλǫ, Fλη, Fλs, Fcǫ, Fcη and Fcs and c1 are given explicitly in ref. [34] —

c.f. eqs. (4.44) through (4.49) and the appendices of this reference. The new parameters

λ, Σ and l are defined by

λ := X2P, XX +
2X3

3
P, XXX ≃ 8HeffX

2

Σ := XP, X + 2X2P, XX ≃ X + 24HeffX
2 , (5.16)

and

l :=
λ̇

λH
. (5.17)

It is clearly a great simplification to be able to use standard single-field results such as these

to extract predictions for the broad class of multi-scalar models to which our effective theory

applies.

5.3 Relationship with the EFT of Cheung et al.

For the simple effective theory we have derived here, there is a direct relation with the

effective expansion of [31], where it was shown that the most general form for the action

for the adiabatic mode (for example, in unitary gauge17) can be parametrized as:

S =

∫

d4x
√−g

[

M2
p

2
R+M2

p g
00Ḣ −M2

p (3H
2 + Ḣ) +

1

2!
M4

2 (t)(g
00 + 1)2

+
1

3!
M4

3 (t)(g
00 + 1)3 − 1

2
M̄4

1 (t)(g
00 + 1)δKµ

µ − 1

2
M̄4

2 (t)δK
µ 2
µ

−1

2
M̄4

3 (t)δK
µ
νK

ν
µ + · · ·

]

,

where δKµ
ν is the variation of the extrinsic curvature of the constant time hypersurfaces

with respect to the background FRW metric. The first three terms in the expansion above

ensure tadpole cancellation.

Were we to minimally couple a scalar field with the Lagrangian density L = P (X, ℓ)

to gravity and expand the action around a background homogeneous solution ℓ0, we would

deduce the co-efficients M̄n ≡ 0 and

M4
n(t) = (−1)nXn ∂

nP

∂Xn

∣

∣

∣

∣

ℓ0

, (5.18)

and so M4
2 ≃ 8HeffX

2 to the order to which we work in the above. Evidently, our effective

expansion to quartic order furnishes the leading Mn co-efficients of the effective theory

of [31]. Proceeding to higher orders in the derivative and field expansion would successively

yield the higher order M4
n coefficients.

17In this gauge, spacetime has been foliated in such a manner as to have gauged away the inflaton field

fluctuation.
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6 Conclusions

To summarize, in this paper we show how to identify covariantly the effective theory

that captures the low-energy limit of a multi-scalar system slowly evolving along a shallow

trough in the scalar potential. We illustrate this for a simple two-scalar system by explicitly

integrating out the heavy field to obtain the single-scalar low-energy effective theory, (3.15),

with effective couplings, (3.18) and (3.21).

We give explicit covariant expressions for the scales that must be large in order for the

truncation approximation to be valid, and see why it is not sufficient for the heavier field

merely to be heavy. In particular, it is also necessary for the trough not to be too strongly

curved, and for the heavy mass and trough curvature not to vary too strongly along the

trough’s bottom. Because these criteria are covariant under field redefinitions, they can be

computed for specific theories using any convenient field parametrization.

By comparing the effective theory with the full theory in several simple (non-

gravitational) examples, we show that Heff precisely captures the centrifugal energy caused

when slow motion along a curved trough forces the fields to climb a small distance up the

trough walls.

Finally, we show how simply inflationary observables can be computed for multi-field

models whenever such an effective description applies, by using well-known predictions

for single-field models with a quartic effective scalar potential. This extends these single-

field predictions by showing that they also apply to a broad class of multi-field models,

and identifies which features of the multi-field potential are relevant to observations. In

particular, we find that the effective theory contains an effective higher-derivative coupling,

Heff , that contributes to cosmological observables as a contribution to the effective speed

of sound of the primodial cosmological fluid.
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A Covariant field expansions

As in the main text we consider the action describing N mutually interacting scalar fields,

φa, written in the Einstein frame

S = −
∫

d4x
√−g

{

V (φ) + gµν
[

1

2
Gab(φ) ∂µφ

a∂νφ
b +

1

16πGN

Rµν

]

+ · · ·
}

. (A.1)

Our interest is in analyzing the theory in the immediate vicinity of a field-point, ϕa,

in a way that emphasizes the invariance of physical predictions under field redefinitions.

This section describes how to do so explicitly, but contains only standard material that the

cognoscenti should feel free to skip [45]. Recall that under generic infinitesimal local field

redefinitions the potential, V (φ), transforms as a scalar while the kinetic coefficient, Gab(φ),

transforms as a symmetric covariant tensor. That is, if φa → φa+ζa(φ), the potential, V (φ),

transforms as V → V + V, a ζ
a and Gab(φ) transforms so δGab = Gab, c ζ

c + Gac ζ
c
, b + Gcb ζ

c
, a.

Here commas denote differentiation (V, a := ∂V/∂ϕa and so on).

The goal is to define a field expansion of the action, φa = ϕa+ δφa, about a particular

field point, ϕa, that makes manifest this target-space covariance. To this end imagine

constructing the target-space geodesic, ψa(σ), that connects ϕa to φa. It is useful to use

as parameter target-space arc-length along the curve,

dσ2 = Gab(φ) dφ
adφb , (A.2)

and so
Dψ̇a

dσ
:= ψ̈a + γabc ψ̇

b ψ̇c = 0 , (A.3)

where over-dots denote d/dσ and γabc are the Christoffel symbols

γabc :=
1

2
Gad
(

Gbd, c + Gcd, b − Gbc, d

)

, (A.4)

built from the target-space metric Gab. Defining ψa(0) = ϕa and ψa(ǫ) = φa, we consider

the point φa to be near ϕa to the extent that ǫ is small (compared with other scales in

the problem).

The covariant formulation of the quantity δφa is then ǫ ξa, where ξa := ψ̇a(0) is the

tangent to this geodesic evaluated at ϕa. Although in principle any family of curves could

be used in this way to define δφa, the utility of using geodesics can be seen once physical

quantities are expanded in powers of ξa. For instance, expanding ψa in powers of ǫ gives

ψa(ǫ) = ϕa + ǫ ψ̇a(0) +
ǫ2

2
ψ̈a(0) +O(ǫ3)

= ϕa + ǫ ξa +
ǫ2

2

[

ηa − γabc ξ
bξc
]

+O(ǫ3) , (A.5)

where ηa := [Dψ̇a/dσ](0) vanishes for a geodesic, and so on. Evaluating the scalar potential

in the same way then gives

V [ψ (ǫ)] = V (ϕ) + ǫ V, a ψ̇
a(0) +

ǫ2

2

[

V, ab ψ̇
a(0) ψ̇b(0) + V, a ψ̈

a(0)
]

+ · · ·

= V (ϕ) + ǫ V, a ξ
a +

ǫ2

2
V; ab ξ

aξb +
ǫ3

3!
V; abc ξ

aξbξc + · · · , (A.6)
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where the last line repeatedly uses Dψ̇a/dσ = 0. This ensures all coefficients involve

only tensor quantities; in this case covariant derivatives built from the target-space metric:

V; ab := V, ab − γcab V, c and so on.

