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Spatially entangled twin photons allow the study of high-dimensional entanglement, and the Laguerre-

Gauss modes are the most commonly used basis to discretize the single-photon mode spaces. In this basis,

to date only the azimuthal degree of freedom has been investigated experimentally due to its fundamental

and experimental simplicity. We show that the full spatial entanglement is indeed accessible experimen-

tally; i.e., we have found practicable radial detection modes with negligible cross correlations. This allows

us to demonstrate hybrid azimuthal-radial quantum correlations in a Hilbert space with more than 100

dimensions per photon.

DOI: 10.1103/PhysRevLett.108.173604 PACS numbers: 42.50.Ar, 03.67.Hk, 42.50.Tx

High-dimensional entangled photons are of great inter-
est in various areas in quantum information, as they prom-
ise high-density encoding of quantum information [1,2],
are more robust against noise and eavesdroppers due to
stronger nonclassical correlations [3], and, in general,
present a unique model system for the study of high-
dimensional entanglement in nature. Entanglement in the
photon’s spatial degrees of freedom is a candidate for this,
and it can readily be obtained in the laboratory by sponta-
neous parametric down-conversion (SPDC) of an intense
laser beam. To explore this high-dimensional Hilbert
space, we need to discretize this initially continuous space;
due to the paraxial nature of experiments, this is usually
done by using a complete and orthogonal basis of trans-
verse optical modes. In quantum information with en-
tangled particles, it is crucial that the bipartite state
shows perfect correlation (or anticorrelation) in the used
quantum numbers. Paraxial optical modes are also required
for the implementation of quantum cryptography: They are
propagation-invariant, and superpositions thereof are basi-
cally stable. Traditionally, a Gaussian basis is employed; in
particular, the Laguerre-Gaussian modes LG‘

p with mode

indices ‘ and p proved to be very convenient. These modes
factor in an azimuthal phase-only part u‘azð�Þ ¼ ei‘� and a

radial part up;‘rad ðrÞ, in which the azimuthal part gives rise to

the photon orbital angular momentum (OAM) of ‘@ [4].
This azimuthal part, or OAM entanglement, has been sub-
ject to a decade of numerous very successful experiments
(see, e.g., Refs. [5,6]), which is well founded by the fact
that most experimental setups exhibit rotation symmetry
around the optical axis.

The amount of entanglement present in the spatial pho-
ton pairs can be characterized by the average number of
entangled optical modes, the Schmidt numberK [7,8]. This
Schmidt number K ¼ 1=

P
k�

2
k is obtained from the eigen-

values (relative weights) �k of the Schmidt decomposition
[9] of the two-photon field j�i ¼ P

k

ffiffiffiffiffiffi
�k

p jukisjukii, where
the jukis;i are the Schmidt eigenmodes for the signal or

idler photon. Although the Schmidt modes have to be

calculated numerically in the general case, the Schmidt
number K can be approximated as K ¼ 1

4 ðb�þ 1
b�Þ2,

where b�1 (with b2 ¼ L�p=8�) is the phase-matching

width and � is the pump-beam waist [7]. For our ex-
perimental parameters (crystal length L ¼ 2 mm, pump-
beam waist wp ¼ 325 �m, pump-beam wavelength �p ¼
413 nm), this number is very large: K � 350. However, if
only the azimuthal degree of freedom is employed (i.e., by
taking p ¼ 0 [10]), this number is significantly lower. We
can write the two-photon entangled state as jc i ¼Pþ1

‘¼�1
ffiffiffiffiffiffi
�‘

p j‘; p ¼ 0isj � ‘; p ¼ 0ii, where j‘; pi is a

photon with OAM ‘@ and radial quantum number p, and
the (azimuthal) Schmidt number becomes Kaz ¼ 1=

P
‘�

2
‘.

