444 research outputs found

    Response to "Comment on 'A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy"' [Rev. Sci. Instrum. 80, 126107 (2009)]

    Get PDF
    The preceding comment by Sloman points out that the absolute accuracy of a temperature controller may be compromised by thermistor self-heating. We measured the self-heating of the thermistor used in our temperature controller, verifying a systematic error of nearly 200 mK. However, this error is reduced by over an order of magnitude with a slight change in our original circuit design. With this change, our controller does achieve an absolute temperature accuracy of 100 mK, limited mainly by the stated absolute accuracy of the thermistor used in the circuit

    Interferometric measurement of the resonant absorption and refractive index in rubidium gas

    Get PDF
    We present a laboratory demonstration of the Kramers-Kronig relation between the resonant absorption and refractive index in rubidium gas. Our experiment uses a rubidium vapor cell in one arm of a simple Mach-Zehnder interferometer. As the laser frequency is scanned over an atomic resonance, the interferometer output is affected by variations of both the absorption and refractive index of the gas with frequency, all of which can be calculated in a straightforward manner. Changing the vapor density and interferometer phase produces a family of different output signals. The experiment was performed using a commercially available tunable diode laser system that was designed specifically for the undergraduate physics laboratory. As a teaching tool this experiment is reliable, fun, and instructive, while it also introduces the student to some sophisticated and fundamental physical concepts

    A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy

    Get PDF
    We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 mK reproducibility, and 100 mK absolute accuracy near room temperature. The controller design is relatively simple and could be readily modified for use in different experimental circumstances. We also describe a time-domain numerical model that allows one to characterize the stability and transient behavior of the system being controlled, even in the presence of elements with highly nonlinear responses

    Numerical computations of facetted pattern formation in snow crystal growth

    Get PDF
    Facetted growth of snow crystals leads to a rich diversity of forms, and exhibits a remarkable sixfold symmetry. Snow crystal structures result from diffusion limited crystal growth in the presence of anisotropic surface energy and anisotropic attachment kinetics. It is by now well understood that the morphological stability of ice crystals strongly depends on supersaturation, crystal size and temperature. Until very recently it was very difficult to perform numerical simulations of this highly anisotropic crystal growth. In particular, obtaining facet growth in combination with dendritic branching is a challenging task. We present numerical simulations of snow crystal growth in two and three space dimensions using a new computational method recently introduced by the authors. We present both qualitative and quantitative computations. In particular, a linear relationship between tip velocity and supersaturation is observed. The computations also suggest that surface energy effects, although small, have a larger effect on crystal growth than previously expected. We compute solid plates, solid prisms, hollow columns, needles, dendrites, capped columns and scrolls on plates. Although all these forms appear in nature, most of these forms are computed here for the first time in numerical simulations for a continuum model.Comment: 12 pages, 28 figure

    Development of an apparatus for cooling 6Li-87Rb Fermi-Bose mixtures in a light-assisted magnetic trap

    Full text link
    We describe an experimental setup designed to produce ultracold trapped gas clouds of fermionic 6Li and bosonic 87Rb. This combination of alkali metals has the potential to reach deeper Fermi degeneracy with respect to other mixtures since it allows for improved heat capacity matching which optimizes sympathetic cooling efficiency. Atomic beams of the two species are independently produced and then decelerated by Zeeman slowers. The slowed atoms are collected into a magneto-optical trap and then transferred into a quadrupole magnetic trap. An ultracold Fermi gas with temperature in the 10^-3 T_F range should be attainable through selective confinement of the two species via a properly detuned laser beam focused in the center of the magnetic trap.Comment: Presented at LPHYS'06, 8 figure

    Boundary and Coulomb Effects on Boson Systems in High-Energy Heavy-Ion Collisions

    Full text link
    The boundary of a boson system plays an important role in determining the momentum distribution of the bosons. For a boson system with a cylindrical boundary, the momentum distribution is enhanced at high transverse momenta but suppressed at low transverse momenta, relative to a Bose-Einstein distribution. The boundary effects on systems of massless gluons and massive pions are studied. For gluons in a quark-gluon plasma, the presence of the boundary may modify the signals for the quark-gluon plasma. For pions in a pion system in heavy-ion collisions, Coulomb final-state interactions with the nuclear participants in the vicinity of the central rapidity region further modify the momentum distribution at low transverse momenta. By including both the boundary effect and the Coulomb final-state interactions we are able to account for the behavior of the π\pi^{-} transverse momentum spectrum observed in many heavy-ion experiments, notably at low transverse momenta.Comment: 15 pages Postscript uuencoded tar-comprssed file, 9 Postscript figures uuencoded tar-compressed fil