This simplicity arises because the expansion in powers of ξa is equivalent to the use of

Gaussian normal coordinates for the target space, for which the first derivative of the metric

at ϕa vanishes. To see this, evaluate the term cubic in ǫ in the scalar kinetic term using the

expansions Gab[ψ(ǫ)] = Gab(ϕ)+ǫGab, c(ϕ) ξ
c+ · · · and ∂µψa(ǫ) = ǫ ∂µξ

a−ǫ2 γabc ξb∂µξc+ · · ·
(where the last expansion specializes to constant background fields, ∂µϕ

a = 0), to get

Gab[ψ(ǫ)] ∂µψ
a(ǫ) ∂µψb(ǫ) = ǫ2 Gab(ϕ) ∂µξ

a∂µξb

+ǫ3
[

Gab, c ξ
c∂µξ

a∂µξb − 2Gabγ
a
cd ξ

c∂µξ
d∂µξb

]

+O(ǫ4)

= ǫ2 Gab(ϕ) ∂µξ
a∂µξb +O(ǫ4) . (A.7)

Continuing on to quartic order in the kinetic term gives the standard normal-coordinate

expression [41]

Gab[ψ(ǫ)] ∂µψ
a(ǫ) ∂µψb(ǫ) =

[

ǫ2 Gab(ϕ) +
ǫ4

3
Racbd(ϕ) ξ

cξd
]

∂µξ
a∂µξb +O(ǫ5) , (A.8)

where Ra
bcd is the Riemann tensor built from Gab.

In the special case where there are only two fields — a case we explore in more detail

below — the curvature tensor is particularly simple:

Rabcd =
1

2ρ2
(Gad Gbc − Gac Gbd) , (A.9)

characterized purely by a single function ρ, related to the Ricci scalar18 as

R(ϕ) = Rab
ab = −1/ρ2.

B Geometry of a trough

This appendix computes in detail the properties of V , assuming it has a trough-like shape

for a system involving only N = 2 fields. Following the main text, we do so first for the case

of a perfectly level trough, and then for the general case where the trough is slightly tipped.

Perfectly level troughs. As discussed in the main text, a potential with a level trough

is one for which there is an equipotential curve, χa(σ), with two defining properties. Prop-

erty (i) states that V, a[χ(σ)] = 0 for all σ; and property (ii) states that all eigenval-

ues of the ‘mass’ matrix Aa
b := Gac V; cb are non-negative, and at least one eigenvalue is

strictly positive.

To see what these conditions imply, imagine differentiating the condition V, a[χ(σ)] = 0

with respect to the arc-length, σ, along the trough. This gives

0 =
DV, a
dσ

:=
dV, a
dσ

− γcab V, c χ̇
b = V; ab χ̇

b . (B.1)

18Given the Weinberg curvature convention [39] in which we work, the Ricci scalar is negative for a target

space two-sphere of radius ρ.

– 28 –



J
H
E
P
0
1
(
2
0
1
3
)
1
3
3

Eq. (B.1) states that (for all σ) the vector χ̇a is a zero eigenvector of the mass matrix:

Aa
b χ̇

b = 0, showing that this matrix must have a zero eigenvalue.

Repeatedly differentiating with respect to σ gives the further identities involving higher

derivatives of V :

0 =
D

dσ

(

V; ab χ̇
b
)

= V; abc χ̇
bχ̇c + V; ab

Dχ̇b

dσ
, (B.2)

and so on. In general the second term does not vanish, since the direction defined by the

bottom of the trough need not be a geodesic of the target-space metric, Gab.

The radius of curvature, κ(σ), of the trough’s valley floor is also easily computed in

terms of derivatives of the potential V . This is because the tangent, χ̇a, is a unit vector,

Gab χ̇
a χ̇b = 1, provided the parameter, σ, along the curve is arc-length. This ensures that

it must be orthogonal to its derivative along the curve:

0 =
D

dσ

(

Gab χ̇
aχ̇b
)

= 2Gab χ̇
a Dχ̇

b

dσ
, (B.3)

and so defining the unit vector in the Dχ̇a/dσ direction by na, the radius of curvature of

the trough’s valley floor is defined by

Dχ̇a

dσ
:=

na

κ(σ)
. (B.4)

Notice that κ→ ∞ corresponds to the case of a ‘straight’ trough, where the valley floor de-

fines a target-space geodesic, Dχ̇a/dσ = 0. With definition (B.4), equation (B.2) becomes

V; ab n
b/κ(σ) = −V; abc χ̇bχ̇c . (B.5)

When there are only two fields the same arguments just given also give a simple

expression for Dna/dσ. Since na is a unit vector, Gab n
anb = 1, its derivative along χa(σ)

must be perpendicular to itself: Gab n
a(Dnb/dσ) = 0, and so Dna/dσ must be parallel to

χ̇a. The coefficient can be found by differentiating the condition Gab n
aχ̇b = 0 along the

curve, giving Gab(Dna/dσ)χ̇b = −Gabn
a(Dχ̇b/dσ) = −1/κ(σ), and so

Dna

dσ
:= − χ̇a

κ(σ)
. (B.6)

When there are only two fields, let m2(σ) denote the strictly positive eigenvalue of

the mass matrix that is required by condition (ii) above, and let ea+ be the corresponding

normalized eigenvector. Then we have

0 = V; ab χ̇
a eb+ = m2(σ)Gab χ̇

a eb+ , (B.7)

where the first equality holds because χ̇a is a zero eigenvector of the mass matrix.

Since m2(σ) is strictly positive, it follows that ea+ is orthogonal to χ̇a, and thus

ea+ = na. Therefore,

Aa
b n

b = m2(σ)na or, equivalently V; ab n
b = m2(σ)Gab n

b . (B.8)

– 29 –



J
H
E
P
0
1
(
2
0
1
3
)
1
3
3

Equation (B.5) can now be further simplified to

m2(σ)

κ(σ)
Gab n

b = −V; abc χ̇bχ̇c . (B.9)

Contracting equation (B.9) with na yields a simple expression for the radius of curvature,

κ(σ), in terms of derivatives of V :

1

κ(σ)
= − 1

m2(σ)
V; abc n

a χ̇bχ̇c . (B.10)

On the other hand, contracting equation (B.9) with χ̇a yields the identity

V; abc χ̇
a χ̇b χ̇c = 0 . (B.11)

We can obtain another interesting identity by differentiating equation (B.8) with respect

to σ:

V; abc n
b χ̇c + V; ab

Dnb

dσ
=

dm2(σ)

dσ
Gab n

b +m2(σ)Gab
Dnb

dσ
. (B.12)

Using (B.6), and the fact that χ̇a is a zero eigenvector of the mass matrix, this becomes

V; abc n
b χ̇c =

dm2(σ)

dσ
Gab n

b − m2(σ)

κ(σ)
Gab χ̇

b . (B.13)

Contracting equation (B.13) with na yields the identity

V; abc n
a nb χ̇c =

dm2(σ)

dσ
, (B.14)

whereas contracting equation (B.13) with χ̇a yields equation (B.10).

Now, writing the commutator of two covariant derivatives in terms of the curvature,

V; cba − V; cab = Rd
cabV, d = 0 , (B.15)

we find that

V; abc = V; (abc) , (B.16)

where (· · · ) denotes the normalized completely symmetric product: V; (a1...an) =
1
n! (V; a1...an + permutations). It is important to note that unlike the identity V; ab = V; (ab),

which holds everywhere, equation (B.16) only holds along the curve χa(σ).

In summary, we have obtained formulas for all possible contractions of third covariant

derivatives of V with χ̇a or na, in terms of m, ṁ, κ, and Vnnn ≡ V;abcn
anbnc. This last

quantity measures how the walls of the trough deviate from a perfect parabola.