For large K, this can be approximated as Kaz � 2
ffiffiffiffi
K

p
[11,12]. Direct experimental determination of this number
has been shown only recently [13]. For our case, this
number is Kaz � 37, which is obviously much lower than
the total number of entangled modes. The ‘‘missing’’ en-
tanglement becomes accessible if also the radial modes are
taken into account. There, we find a radial Schmidt num-

ber (for only one azimuthal mode, e.g., for ‘ ¼ 0) Krad �ffiffiffiffi
K

p
, which in our example is Krad � 18. The vast majority

of the entangled modes are radial-azimuthal cross-
correlated modes [14].
Subject to experimental feasibility, the radial part of the

Laguerre-Gauss entangled modes is an entanglement re-
source on equal footing; however, only recently has it been
investigated in detail theoretically [15]. The LG mode

functions factor as LG‘
pðr; �Þ ¼ Cu‘azð�Þup;‘rad ðrÞ; the azi-

muthal part is fully orthogonal in ‘ and independent on the
experimental choice of the detection-mode waist, and the
entangled photons are perfectly anticorrelated in ‘: OAM
is conserved in SPDC (in Fig. S1 of Ref. [16], we show that
this statement holds also for higher-order radial modes).
Therefore, the azimuthal modes are automatically Schmidt
modes. It turns out that, in contrast to this, the radial modes
do not necessarily represent Schmidt modes [7], and we
expect to find nonzero quantum correlations of detected
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modes with different p. However, for a proper combina-
tion of pump-beam, detection-mode, and phase-matching

waist w�
s;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4b=�

p
[7,11], also the radial LG modes are

Schmidt modes and the cross correlations for ps � pi

disappear. In our case, we obtain w�
s;i ¼ 37 �m. If we

neglect phase matching [15], w�
s;i ! 0.

Also experimentally, investigation of the radial correla-
tions turns out to be more challenging: The spatial corre-
lations are traditionally investigated by using a mode
converter (spatial light modulator or spiral phase plate in
the case of azimuthal correlations), to transform a certain
optical mode into the fundamental Gaussian, which in turn
can be tested by sending the photon into a single-mode
fiber. This works very well for the azimuthal modes, but for
radial modes, complications occur: For instance, the finite
acceptance angle of the single-mode fiber becomes prob-
lematic, and there are no perfect spatial modulators which
allow control over amplitude and phase simultaneously
(the orthogonality of pmodes requires amplitude-sensitive
detection), and careful choices for the detection-mode
waist and the fiber collimator have to be taken [7]. We
show here that, despite these complications, and under the
right conditions, the relation between the analyzer modes
and the pump field becomes nicely visible, and a properly
correlated mode basis can be obtained.

Experiment.—We generate the spatially entangled
photon pairs by collinear SPDC in a periodically poled

KTiOPO4 (PPKTP) crystal (length L ¼ 2 mm) of a LG0
0

laser beam (Krþ, � ¼ 413 nm, beam waist at crystal wp ¼
325 �m, 50 mW power).
As sketched in Fig. 1, we image the crystal surface with

7:5� magnification using a telescope onto the spatial light
modulator (SLM) surface. The SLM is used under an
incident angle of 10� or 5�; this allows us to use a single
SLM for both the signal and idler photon. The SLM is
corrected for phase flatness, and we operate not in direct
phase modulation but use a blaze towards 2 mrad to further
lessen the influence of phase errors. The far field of the
SLM surface is imaged onto the single-mode fiber using
10� objectives, with a detection-fiber mode waist at the
SLM of 1275 �m. The fibers are connected to single-
photon counters, and we postselect entangled photon pairs
by coincidence detection (time window 2.3 ns). Since the
crystal surface is imaged onto the SLM, it is sufficient to
discuss the situation there. The inset in Fig. 1 shows the
resulting waists of the pump beam, the detection mode, and
the detection single-mode fiber, with exemplary phase
patterns for two different settings of the detection-mode
quantum numbers. The choice of waists depends on (i) the
desired ratio � ¼ wp=ws;i, which determines the orthogo-

nality and overlap with the Schmidt modes (where the ideal
ratio is �� ¼ 8:8), (ii) the maximum mode order which
should be detected—this is connected to the single-mode
detection-fiber mode waist—and (iii) the number of en-
tangled modes required. Our choice of waists is optimized
for radial and azimuthal mode numbers up to about 10.
Our SLM-based mode detectors cannot project upon

perfect LG modes, because the amplitude cannot be modu-
lated (this is not possible with conventional SLMs [17]).
This can lead to p-nonorthogonal detection fields u‘p
because

