research

Approximate Minimum Diameter

Abstract

We study the minimum diameter problem for a set of inexact points. By inexact, we mean that the precise location of the points is not known. Instead, the location of each point is restricted to a contineus region (\impre model) or a finite set of points (\indec model). Given a set of inexact points in one of \impre or \indec models, we wish to provide a lower-bound on the diameter of the real points. In the first part of the paper, we focus on \indec model. We present an O(21ϵdϵ2dn3)O(2^{\frac{1}{\epsilon^d}} \cdot \epsilon^{-2d} \cdot n^3 ) time approximation algorithm of factor (1+ϵ)(1+\epsilon) for finding minimum diameter of a set of points in dd dimensions. This improves the previously proposed algorithms for this problem substantially. Next, we consider the problem in \impre model. In dd-dimensional space, we propose a polynomial time d\sqrt{d}-approximation algorithm. In addition, for d=2d=2, we define the notion of α\alpha-separability and use our algorithm for \indec model to obtain (1+ϵ)(1+\epsilon)-approximation algorithm for a set of α\alpha-separable regions in time O(21ϵ2.n3ϵ10.sin(α/2)3)O(2^{\frac{1}{\epsilon^2}}\allowbreak . \frac{n^3}{\epsilon^{10} .\sin(\alpha/2)^3} )

    Similar works

    Full text

    thumbnail-image

    Available Versions