Now we will derive similar formulas for the fourth derivatives of the potential. Differ-

entiating equation (B.9), and using equations (B.4), (B.6), (B.16), and (B.13), we obtain

V; abcd χ̇
b χ̇c χ̇d =

m2

κ

(

κ̇

κ
− 6ṁ

m

)

na +
3m2

κ2
χ̇a . (B.17)
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Contracting this equation with χ̇a, we obtain

V; abcd χ̇
a χ̇b χ̇c χ̇d =

3m2

κ2
. (B.18)

On the other hand, contracting with na yields

V; abcd n
a χ̇b χ̇c χ̇d =

m2

κ

(

κ̇

κ
− 6ṁ

m

)

. (B.19)

Now, differentiating equation (B.13), and using equations (B.4), (B.6), and (B.9), we obtain

V; abcd n
b χ̇c χ̇d = −1

κ
V; abc n

b nc + 2(ṁ2 +mm̈)na −
2m2

κ2
na +

m2

κ

(

κ̇

κ
− 4ṁ

m

)

χ̇a . (B.20)

Contracting this equation with χ̇a, and using equations (B.14) and (B.16) yields equa-

tion (B.19). On the other hand, contracting with na yields

V; abcd n
a nb χ̇c χ̇d +

Vnnn
κ

= 2(ṁ2 +mm̈)− 2m2

κ2
. (B.21)

Finally, another identity is obtained by differentiating Vnnn along the trough, and us-

ing (B.14):

V; abcd n
a nb nc χ̇d =

D

dσ
(Vnnn) +

6mṁ

k
. (B.22)

Now, to find the symmetries of V; abcd we use

V; dcba − V; dcab = Re
cabV; de +Re

dabV; ec , (B.23)

V; dcba − V; dbca = Re
dbc; aV; e +Re

dbcV; ea . (B.24)

Contracting (B.23) with various combinations of na and χ̇a, we obtain the relations

V; abcd χ̇
a χ̇b χ̇c nd − V; abcd χ̇

a χ̇b nc χ̇d = 0 ,

V; abcd n
a nb χ̇c nd − V; abcd n

a nb nc χ̇d = 0 , (B.25)

V; abcd χ̇
a nb χ̇c nd − V; abcd χ̇

a nb nc χ̇d = −m2/2ρ2 ,

whereas contracting (B.24) with various combinations of na and χ̇a yields

V; abcd χ̇
d − V; (abc)d χ̇

d = 0 ,

V; abcd n
aχ̇bncnd − V; abcd n

anbχ̇cnd = 0 , (B.26)

V; abcd χ̇
aχ̇bncnd − V; abcdχ̇

anbχ̇cnd = −m2/2ρ2 .

Note that the first equation of (B.26) may also be obtained by differentiating equa-

tion (B.16) along the trough.

Also, the first equation of (B.25), combined with the first equation of (B.26), implies

that when V; abcd is contracted with three χ̇’s and one n, the ordering of indices does

not matter. Similarly, the second equation of (B.25), combined with the second equation

of (B.26), implies that when V; abcd is contracted with three n’s and one χ̇, the ordering
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of indices also does not matter. Finally, the third equations of (B.25) and (B.26), in

combination with the first equation of (B.26), relate all possible contractions of V; abcd with

two χ̇’s and two n’s to each other.

In summary, it is possible to obtain formulas for all possible contractions of fourth

covariant derivatives of V with χ̇a or na, in terms of m, ṁ, m̈, κ, κ̇, ρ, Vnnn, V̇nnn,

and Vnnnn ≡ V; abcdn
anbncnd.

Tilted troughs. We next turn to the situation where the trough is not completely level,

but with derivatives along the trough assumed to be parametrically small rather than zero.

Define the potential along the trough’s bottom as the slowly varying function U(σ) :=

V [χ(σ)], with the gradient of V along the trough bottom given by V, a[χ(σ)] = ua(σ),

where u2 = Gabuaub is much smaller than the other scales in the potential.

In this case, we again choose the curve χa(σ) to run along the bottom of the (no-

longer level) trough, and so by construction its tangent is parallel to the potential gradient

along the bottom:19 χ̇a ∝ Gabub. Contracting V, a with both χ̇a and na then leads to the

two equations

ua χ̇
a = U̇ and ua n

a = 0 for all σ . (B.27)

Differentiating the first of these with respect to σ then gives

Ü = V; ab χ̇
a χ̇b + V, a

Dχ̇a

dσ
= V; ab χ̇

a χ̇b +
ua n

a

κ
= V; ab χ̇

a χ̇b . (B.28)

Similarly, differentiating the second of eqs. (B.27) gives

0 =
D

dσ

(

V, a n
a
)

= V; ab n
aχ̇b + V, a

Dna

dσ
= V; ab n

aχ̇b − U̇

κ
, (B.29)

where the last equality uses both eq. (B.6) and the first of eqs. (B.27). In particular, this

shows that na and χ̇a need no longer be eigenvectors of the matrix Aa
b. Instead, we have

V; ab χ̇
a = Ü χ̇b +

U̇

κ
nb ,

V; ab n
a =

U̇

κ
χ̇b +m2nb , (B.30)

where we define

m2(σ) := V; ab n
a nb . (B.31)

In matrix notation,

V; ab =

(

Ü U̇/κ

U̇/κ m2

)

. (B.32)

Diagonalizing this matrix, we find the heavy eigenvalue

M2
+ =

1

2

(

m2 + Ü + (m2 − Ü)
√

1 + β2
)

= m2 +
U̇2

κ2m2
+O

(

1

m4

)

, (B.33)

19Notice χa(σ) is not required to be a physical trajectory, in that it need not be a solution to the equations

of motion.
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with corresponding eigenvector

ea+ = (sgn U̇) · βn
a + (

√

1 + β2 − 1)χ̇a

√

2(1 + β2 −
√

1 + β2)

= na cos θ + χ̇a sin θ , (B.34)

where

β =
2U̇

κ(m2 − Ü)
≪ 1 , (B.35)

and

tan θ =

√

1 + β2 − 1

β
. (B.36)

The light eigenvalue similarly is

M2
− =

1

2

(

Ü +m2 − (m2 − Ü)
√

1 + β2
)

= Ü − U̇2

κ2m2
+O

(

1

m4

)

, (B.37)

and the corresponding eigenvector is

ea− = (sgn U̇) · βχ̇
a − (

√

1 + β2 − 1)na
√

2(1 + β2 −
√

1 + β2)

= χ̇a cos θ − na sin θ . (B.38)

It is straightforward to check that these eigenvectors are orthonormal. Now we obtain

formulas for the third covariant derivatives of V in terms of derivatives of U . Differentiating

equation (B.28) yields

Ü̇ = V; abc χ̇
a χ̇b χ̇c + 2V; ab χ̇

a Dχ̇
b

dσ

= V; abc χ̇
a χ̇b χ̇c +

2

κ
V; ab χ̇

a nb (B.39)

= V; abc χ̇
a χ̇b χ̇c +

2U̇

κ2
,

and differentiating equation (B.29) yields

0 = V; abc n
aχ̇bχ̇c + V; ab

Dna

dσ
χ̇b + V; ab n

a Dχ̇
b

dσ
− Ü

κ
+
κ̇U̇

κ2

= V; abc n
aχ̇bχ̇c − 1

κ
V; ab χ̇

a χ̇b +
1

κ
V; ab n

a nb − Ü

κ
+
κ̇U̇

κ2
(B.40)

