1,499 research outputs found

    The Role of Spatial Coherence and Orbital Angular Momentum of Light in Astronomy

    Get PDF
    The orbital angular momentum (OAM) of light is potentially interesting for astronomical study of rotating objects such as black holes, but the effect of reduced spatial coherence of astronomical light sources such as stars is largely unknown. In a lab-scale experiment, we find that the detected OAM spectrum depends strongly on the position of the light-twisting object along the line of sight. We develop a simple intuitive model to predict the influence of reduced spatial coherence in astronomical observations, and discuss line-of-sight and intensity issues.Comment: updated versio

    Four-photon orbital angular momentum entanglement

    Get PDF
    Quantum entanglement shared between more than two particles is essential to foundational questions in quantum mechanics, and upcoming quantum information technologies. So far, up to 14 two-dimensional qubits have been entangled, and an open question remains if one can also demonstrate entanglement of higher-dimensional discrete properties of more than two particles. A promising route is the use of the photon orbital angular momentum (OAM), which enables implementation of novel quantum information protocols, and the study of fundamentally new quantum states. To date, only two of such multidimensional particles have been entangled albeit with ever increasing dimensionality. Here we use pulsed spontaneous parametric downconversion (SPDC) to produce photon quadruplets that are entangled in their OAM, or transverse-mode degrees of freedom; and witness genuine multipartite Dicke-type entanglement. Apart from addressing foundational questions, this could find applications in quantum metrology, imaging, and secret sharing.Comment: 5 pages, 4 figure

    Ein bemerkenswerter Unterschied zwischen Personen und Schiffen

    Get PDF

    Observation of OAM sidebands due to optical reflection

    Get PDF
    We investigate how the orbital angular momentum (OAM) of a paraxial light beam is affected upon reflection at a planar interface. Theoretically, the unavoidable angular spread of the (paraxial) beam leads to OAM sidebands which are found to be already significant for modest beam spread (0.05). In analogy to the polarization Fresnel coefficients we develop a theory based upon spatial Fresnel coefficients; this allows straightforward prediction of the strength of the sidebands. We confirm this by experiment.Comment: 5 page

    Circular dichroism of cholesteric polymers and the orbital angular momentum of light

    Get PDF
    We explore experimentally if the light's orbital angular momentum (OAM) interacts with chiral nematic polymer films. Specifically, we measure the circular dichroism of such a material using light beams with different OAM. We investigate the case of strongly focussed, non-paraxial light beams, where the spatial and polarization degrees of freedom are coupled. Within the experimental accuracy, we cannot find any influence of the OAM on the circular dichroism of the cholesteric polymer.Comment: 3 pages, 4 figure

    An experiment on the shifts of reflected C-lines

    Full text link
    An experiment is described that tests theoretical predictions on how C-lines incident obliquely on a surface behave on reflection. C-lines in a polarised wave are the analogues of the optical vortices carried by a complex scalar wave, which is the usual model for describing light and other electromagnetic waves. The centre of a laser beam that carries a (degenerate) C-line is shifted on reflection by the well-known Goos-H\"anchen and Imbert-Fedorov effects, but the C-line itself splits into two, both of which are shifted longitudinally and laterally; their shifts are different from that of the beam centre. To maximise the effect to be measured, internal reflection in a glass prism close to the critical angle was used. In a simple situation like this two recently published independent theories of C-line reflection overlap and it is shown that their predictions are identical. The measured differences in the lateral shifts of the two reflected C-lines are compared with theoretical expectations over a range of incidence angles.Comment: 9 pages, 2 figure

    Full-field quantum correlations of spatially entangled photons

    Get PDF
    Spatially entangled twin photons allow the study of high-dimensional entanglement, and the Laguerre-Gauss modes are the most commonly used basis to discretize the single photon mode spaces. In this basis, to date only the azimuthal degree of freedom has been investigated experimentally due to its fundamental and experimental simplicity. We show that the full spatial entanglement is indeed accessible experimentally, i.e., we have found practicable radial detection modes with negligible cross correlations. This allows us to demonstrate hybrid azimuthal -- radial quantum correlations in a Hilbert space with more than 100 dimensions per photon.Comment: 6 page

    Approximate Minimum Diameter

    Full text link
    We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a contineus region (\impre model) or a finite set of points (\indec model). Given a set of inexact points in one of \impre or \indec models, we wish to provide a lower-bound on the diameter of the real points. In the first part of the paper, we focus on \indec model. We present an O(21Ï”d⋅ϔ−2d⋅n3)O(2^{\frac{1}{\epsilon^d}} \cdot \epsilon^{-2d} \cdot n^3 ) time approximation algorithm of factor (1+Ï”)(1+\epsilon) for finding minimum diameter of a set of points in dd dimensions. This improves the previously proposed algorithms for this problem substantially. Next, we consider the problem in \impre model. In dd-dimensional space, we propose a polynomial time d\sqrt{d}-approximation algorithm. In addition, for d=2d=2, we define the notion of α\alpha-separability and use our algorithm for \indec model to obtain (1+Ï”)(1+\epsilon)-approximation algorithm for a set of α\alpha-separable regions in time O(21Ï”2.n3Ï”10.sin⁥(α/2)3)O(2^{\frac{1}{\epsilon^2}}\allowbreak . \frac{n^3}{\epsilon^{10} .\sin(\alpha/2)^3} )
    • 

    corecore