R1
0 arg½LG‘

p1
ðrÞLG‘

p2
ðrÞ� � �p1;p2

, and one would

anticipate that cross correlations will always appear; our
results below show that this is not always true and that
careful adjustment of the detection-mode waist allows
detection of radially entangled modes with negligible cross
correlations. Basically, optical diffraction couples phase
and amplitude, which helps to obtain amplitude-sensitive
detection.
For theoretical calculation of the expected coincidence

count rate, we apply Klyshko’s picture of advanced waves
[18]. The detection field (in the near field of the SLM) is
determined by the Gaussian amplitude of the single-mode
detection fiber and the phase as defined by the SLM:

up;‘xtal ¼ expfi arg½LG‘
p� � r2=w2

SMFg. We then decompose

this field in terms of LG modes: up;‘xtal ¼
P

p0�p0;‘LG
‘
p0 .

This expansion contains very high-order p components
due to the phase jumps at the zeros of the LG polynomial
with finite intensity. These singularities automatically dis-
appear while weighting the modes with their relative weight

as produced in SPDC C‘;�‘
p;p [Eq. (20) in Ref. [15]]. This

results in �0
p0;‘ ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffi
C‘;�‘
p0;p0

q R
drrLG‘

p0 ðrÞup;‘xtal, which

FIG. 1 (color online). Schematic experimental setup. The spa-
tially entangled photons are produced in the nonlinear crystal,
whose surface is imaged with 7:5�magnification (fL1 ¼ 10 cm,
fL2 ¼ 75 cm) onto the spatial light modulator (display size
16� 12 mm2, 800� 600 pixel). This device is programmed
to perform the phase modulation required to transform the
detection mode into the fundamental mode. The far field of
the SLM surface is imaged (10� , 0.2 numerical aperture
objectives) onto the single-mode fiber which is connected to a
single-photon counter. Simultaneous detection events from an
entangled photon pair are selected in a coincidence time window
of 2.3 ns. The inset shows an exemplary SLM phase pattern
(‘s ¼ 1, ps ¼ 1; ‘i ¼ �2, pi ¼ 3) and superimposed the
magnification-corrected waist of the pump beam (purple), the
waist of the detection single-mode fiber (1275 mm, yellow), and
the detection-mode waist (red) w ¼ 1000 �m.

PRL 108, 173604 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 APRIL 2012

173604-2



allows us to calculate the effective detection field at the

crystal up;‘det ¼
P

p0�p0;‘LG
‘
p0 . To obtain the coincidence

amplitude, we can then simply calculate the overlap of the
two individual detection fields in the signal and idler path:

C0 ¼ R
d2ru

ps;‘s
det upi;‘i

det . Finally, the experimentally observ-

able coincidence count rate is � ¼ jC0j2. We use here the
thin-crystal limit (L ! 0), which implies that phase-
matching effects are neglected (experimentally, we are close
to perfect phase matching).

Radial-mode correlations.—Figure 2 shows the quan-
tum correlations of purely radial modes (‘s ¼ ‘i ¼ 0) of
down-converted photons. We clearly observe, as we de-
crease the detection-mode waist, that the off-diagonal ele-
ments in the correlation matrix decrease. This is expected;
as mentioned above, the radial cross correlations disappear
for ws;i ! w�

s;i. To within our experimental accuracy, we

also reproduce the theoretical results of Miatto, Yao, and
Barnett [15] very well. Even minute details of the experi-
mental data are reproduced qualitatively well by our model
(Fig. 2); this suggests that our modeling approach of
expanding the detection field in terms of the LG modes
provided by the SPDC light is a sound choice. For the case
of a 500 �m mode waist, we estimate the (radial) Schmidt
number to be 10.4 (experiment) and 11.2 (theory). This is
less than the expectation mentioned above (Krad ¼ 18);
however, SLM pixilation becomes relevant at such small
mode waists. To investigate this, we determine a measure
of the cross correlations, or the width of the diagonal
(Fig. 2) around ps ¼ pi: W ¼ P