= V; abc n
aχ̇bχ̇c − 2Ü

κ
+
m2

κ
+
κ̇U̇

κ2
,

where

− κ̇

κ2
=

d

dσ

(

Gab n
aDχ̇

b

dσ

)

= Gab n
aD

2χ̇b

dσ2
. (B.41)
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Finally, differentiating equation (B.31) and simplifying yields

V; abc n
a nb χ̇c = 2mṁ+

2U̇

κ2
. (B.42)

The generalization of equation (B.15) to tilted troughs becomes

V; abc χ̇
a χ̇b nc − V; abc χ̇

a nb χ̇c = 0 ,

V; abc n
a χ̇b nc − V; abc n

a nb χ̇c = U̇/2ρ2 . (B.43)

The first equation of (B.43) implies that when V; abc is contracted with two χ̇’s and one

n, the ordering of indices does not matter. The second equation of (B.43) implies that

all three possible contractions of V; abc with two n’s and one χ̇ can be related to each

other. To make this relation simple and explicit, we introduce the following notation for

symmetrized derivatives:

Vttn ≡ V; (abc)χ̇
a χ̇b nc , Vtnn ≡ V; (abc)χ̇

a nb nc , etc. (B.44)

Also, we introduce the following notation for non-symmetrized (NS) derivatives:

V NS
tnn ≡ V; abcχ̇

a nb nc , V NS
ntn ≡ V; abcn

a χ̇b nc , etc. (B.45)

In this new notation, we have

Vt = U̇ , Vn = 0 ,

Vtt = Ü , Vtn =
U̇

κ
, Vnn = m2 . (B.46)

For the third derivatives, equation (B.39) implies

Vttt = Ü̇ − 2U̇

κ2
, (B.47)

while equation (B.40), in combination with the first equation of (B.43), implies

Vntt = V NS
ntt = V NS

tnt = V NS
ttn = −m

2

κ
+

2Ü

κ
− U̇ κ̇

κ2
. (B.48)

Also, equation (B.42) implies

V NS
nnt = 2mṁ+

2U̇

κ2
. (B.49)

Now, to find explicit expressions for Vnnt and V
NS
tnn = V NS

ntn, write

3Vtnn = 2V NS
tnn + V NS

nnt . (B.50)

Combining equation (B.50) and the second equation of (B.43) yields

V NS
tnn = Vtnn + U̇/6ρ2 ,

V NS
nnt = Vtnn − U̇/3ρ2 . (B.51)
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Combining the second equation of (B.51) with (B.49) yields

Vtnn = 2mṁ+ 2U̇/κ2 + U̇/3ρ2 . (B.52)

Therefore, the first equation of (B.51) finally becomes

V NS
tnn = 2mṁ+ 2U̇/κ2 + U̇/2ρ2 . (B.53)

In summary, we have obtained formulas for all possible contractions of third covariant

derivatives of V with χ̇a or na, in terms of m, ṁ, κ, κ̇, U̇ , Ü , Ü̇ , ρ, and Vnnn.

Now, let us define

Vℓℓh ≡ V; (abc)e
a
− e

b
− e

c
+ , Vℓhh ≡ V; (abc)e

a
− e

b
+ e

c
+ , etc. (B.54)

These quantities are important, because they appear in the low-energy effective Lagrangian.

To relate them to V···t,n···, we use:

Vℓ = Vt cos θ − Vn sin θ = U̇ cos θ = U̇ +O(1/m4) ,

Vh = Vn cos θ + Vt sin θ = U̇ sin θ = U̇2/m2κ+O(1/m4) . (B.55)

For the second derivatives, we have, by construction,

Vℓℓ = M2
− = Ü − U̇2

m2κ2
+O

(

1

m4

)

, (B.56)

Vhh = M2
+ = m2 +

U̇2

m2κ2
+O

(

1

m4

)

, (B.57)

Vℓh = 0 . (B.58)

And for the third derivatives,

Vℓℓℓ = Vttt cos
3 θ − 3Vntt cos

2 θ sin θ + 3Vnnt cos θ sin
2 θ − Vnnn sin

3 θ ,

Vℓℓh = Vttn cos
3 θ + (Vttt − 2Vtnn) cos

2 θ sin θ + (Vnnn − 2Vttn) cos θ sin
2 θ

+Vtnn sin
3 θ ,

Vℓhh = Vtnn cos
3 θ + (2Vttn − Vnnn) cos

2 θ sin θ + (Vttt − 2Vnnt) cos θ sin
2 θ (B.59)

−Vttn sin3 θ ,
Vhhh = Vnnn cos

3 θ + 3Vnnt cos
2 θ sin θ + 3Vttn cos θ sin

2 θ + Vttt sin
3 θ .

It is useful to expand these complicated expressions in inverse powers of m. We find

Vℓℓℓ = Ü̇ +
U̇

κ2
− 3U̇

m2κ2

[

Ü − U̇

(

2ṁ

m
+
κ̇

κ

)]

+O
(

1

m4

)

,

Vℓℓh = −m
2

κ
+

2Ü

κ
− U̇

κ

(

4ṁ

m
+
κ̇

κ

)

+
U̇

m2κ

[

Ü̇ − 4Üṁ

m
− U̇

κ2

(

5

2
− λnnn

)

− 2U̇

3ρ2

]

+O
(

1

m4

)

,
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Vℓhh = 2mṁ− U̇

(

λnnn
κ2

− 1

3ρ2

)

+
U̇

m2κ2

[

Ü
(

2− λnnn

)

− U̇

(

7ṁ

m
+

2κ̇

κ

)]

(B.60)

+O
(

1

m4

)

,

Vhhh =
m2

κ
λnnn +

6U̇ṁ

κm
+

U̇

m2κ

[

6Üṁ

m
+

3U̇

κ2

(

1− 1

2
λnnn

)

+
U̇

ρ2

]

+O
(

1

m4

)

,

where we define

Vnnn =

(

m2

κ

)

λnnn . (B.61)

It is sometimes convenient to expand in inverse powers ofM2 ≡M2
+ ≈ m2+ U̇2/κ2m2,

the physical mass of the heavy field, rather than m2. These are related by

m2 = M2 − U̇2

M2κ2
+O

(

1

M4

)

,

1

m2
=

1

M2
+

U̇2

M6κ2
+O

(

1

M8

)

, (B.62)

and

2mṁ = 2MṀ − 2U̇

M2κ2

[

Ü − U̇

(

Ṁ

M
+
κ̇

κ

)]

+O
(

1

M4

)

,

ṁ

m
=
Ṁ

M
− U̇

M4κ2

[

Ü − U̇

(

2
Ṁ

M
+
κ̇

κ

)]

+O
(

1

M6

)

,

2(ṁ2 +mm̈) = 2(Ṁ2 +MM̈) (B.63)

− 2

M2κ2

[

Ü2 + U̇ Ü̇ − 4U̇ Ü

(

Ṁ

M
+
κ̇

κ

)

+ U̇2

(

3
Ṁ2

M2
− M̈

M
+ 3

κ̇2

κ2
− κ̈

κ
+ 4

Ṁ

M

κ̇

κ

)]

+O
(

1

M4

)

.

