64 research outputs found
Combined Effect of Dietary Cadmium and Benzo(a)pyrene on Metallothionein Induction and Apoptosis in the Liver and Kidneys of Bank Voles
Bank voles free living in a contaminated environment have been shown to be more sensitive to cadmium (Cd) toxicity than the rodents exposed to Cd under laboratory conditions. The objective of this study was to find out whether benzo(a)pyrene (BaP), a common environmental co-contaminant, increases Cd toxicity through inhibition of metallothionein (MT) synthesisâa low molecular weight protein that is considered to be primary intracellular component of the protective mechanism. For 6Â weeks, the female bank voles were provided with diet containing Cd [less than 0.1Â ÎŒg/g (control) and 60Â ÎŒg/g dry wt.] and BaP (0, 5, and 10Â ÎŒg/g dry wt.) alone or in combination. At the end of exposure period, apoptosis and analyses of MT, Cd, and zinc (Zn) in the liver and kidneys were carried out. Dietary BaP 5Â ÎŒg/g did not affect but BaP 10Â ÎŒg/g potentiated rather than inhibited induction of hepatic and renal MT by Cd, and diminished Cd-induced apoptosis in both organs. The hepatic and renal Zn followed a pattern similar to that of MT, attaining the highest level in the Cdâ+âBaP 10-ÎŒg/g group. These data indicate that dietary BaP attenuates rather than exacerbates Cd toxicity in bank voles, probably by potentiating MT synthesis and increasing Zn concentration in the liver and kidneys
Promoter-bound METTL3 maintains myeloid leukaemia by m6A-dependent translation control.
N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia
The m6A-methylase complex recruits TREX and regulates mRNA export
N6-methyladenosine (m6A) is the most abundant internal modification of eukaryotic mRNA. This modification has previously been shown to alter the export kinetics for mRNAs though the molecular details surrounding this phenomenon remain poorly understood. Recruitment of the TREX mRNA export complex to mRNA is driven by transcription, 5' capping and pre-mRNA splicing. Here we identify a fourth mechanism in human cells driving the association of TREX with mRNA involving the m6A methylase complex. We show that the m6A complex recruits TREX to m6A modified mRNAs and this process is essential for their efficient export. TREX also stimulates recruitment of the m6A reader protein YTHDC1 to the mRNA and the m6A complex influences the interaction of TREX with YTHDC1. Together our studies reveal a key role for TREX in the export of m6A modified mRNAs
A functional m 6 AâRNA methylation pathway in the oyster Crassostrea gigas assumes epitranscriptomic regulation of lophotrochozoan development
N6âmethyladenosine (m6A) is a prevalent epitranscriptomic mark in eukaryotic RNA, with crucial roles for mammalian and ecdysozoan development. Indeed, m6AâRNA and the related protein machinery are important for splicing, translation, maternalâtoâzygotic transition and cell differentiation. However, to date, the presence of an m6AâRNA pathway remains unknown in more distant animals, questioning the evolution and significance of the epitranscriptomic regulation. Therefore, we investigated the m6AâRNA pathway in the oyster Crassostrea gigas, a lophotrochozoan model whose development was demonstrated under strong epigenetic influence. Using mass spectrometry and dot blot assays, we demonstrated that m6AâRNA is actually present in the oyster and displays variations throughout early oyster development, with the lowest levels at the end of cleavage. In parallel, by in silico analyses, we were able to characterize at the molecular level a complete and conserved putative m6A machinery. The expression levels of the identified putative m6A writers, erasers and readers were strongly regulated across oyster development. Finally, RNA pullâdown coupled to LCâMS/MS allowed us to prove the actual presence of readers able to bind m6AâRNA and exhibiting specific developmental patterns. Altogether, our results demonstrate the conservation of a complete m6AâRNA pathway in the oyster and strongly suggest its implication in early developmental processes including MZT. This first demonstration and characterization of an epitranscriptomic regulation in a lophotrochozoan model, potentially involved in the embryogenesis, bring new insights into our understanding of developmental epigenetic processes and their evolution
- âŠ