    Sounding stellar cycles with Kepler - I. Strategy for selecting targets

    Full text link
    The long-term monitoring and high photometric precision of the Kepler satellite will provide a unique opportunity to sound the stellar cycles of many solar-type stars using asteroseismology. This can be achieved by studying periodic changes in the amplitudes and frequencies of the oscillation modes observed in these stars. By comparing these measurements with conventional ground-based chromospheric activity indices, we can improve our understanding of the relationship between chromospheric changes and those taking place deep in the interior throughout the stellar activity cycle. In addition, asteroseismic measurements of the convection zone depth and differential rotation may help us determine whether stellar cycles are driven at the top or at the base of the convection zone. In this paper, we analyze the precision that will be possible using Kepler to measure stellar cycles, convection zone depths, and differential rotation. Based on this analysis, we describe a strategy for selecting specific targets to be observed by the Kepler Asteroseismic Investigation for the full length of the mission, to optimize their suitability for probing stellar cycles in a wide variety of solar-type stars.Comment: accepted for publication in MNRA

    Convective and Conductive Selection Criteria of a Stable Dendritic Growth and Their Stitching

    Full text link
    The paper deals with the analysis of stable thermo-solutal dendritic growth in the presence of intense convection. The n-fold symmetry of crystalline anisotropy as well as the two- and three-dimensional growth geometries are considered. The steady-state analytical solutions are found with allowance for the convective-type heat and mass exchange boundary conditions at the dendritic surface. A linear morphological stability analysis determining the marginal wavenumber is carried out. The new stability criterion is derived from the solvability theory and stability analysis. This selection criterion takes place in the regions of small undercooling. To describe a broader undercooling diapason, the obtained selection criterion, which describes the case of intense convection, is stitched together with the previously known selection criterion for the conductive-type boundary conditions. It is demonstrated that the stitched selection criterion well describes a broad diapason of experimental undercoolings. © 2020 John Wiley & Sons, Ltd.The present work comprises different parts of research studies including (i) the model formulation, stability and solvability analyses, derivation of the selection criterion in the case of intense convection, its sewing with the criterion for the conductive boundary conditions, (ii) numerical simulations, (iii) experiments, and their comparison. Different parts of the present work were supported by different grants and programs. With this in mind, the authors are grateful to the following foundations, programs, and grants. Theoretical part (i) was supported by the Russian Foundation for Basic Research (grant no. 19-32-51009). Numerical part (ii) was made possible due to the financial support of the Ministry of Science and Higher Education of the Russian Federation (Ural Mathematical Center, project no. 075-02-2020-1537/1). The experimental part (iii) was supported by the German Space Center Space Management under contract number 50WM1941

    Coulomb Effect: A Possible Probe for the Evolution of Hadronic Matter

    Get PDF
    Electromagnetic field produced in high-energy heavy-ion collisions contains much useful information, because the field can be directly related to the motion of the matter in the whole stage of the reaction. One can divide the total electromagnetic field into three parts, i.e., the contributions from the incident nuclei, non-participating nucleons and charged fluid, the latter consisting of strongly interacting hadrons or quarks. Parametrizing the space-time evolution of the charged fluid based on hydrodynamic model, we study the development of the electromagnetic field which accompanies the high-energy heavy-ion collisions. We found that the incident nuclei bring a rather strong electromagnetic field to the interaction region of hadrons or quarks over a few fm after the collision. On the other hand, the observed charged hadrons' spectra are mostly affected (Coulomb effect) by the field of the charged fluid. We compare the result of our model with experimental data and found that the model reproduces them well. The pion yield ratio pi^-/pi+ at a RHIC energy, Au+Au 100+100 GeV/nucleon, is also predicted.Comment: 23 pages, RevTex, 19 eps figures, revised versio
    corecore