Employing the above relations to re-express (B.60) in terms of M yields

Vℓℓℓ = Ü̇ +
U̇

κ2
− 3U̇

M2κ2

[

Ü − U̇

(

2
Ṁ

M
+
κ̇

κ

)]

+O
(

1

M4

)

,

Vℓℓh = −M
2

κ
+

2Ü

κ
− U̇

κ

(

4Ṁ

M
+
κ̇

κ

)

+
U̇

M2κ

[

Ü̇ − 4ÜṀ

M
− U̇

κ2

(

3

2
− λnnn

)

− 2U̇

3ρ2

]

+O
(

1

M4

)

,

Vℓhh = 2MṀ − U̇

[

λnnn
κ2

− 1

3ρ2

]

− U̇

M2κ2

(

Üλnnn + 5U̇
Ṁ

M

)

+O
(

1

M4

)

, (B.64)

Vhhh =
M2

κ
λnnn + 6

U̇

κ

Ṁ

M
+

U̇

M2κ

(

6Ü
Ṁ

M
+
U̇

κ2

[

3− 5

2
λnnn

]

+
U̇

ρ2

)

+O
(

1

M4

)

.
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The first and second derivatives of V , when expanded in inverse powers of M ,

simply become

Vℓ = U̇ +O
(

1

M4

)

, Vh =
U̇2

M2κ
+O

(

1

M4

)

,

Vℓℓ = Ü − U̇2

M2κ2
+O

(

1

M4

)

, Vℓh = 0 , Vhh =M2 . (B.65)

Before going on to calculate the fourth derivatives, we make a remark about dimen-

sional analysis, which becomes useful due to the proliferation of terms as one takes more

derivatives. We use canonical relativistic units, in which ~ = c = 1. Also, for simplicity,

we take d = 4. Then [ℓ] = [h] = M, and [L] = [V ] = M
4, and [Vi1···ik ] = M

4−k, where

M denotes ‘mass dimension’, and the indices ij can be either ℓ, h or t, n. In particular,

[m2] = [Vnn] = M
2, as one would intuitively expect. Moreover, we have [D/dσ] = M

−1,

and [χ̇a] = [na] = M
0, and thus [κ] = M. Also, from the commutator formulas it follows

that [ρ] = M, so both κ and ρ share the dimension of the field-space coordinates, ℓ and h.

Now we calculate the fourth covariant derivatives of V . Differentiating equation (B.39)

and simplifying yields

Vtttt =
3m2

κ2
+ Ü̈ − 8Ü

κ2
+

7U̇ κ̇

κ3
. (B.66)

Differentiating equation (B.41) and simplifying yields

V NS
nttt = −m

2

κ

(

6
ṁ

m
− κ̇

κ

)

+
3Ü̇

κ
− 3Ü κ̇

κ2
− U̇

κ

(

6

κ2
− 2

κ̇2

κ2
+
κ̈

κ
+

1

2ρ2

)

. (B.67)

Differentiating equation (B.42) and simplifying yields

V NS
nntt = m2

(

2
ṁ2

m2
+ 2

m̈

m
− 2 + λnnn

κ2

)

+
6Ü

κ2
− 6U̇ κ̇

κ3
, (B.68)

where we have written Vnnn = (m2/κ)λnnn. Finally, differentiating the definition Vnnn ≡
V; abcn

anbnc and using (B.52) yields

V NS
nnnt =

m2

κ

(

2(3 + λnnn)
ṁ

m
− λnnn

κ̇

κ
+ λ̇nnn

)

+
U̇

κ

(

6

κ2
+

1

ρ2

)

. (B.69)

Now we look at the symmetries of the fourth derivatives. The generalization of (B.25)

to tilted troughs is

V NS
tttn − V NS

ttnt = −U̇/κρ2 ,
V NS
nntn − V NS

nnnt = +U̇/κρ2 , (B.70)

V NS
tntn − V NS

tnnt = +(Ü −m2)/2ρ2 ,

and the generalization of (B.26) is:

V NS
ttnt − V NS

tntt = −U̇/2κρ2 ,
V NS
ntnt − V NS

nntt = −U̇ ρ̇/ρ3 + Ü/2ρ2 ,
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V NS
ntnn − V NS

nntn = U̇/2κρ2 − U̇ρ,n/ρ
3 , (B.71)

V NS
ttnn − V NS

tntn = −m2/2ρ2 ,

where ρ,n ≡ na∇aρ is the normal derivative of the target-space curvature radius. Now,

we have

4Vtttn = 2V NS
nttt + V NS

ttnt + V NS
tttn . (B.72)

Combining this equation with the first equation of (B.70) and the first equation

of (B.71) yields

Vtttn = V NS
nttt −

U̇

2κρ2

=
m2

κ

(

κ̇

κ
− 6ṁ

m

)

+
3Ü̇

κ
− 3Ü κ̇

κ2
− U̇

κ

(

6

κ2
− 2κ̇2

κ2
+
κ̈

κ
+

1

ρ2

)

, (B.73)

where in the second equality we have used the expression for V NS
nttt given by equation (B.67).

Next, let’s calculate

6Vttnn = V NS
ttnn + V NS

nntt + 2V NS
tntn + 2V NS

tnnt . (B.74)

Using the third equation of (B.70), and the second and fourth equations of (B.71), we may

write this as

Vttnn = V NS
nntt +

2Ü

3ρ2
− 5U̇ ρ̇

6ρ3
− m2

3ρ2

= 2m2

[

m̈

m
+

(

ṁ

m

)2]

− m2

κ2
(2 + λnnn)−

m2

3ρ2
+ 2Ü

(

3

κ2
+

1

3ρ2

)

(B.75)

−U̇
(

6κ̇

κ3
+

5ρ̇

6ρ3

)

where in the second equality we have used the expression for V NS
nntt given by equation (B.68),

and recall that Vnnn = (m2/κ)λnnn. Finally, let’s calculate

4Vtnnn = 2V NS
tnnn + V NS

nntn + V NS
nnnt . (B.76)

Using the second equation of (B.70) and the third equation of (B.71), we may write this as

Vtnnn = V NS
nnnt +

U̇

κρ2
− U̇ρ,n

2ρ3

= V̇nnn +
6mṁ

κ
+

6U̇

κ3
+

2U̇

κρ2
− U̇ρ,n

2ρ3
, (B.77)

=
m2

κ

(

2
ṁ

m
[3 + λnnn]−

κ̇

κ
λnnn + λ̇nnn

)

+ U̇

(

6

κ3
+

2

κρ2
− ρ,n

2ρ3

)

,

where in the second equality we have used the expression for V NS
nnnt given by equation (B.69).
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The next step, is to calculate the fourth derivatives in the light and heavy directions.

They are given by

Vℓℓℓℓ = Vtttt cos
4 θ − 4Vtttn cos

3 θ sin θ + 6Vttnn cos
2 θ sin2 θ

−4Vtnnn cos θ sin
3 θ + Vnnnn sin

4 θ ,

Vℓℓℓh = Vtttn cos
4 θ + (Vtttt − 3Vttnn) cos

3 θ sin θ

+3(Vnnnt − Vtttn) cos
2 θ sin2 θ

+(3Vttnn − Vnnnn) cos θ sin
3 θ − Vnnnt sin

4 θ ,

Vℓℓhh = Vttnn cos
4 θ + 2(Vtttn − Vnnnt) cos

3 θ sin θ

+(Vnnnn + Vtttt − 4Vttnn) cos
2 θ sin2 θ

+2(Vnnnt − Vtttn) cos θ sin
3 θ + Vnntt sin

4 θ , (B.78)

Vℓhhh = Vtnnn cos
4 θ + (3Vttnn − Vnnnn) cos

3 θ sin θ

+3(Vtttn − Vnnnt) cos
2 θ sin2 θ

+(Vtttt − 3Vnntt) cos θ sin
3 θ − Vnttt sin

4 θ ,

Vhhhh = Vnnnn cos
4 θ + 4Vnnnt cos

3 θ sin θ + 6Vnntt cos
2 θ sin2 θ

+4Vnttt cos θ sin
3 θ + Vtttt sin

4 θ .