p�ðps ¼ pi ¼ pÞ=P
ps;pi

�ðps; piÞ. For perfectly orthogonal modes,W should

be unity. Figure 3 showsW as a function of the beam waist,
comparing our theoretical simulation with experimental
data; again we find good agreement. This dependency of
the cross correlations on the beam waist ratio persists also
for higher azimuthal modes (‘s ¼ �‘i), as shown in
Fig. S2 of Ref. [16]. We observe that for a detection-
mode waist smaller than 500 �m, the ‘‘orthogonality’’ W
decreases again; this (and the fact that the theoretical curve
does not reach unity) is a consequence of SLM pixilation:
A 500 �m waist corresponds to �25 pixel of the SLM.
Our results also demonstrate that the apprehension of
Miatto, Yao, and Barnett [15], that the experimentally
accessible mode waist ratios � are too small, therefore
leading to strong cross correlation in p space, which would
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FIG. 3. The influence of the detection-mode waist: The quan-
tity on the y axis is a measure of how sharply the radial quantum
correlations peak around ps ¼ pi. For ideal LG mode detectors,
we have W ! 1 for the waist ratio � ! ��. For small waists
(w< 500 �m), pixilation effects are non-negligible. For larger
waists, the agreement between experiment (circles) and theory
(gray dots) is very good. The top axis indicates the ratio � of the
pump-beam waist wp to the detection-mode waist w ¼ ws;i of

the signal and idler photon.

FIG. 2 (color online). Quantum correlations between radial
modes with different p (for ‘s ¼ ‘i ¼ 0): Shown are the nor-
malized (divided by maximum) coincidence count rates (color
coded) as a function of the radial-mode numbers ps (horizontal
axis) and pi (vertical axis) of the detection modes. Different
rows depict results for different detection-mode waists as
indicated. Left column, experimental data; right column:
theoretical prediction. It is clearly visible that the smaller the
detection-mode waist gets, the smaller the off-diagonal counts
will be. This is a sign that we approach the Schmidt basis for
� ! ��. The detection-mode waists corresponds to waist ratios
of (from top to bottom) � ¼ 2:4, 3, 4.9; see [15].
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imply that radial modes are not useful for quantum infor-
mation, is overcautious: We can adjust the mode waists so
that cross correlations become negligible.

Radial-azimuthal correlations.—Finally, we address the
question of whether we can make use of the full azimuthal-
radial Hilbert space experimentally. We find that, inde-
pendent on the radial-mode index p, the anticorrelation
condition ‘s ¼ �‘i, or OAM conservation, is preserved
for high values (up to � 20) of p and ‘ (see Fig. S1).
Figure 4 shows p correlations for a fixed detection-mode
waist of 1000 �m, as in Fig. 2, but this time for different
choices of ‘s ¼ �‘i � ‘. Compared to ‘ ¼ 0, we observe
a negligible increase of the cross correlations for ps � pi,
which is very encouraging, because this suggests that very
high-dimensional Hilbert spaces become accessible.
Additionally, the ps ¼ pi correlations get more evenly
distributed, in agreement with theoretical predictions
[15], which also increases the number of usable modes.
Our results in Fig. 4 show two-photon correlations in an
approximately 100� 100-dimensional Hilbert space.

Conclusions.—In conclusion, we have shown the first
experiments with high-dimensionally spatially entangled
photons in the full Laguerre-Gauss-like basis. We analyze

the entangled photons in the complete transverse basis
involving azimuthal and radial correlations; this goes a
step forward beyond the conventionally used azimuthal
degree of freedom, or orbital angular momentum entangle-
ment. We find that the radial degree of freedom is indeed a
useful entanglement resource, if care is taken: Our experi-
ments and the theoretical model show that the choice of
detection-mode waist is crucial and has to be taken into
account carefully; we are able to demonstrate the transition
to a detection basis where cross correlations disappear,
effectively a transition to a quasi-Schmidt basis. An im-
portant next step will be confirmation and quantification of
the ‘‘hybrid’’ azimuthal-radial-mode entanglement, which
is beyond the scope of this Letter. If radial modes in spatial
entanglement are accessible, the number of useful en-
tangled modes is roughly squared compared to the OAM
case; this quadratic increase in the usable Schmidt number
could stimulate new experiments like detection-loophole-
free [19] Bell tests. The higher entanglement density per
mode area will also enable higher channel capacities in
systems where the spatial extent is relevant: for the trans-
port of spatially entangled photons through optical fibers
[20] and also through turbulent atmosphere [21].
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