Expanding these in inverse powers of m2 yields

Vℓℓℓℓ =
3m2

κ2
+ Ü̈ − 8Ü

κ2
+

3U̇

κ2

(

κ̇

κ
+ 8

ṁ

m

)

− 2U̇

m2κ2

(

6Ü̇ − 4Ü

[

κ̇

κ
+ 3

ṁ

m

]

(B.79)

− U̇

[

3(1− λnnn)

κ2
− 4

κ̇2

κ2
+ 2

κ̈

κ
+ 6

ṁ2

m2
+ 6

m̈

m
+

1

ρ2

])

+O
(

1

m4

)

,

Vℓℓℓh = −m
2

κ

(

6
ṁ

m
− κ̇

κ

)

+
3Ü̇

κ
− 3Ü κ̇

κ2

− U̇
κ

(

6
ṁ2

m2
+ 6

m̈

m
− 3(1 + λnnn)

κ2
− 2

κ̇2

κ2
+
κ̈

κ

)

+
U̇

m2κ

(

Ü̈ − Ü

[

6
ṁ2

m2
+ 6

m̈

m
+

17− 3λnnn
κ2

+
1

ρ2

]

+ U̇

[

1

κ2

(

6(8 + λnnn)
ṁ

m
+ (20− 3λnnn)

κ̇

κ
+ 3λ̇nnn

)

+
5ρ̇

2ρ3

])

+O
(

1

m4

)

,

Vℓℓhh = m2

(

2
ṁ2

m2
+ 2

m̈

m
− 2 + λnnn

κ2
− 1

3ρ2

)

+ 2Ü

(

3

κ2
+

1

3ρ2

)

−2
U̇

κ2

(

1 +
Ü

m2

)[

2(6 + λnnn)
ṁ

m
+ (2− λnnn)

κ̇

κ
+ λ̇nnn

]

− 5U̇ ρ̇

6ρ3
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+
U̇

m2κ

(

6
Ü̇

κ
− U̇

[

1

κ

(

12
ṁ2

m2
+ 12

m̈

m
+

9− 6λnnn − λnnnn
κ2

−4
κ̇2

κ2
+ 2

κ̈

κ
+

4

ρ2

)

− ρ,n
ρ3

])

+O
(

1

m4

)

,

Vℓhhh =
m2

κ

(

2(3 + λnnn)
ṁ

m
− κ̇

κ
λnnn + λ̇nnn

)

+
U̇

κ

(

1 +
Ü

m2

)(

6
ṁ2

m2
+ 6

m̈

m
− 3λnnn + λnnnn

κ2
+

1

ρ2

)

− U̇ρ,n
2ρ3

+
U̇

m2κ

(

12
Ü

κ2
− U̇

[

1

κ2

(

2(24 + 5λnnn)
ṁ

m
+ 5(3− λnnn)

κ̇

κ
+ 5λ̇nnn

)

+
5ρ̇

2ρ3

])

+O
(

1

m4

)

,

Vhhhh =
m2

κ2
λnnnn +

4U̇

κ2

(

1 +
Ü

m2

)(

2(3 + λnnn)
ṁ

m
− λnnn

κ̇

κ
+ λ̇nnn

)

(B.80)

+
2U̇2

m2κ

(

1

κ

[

6
ṁ2

m2
+ 6

m̈

m
+

6− 3λnnn − λnnnn
κ2

+
3

ρ2

]

− ρ,n
ρ3

)

+O
(

1

m4

)

,

where we have written Vnnnn = (m2/κ2)λnnnn.

Now the final step is to replace the 1/m2 expansion with a 1/M2 expansion. Doing

so yields

Vℓℓℓℓ =
3M2

κ2
+ Ü̈ − 8Ü

κ2
+

3U̇

κ2

(

κ̇

κ
+ 8

Ṁ

M

)

− 2U̇

M2κ2

(

6Ü̇ − 4Ü

[

κ̇

κ
+ 3

Ṁ

M

]

(B.81)

− U̇

[

3(1− 2λnnn)

2κ2
− 4

κ̇2

κ2
+ 2

κ̈

κ
+ 6

Ṁ2

M2
+ 6

M̈

M
+

1

ρ2

])

+O
(

1

M4

)

,

Vℓℓℓh = −M
2

κ

(

6
Ṁ

M
− κ̇

κ

)

+
3Ü̇

κ
− 3Ü κ̇

κ2

− U̇
κ

(

6
Ṁ2

M2
+ 6

M̈

M
− 3(1 + λnnn)

κ2
− 2

κ̇2

κ2
+
κ̈

κ

)

+
U̇

M2κ

(

Ü̈ − Ü

[

6
Ṁ2

M2
+ 6

M̈

M
+

11− 3λnnn
κ2

+
1

ρ2

]

+ U̇

[

1

κ2

(

6(7 + λnnn)
Ṁ

M
+ (13− 3λnnn)

κ̇

κ
+ 3λ̇nnn

)

+
5ρ̇

2ρ3

])

+O
(

1

M4

)

,

Vℓℓhh = M2

(

2
Ṁ2

M2
+ 2

M̈

M
− 2 + λnnn

κ2
− 1

3ρ2

)

+ 2Ü

(

3

κ2
+

1

3ρ2

)

−2
U̇

κ2

[

2(6 + λnnn)
Ṁ

M
+ (2− λnnn)

κ̇

κ
+ λ̇nnn

]

− 5U̇ ρ̇

6ρ3
− 2Ü2

M2κ2
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+
U̇

M2κ

(

4
Ü̇

κ
− 2

Ü

κ

[

2(4 + λnnn)
Ṁ

M
− (2 + λnnn)

κ̇

κ
+ λ̇nnn

]

− U̇
κ

[

18
Ṁ2

M2
+ 10

M̈

M
+

7− 7λnnn − λnnnn
κ2

+ 2
κ̇2

κ2
+ 8

Ṁ

M

κ̇

κ
+

11

3ρ2

]

+ U̇
ρ,n
ρ3

)

+O
(

1

M4

)

,

Vℓhhh =
M2

κ

(

2(3 + λnnn)
Ṁ

M
− κ̇

κ
λnnn + λ̇nnn

)

+
U̇

κ

(

6
Ṁ2

M2
+ 6

M̈

M
− 3λnnn + λnnnn

κ2
+

1

ρ2

)

− U̇ρ,n
2ρ3

+
U̇

M2κ

(

Ü

[

6
Ṁ2

M2
+ 6

M̈

M
+

6− 5λnnn − λnnnn
κ2

+
1

ρ2

]

− U̇

[

1

κ2

(

2(21 + 4λnnn)
Ṁ

M
+ (9− 8λnnn)

κ̇

κ
+ 6λ̇nnn

)

+
5ρ̇

2ρ3

]

)

+O
(

1

M4

)

,

Vhhhh =
M2

κ2
λnnnn +

4U̇

κ2

(

1 +
Ü

M2

)(

2(3 + λnnn)
Ṁ

M
− λnnn

κ̇

κ
+ λ̇nnn

)

+
2U̇2

M2κ

(

1

κ

[

6
Ṁ2

M2
+ 6

M̈

M
+

3(4− 2λnnn − λnnnn)

2κ2
+

3

ρ2

]

− ρ,n
ρ3

)

+O
(

1

M4

)

.

C Integrating out the heavy fields

This appendix provides the details of the classical integration over the heavy field to obtain

the low-energy effective theory of the light field along the bottom of the trough. The plan

is to use Seff(ℓ) = S[ℓ, h(ℓ)], where h(ℓ) satisfies δS/δh = 0 [25, 26]. For these purposes it

is useful to integrate by parts in order to write the classical action as follows,

L√−g = −1

2
∂µℓ ∂

µℓ− Vtr(ϕ, ℓ) +
1

2
h∆hh− J(1)h− 1

3
J(3)h

3 − 1

4
J(4)h

4

=
Ltr√−g +

1

2
h∆hh− J(1)h− 1

3
J(3)h

3 − 1

4
J(4)h

4 , (C.1)

where the truncated potential is

Vtr := V
∣

∣

∣

h=0
= U(ϕ) + (j + Vℓ)ℓ+

µ2

2
ℓ2 +

1

6
Vℓℓℓ ℓ

3 +
1

24
Vℓℓℓℓ ℓ

4 (C.2)

and we couple an external current, j, to the light field, ℓ. The kinetic operator for h is

∆h := Ω−M2, where

Ω :=

(

1− ℓ2

6ρ2

)

�

and M2 := M2 + Vhhℓ ℓ+
1

2
Vℓℓhh ℓ

2 − 1

2ρ2
∂µℓ∂

µℓ− 1

3ρ2
ℓ�ℓ . (C.3)
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Recall here that ρ denotes the target-space radius of curvature as defined using the Ricci

scalar constructed from the target-space metric, Gab, and the last two terms of eq. (C.3)

are obtained by repeatedly integrating by parts the two-derivative interactions

L2 deriv =
1

12ρ2

(

ℓ2 ∂µh ∂
µh+ h2 ∂µℓ ∂

µℓ− 2hℓ ∂µℓ ∂
µh
)

. (C.4)

Finally, the J(i) are given by

J(1) := Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

J(3) :=
1

2
Vhhh +

1

2
Vℓhhh ℓ (C.5)

and J(4) :=
1

6
Vhhhh .

Integrating out h. To integrate out the h field we compute

eiSeff [ℓ ] = eiStr[ℓ ]

[

e−
i
3

∫
J(3)(i δ

δJ )
3

e−
i
4

∫
J(4)(i δ

δJ )
4
∫

Dh e i
2

∫
h∆hh−i

∫
h[J(1)+J ]

]

J=0

(C.6)

= eiStr[ℓ ]
[

e−
i
3

∫
J(3)(i δ

δJ )
3

e−
i
4

∫
J(4)(i δ

δJ )
4

× (C.7)

×
(

e−
i
2

∫
[J(1)+J ]∆−1

h
[J(1)+J ] [det ∆h]

−1/2
) ]

J=0
,

in the classical approximation (for which the determinant may be neglected). Evaluating

the derivatives and taking the logarithm (and so dropping disconnected terms) then gives

Leff [ℓ ]√−g =
Ltr[ℓ ]√−g − 1

2
J(1)∆

−1
h J(1) −

1

3
J(3)

[

∆−1
h J(1)

]3 − 1

4
J(4)

[

∆−1
h J(1)

]4
. (C.8)

Expanding up to and including order M−6 then gives

Leff√−g =
Ltr√−g − 1

2
J(1)

(

Ω−M2
)−1

J(1) −
J(3)

3

[

(

Ω−M2
)−1

J(1)

]3
+ · · · , (C.9)

where

∆−1
h = (Ω−M2)−1 = − 1

M2

∞
∑

n=0

(

Ω
1

M2

)n
, (C.10)

and so

Leff = Ltrunc + δLE
(1) + δLE

(2) + δLE
(3) +O

(

1

M8

)

, (C.11)

with

δLE
(1)√−g =

1

2M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)2

, (C.12)

δLE
(2)√−g =

1

2M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)

Ω
1

M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)

, (C.13)
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and

δLE
(3)√−g =

1

2M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)

Ω
1

M2
Ω

1

M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)

+
1

3M6

(

1

2
Vhhh +

1

2
Vℓhhh ℓ

)(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)3

. (C.14)

Here the superscript E indicates that this is an expansion20 in powers of M−1 (as opposed

to our later expansions in inverse powers of M).

We next assume that the scaleM2 dominates all of the others in M2, and gather terms

that are suppressed by a fixed power of 1/M2. This leads to

Leff = L(0) +
L(1)

M2
+

L(2)

M4
+

L(3)

M6
+O

(

1

M8

)

, (C.15)

where
L(1)

M2
=

1

2M2

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)2

(C.16)

L(2)

M4
= − 1

2M4

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)2(

Vhhℓ ℓ+
1

2
Vℓℓhh ℓ

2 − 1

2ρ2
(∂ℓ)2 − 1

3ρ2
ℓ�ℓ

)

+
1

2M4

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)(

1− ℓ2

6ρ2

)

�

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)

= − 1

2M4

(

Vh +
1

2
Vhℓℓ ℓ

2 +
1

6
Vℓℓℓh ℓ

3

)2(

Vhhℓ ℓ+
1

2
Vℓℓhh ℓ

2

)

(C.17)

− ℓ2

2M4
(∂ℓ)2

(

Vhℓℓ +
1

2
Vℓℓℓh ℓ

)2

+
1

12ρ2M4
(∂ℓ)2

(

Vh −
1

2
Vhℓℓ ℓ

2 − 1

3
Vℓℓℓh ℓ

3

)2

and

L(3)

M6
=

1

2M6

(

Vh +
ℓ2

2
Vℓℓh

)2(

Vℓhhℓ+
ℓ2

2
Vℓℓhh

)2

+
1

6M6
(Vhhh + Vℓhhhℓ)

(

Vh +
ℓ2

2
Vℓℓh +

ℓ3

6
Vℓℓℓh

)3

+
V 2
h

2M6

(

1

4ρ4
(∂ℓ)4 +

1

9ρ4
ℓ2�ℓ�ℓ+

1

3ρ4
(∂ℓ)2ℓ�ℓ

)

+
V 2
h

2ρ2M6
(∂ℓ)2

(

ℓ

3
Vℓhh +

ℓ2

2
Vℓℓhh

)

+
Vh
2M6

VℓhhVℓℓℓhℓ
2(∂ℓ)2 (C.18)

+
(∂ℓ)2

M6

(

VhVℓℓh −
V 2
h

6ρ2

)

(

Vℓhhℓ+ Vℓℓhhℓ
2
)

+
1

ρ2M6

(

VhVℓℓh −
V 2
h

6ρ2

)(

(∂ℓ)4

2
+
ℓ2

3
(�ℓ)2 +

5

6
ℓ�ℓ(∂ℓ)2

)

+
1

2M6

(

V 2
ℓℓh −

VhVℓℓh
3ρ2

)

(

(∂ℓ)4 + ℓ2(�ℓ)2 + 2ℓ�ℓ(∂ℓ)2
)

,

20Notice that this expansion, and the effective field theory to which it leads, would break down if the

terms in M
2 were to cancel one another so that M2 were small.
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and so on. Some algebra and integration by parts (checked numerically using Mathematica)

is used above to obtain the expressions for L(3) and the second equality for L(2).

Expressions in terms of U , κ and ρ. The final step is to trade symmetrized derivatives

like Vℓ, Vh, Vℓℓℓ, as well as the mass eigenvalues M2 =M2
+ and µ2 =M2

−, for U , m, κ and

ρ and their derivatives. This step is a crucial one because some of the interactions — like

Vℓℓh in eq. (2.28) or the quartic interactions Vℓℓhh and Vℓℓℓℓ computed in appendix B —

contain terms proportional to a positive power of m2, allowing them to contribute to higher

order in the 1/m2 expansion than naively expected. The formulae relevant for performing

this replacement are given in earlier sections and the appendices, but are reproduced here

for convenience of reference:

Vh ≃ U̇2

κm2
,

M2 ≃ m2 +
U̇2

κ2m2
,

µ2 ≃ Ü − U̇2

κ2m2
,

Vhℓℓ ≃ −m
2

κ
+

2 Ü

κ
− U̇

κ

(

4 ṁ

m
+
κ̇

κ

)

+O
(

1

m2

)

,

Vℓℓℓ ≃ Ü̇ +
U̇

κ2
+O

(

1

m2

)

Vℓℓℓℓ ≃ 3m2

κ2
+ Ü̈ − 8Ü

κ2
+

3U̇

κ2

(

8 ṁ

m
+
κ̇

κ

)

+O
(

1

m2

)

(C.19)

and

Vℓℓℓh ≃ −m
2

κ

(

6 ṁ

m
− κ̇

κ

)

+
3Ü̇

κ
− 3Ü κ̇

κ2

− U̇
κ

[

6 ṁ2

m2
+

6 m̈

m
− 3(1 + λnnn)

κ2
− 2 κ̇2

κ2
+
κ̈

κ

]

+O
(

1

m2

)

. (C.20)

Inserting these into the effective Lagrangian leads to the following, intermediate, form

for the action out to four-derivative order

Leff = −Veff(ℓ)−
1

2
Ĝ(ℓ) (∂ℓ)2 +H(ℓ) (∂ℓ)4 +K1(ℓ) (∂ℓ)

2
�ℓ+K2(ℓ)�ℓ�ℓ , (C.21)

where

Ĝ(ℓ) ≃ 1 +
ℓ2

κ2

(

1 +
2U̇ κ̇

κm2
− 4Ü

m2
+

8U̇ṁ

m3

)

+O(ℓ3) , (C.22)

and

Veff(ℓ) = U(ϕ+ ℓ) +
ℓ3

6

(

U̇

κ2

)(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

6U̇ṁ

m3

)

+ℓ4
(

− U̇ κ̇

8κ3
+

Ü

6κ2
+

2U̇ Üṁ

κ2m3
− 2U̇2κ̇ṁ

3κ3m3
− 2U̇2

κ2m2

ṁ2

m2

)

(C.23)
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+
ℓ4

24κ4m2

[

−12κ2Ü2 + U̇2

(

6 + 3λnnn − 11κ̇2 + 4κκ̈

)

+U̇

(

20κκ̇Ü − 6κ2Ü̇

)]

+O(ℓ5) ,

while

H(ℓ) =
1

2κ2m2
+O(ℓ) . (C.24)

In all of these expressions we keep only sufficient powers of the light field to track the

action out to quartic order in ℓ. The detailed form of the two functions K1 and K2 is less

important for later purposes, but they are formally given by

K1(ℓ) =
V 2
h

6ρ4M6
ℓ+

5ℓ

6ρ2M6

(

VhVℓℓh −
V 2
h

6ρ2

)

+
ℓ

M6

(

V 2
ℓℓh −

VhVℓℓh
3ρ2

)

(C.25)

K2(ℓ) =
V 2
h

18ρ4M6
ℓ2 +

ℓ2

3ρ2M6

(

VhVℓℓh −
V 2
h

6ρ2

)

+
ℓ2

2M6

(

V 2
ℓℓh −

VhVℓℓh
3ρ2

)

. (C.26)

The action quoted above is only ‘intermediate’ because the terms involving �ℓ can be

absorbed into the others by making the field redefinition [25, 26]

ℓ→ ℓ+∆(ℓ) , (C.27)

which changes the action by a term

∆Leff =

(

Ĝ�ℓ− V ′
eff +

Ĝ
′

2
(∂ℓ)2

)

∆(ℓ) (C.28)

+
1

2
∆(ℓ)

(

1

2
Ĝ

′′

(∂ℓ)2 + Ĝ
′

�ℓ+ Ĝ
′

∂µℓ∂
µ + Ĝ�− V ′′

eff

)

∆(ℓ) ,

≃
(

Ĝ�ℓ− V ′
eff

)

∆(ℓ)− 1

2
∆(ℓ)2V ′′

eff , (C.29)

where primes denote differentiation with respect to ℓ, and the approximate equality assumes

∆(ℓ) is at least quadratic in ℓ and drops terms in ∆L that involve more than four derivatives

or four powers of ℓ.

The choice

∆(ℓ) = −
(

K1(∂ℓ)
2 +K2�ℓ

Ĝ

)

, (C.30)

implies ∆(ℓ)2 is at least sixth order in ℓ (and so for our purposes can be neglected) and

leads to

Leff = −Veff(ℓ)−
1

2
Ĝ(ℓ)(∂ℓ)2+H(ℓ)(∂ℓ)4+K1(ℓ) (∂ℓ)

2

(

V ′
eff

Ĝ

)

+K2(ℓ)�ℓ

(

V ′
eff

Ĝ

)

, (C.31)

which is the same as making the replacement

�ℓ→ V ′
eff

Ĝ
− Ĝ

′

2Ĝ
(∂ℓ)2 (C.32)

which amounts to eliminating �ℓ using its equation of motion. Since eq. (C.22) implies

the second term in (C.32) is at least cubic in ℓ, it can be dropped to the extent that we
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follow only terms out to order ℓ4 in Leff . Similarly, eqs. (C.21), (C.25) and (C.26) ensure

we need only evaluate �ℓ to at most quadratic order in ℓ. Doing so gives

�ℓ =
V ′
eff

Ĝ
= U̇ + ℓÜ + ℓ2

[

− U̇

2κ2
− 5ṁU̇2

m3κ2
+

U̇

m2κ2

(

− U̇ κ̇

κ
+

5U̇

2

)

+
Ü̇

2

]

, (C.33)

and so after integrating the last term in (C.31) by parts, one arrives at the effective action

Leff = −Veff(ℓ)−
1

2
G(ℓ)(∂ℓ)2 +H(ℓ)(∂ℓ)4 , (C.34)

with

G(ℓ) = Ĝ− 2V ′
effK1

Ĝ
+ 2

(

K2V
′
eff

Ĝ

)′

≃ 1 +
ℓ2

κ2

(

1 +
2U̇ κ̇

κm2
− 3Ü

m2
+

8U̇ṁ

m3

)

, (C.35)

and Veff and H given by their earlier expressions, eqs. (C.23) and (C.24) respectively. This

is the expression used in the main text.
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