3,332 research outputs found

    Electroweak Physics

    Get PDF
    The status of precision electroweak measurements as of summer 2002 is reviewed. The recent results on the anomalous magnetic moment of the muon and on neutrino-nucleon scattering are discussed. Precision results on the electroweak interaction obtained by the experiments at the SLC, LEP and TEVATRON colliders are presented. The experimental results are compared with the predictions of the minimal Standard Model and are used to constrain its parameters, including the mass of the Higgs boson. The final LEP results on the direct search for the Higgs boson of the Standard Model are presented.Comment: Plenary talk presented at the 31st ICHEP, Amsterdam, The Netherlands, July 24-31, 200

    The Microcomputer, New Publishing Technology, And The Impact on The Editor\u27s Role

    Get PDF
    Those working in editing and publishing have seen many changes over the past decade - changes in the way text is handled, artwork prepared and type set. Most of these changes have been brought about by the introduction of microcomputers into the work areas of editors, typographers, artists, and secretaries

    Research in Aeronomy Semiannual Progress Report, 1 Oct. 1965 - 31 Mar. 1966

    Get PDF
    Theoretical and experimental studies in aeronomy dealing with direct measurements of ionospheric density and drifts by Nike-Apache and other rocket

    The Late 1970's Bubble in Dutch Collectible Postage Stamps

    Get PDF
    Collectible postage stamp prices in the Netherlands witnessed a bubble in the late 1970’s, while prices rapidly floored in the mid 1980’s. We analyze 500 individual stamps prices (instead of a single index) to examine if the bubble could somehow have been predicted and whether there were early warning signals. Also, we study whether the characteristics of these stamps mediated the bubble and the price landing afterwards. Scarcity and initial price levels seem to have predictive value in various dimensions. Implications for recognizing bubbles in other asset prices are discussed

    Measurement of the muon anomaly to high and even higher precision

    Full text link
    Our recent series of measurements at Brookhaven National Laboratory determined the muon anomalous magnetic moment \amu to a precision of 0.5 ppm. The final result--representing the average of five running periods using both positive and negative muons--is \amu ^\pm = 11 659 208(6) \times 10^{-10}. It lies 2.7 standard deviations above the standard model expectation, which is based on updates given at this Workshop. Importantly, only the e+e−e^{+}e^{-} annihilation and new KLOE radiative return data are used for the hadronic vacuum polarization input. Because the systematic limit has not been reached in the experiment, a new effort has been proposed and approved with the highest scientific priority at Brookhaven. The goal is an experimental uncertainty of 0.2 ppm, a 2.5-fold reduction in the overall experimental uncertainty. To do so will require a suite of upgrades and several qualitative changes in the philosophy of how the measurement is carried out. I discuss the old and new experiments with a particular emphasis on the technical matters that require change for the future.Comment: 10 pages, Proceedings of the 8th International Workshop on Tau-Lepton Physic

    Contributions of order O(mquark2){\cal O}(m_{\rm quark}^2) to Kâ„“3K_{\ell 3} form factors and unitarity of the CKM matrix

    Full text link
    The form factors for the Kℓ3K_{\ell 3} semileptonic decay are computed to order O(p4)O(p^4) in generalized chiral perturbation theory. The main difference with the standard O(p4)O(p^4) expressions consists in contributions quadratic in quark masses, which are described by a single divergence-free low-energy constant, A3A_3. A new simultaneous analysis is presented for the CKM matrix element VusV_{us}, the ratio FK/FπF_K/F_{\pi}, Kℓ3K_{\ell 3} decay rates and the scalar form factor slope λ0\lambda_0. This framework easily accommodates the precise value for VudV_{ud} deduced from superallowed nuclear β\beta-decays

    Why do we need the new BNL muon g-2 experiment now?

    Get PDF
    New final results from the CMD-2 and SND e+e- annihilation experiments, together with radiative return measurements from BaBar, lead to recent improvements in the standard model prediction for the muon anomaly. The uncertainty at 0.48 ppm--a largely data-driven result--is now slightly below the experimental uncertainty of 0.54 ppm. The difference, a_mu(expt)- a_mu(SM) = (27.6 +/- 8.4) x 10^-10, represents a 3.3 standard deviation effect. At this level, it is one of the most compelling indicators of physics beyond the standard model and, at the very least, a major constraint for speculative new theories such as SUSY or extra dimensions. Others at this Workshop detailed further planned standard model theory improvements to a_mu. Here I outline how BNL E969 will achieve a factor of 2 or more reduction in the experimental uncertainty. The new experiment is based on a proven technique and track record. I argue that this work must be started now to have maximal impact on the interpretation of the new physics anticipated to be unearthed at the LHC.Comment: Invited Talk, Tau-06 Workshop, 10 pages, 5 figure

    Thin-disk laser pump schemes for large number of passes and moderate pump source quality

    Full text link
    Novel thin-disk laser pump layouts are proposed yielding an increased number of passes for a given pump module size and pump source quality. These novel layouts result from a general scheme which bases on merging two simpler pump optics arrangements. Some peculiar examples can be realized by adapting standard commercially available pump optics simply by intro ducing an additional mirror-pair. More pump passes yield better efficiency, opening the way for usage of active materials with low absorption. In a standard multi-pass pump design, scaling of the number of beam passes brings ab out an increase of the overall size of the optical arrangement or an increase of the pump source quality requirements. Such increases are minimized in our scheme, making them eligible for industrial applicationsComment: 16 pages, 9 figure

    Fluctuations of g-factors in metal nanoparticles: Effects of electron-electron interaction and spin-orbit scattering

    Full text link
    We investigate the combined effect of spin-orbit scattering and electron-electron interactions on the probability distribution of gg-factors of metal nanoparticles. Using random matrix theory, we find that even a relatively small interaction strength %(ratio of exchange constant JJ and mean level %spacing \spacing ≃0.3\simeq 0.3) significantly increases gg-factor fluctuations for not-too-strong spin-orbit scattering (ratio of spin-orbit rate and single-electron level spacing 1/\tau_{\rm so} \spacing \lesssim 1), and leads to the possibility to observe gg-factors larger than two.Comment: RevTex, 2 figures inserte

    Baryon chiral perturbation theory with virtual photons and leptons

    Full text link
    We construct the general pion-nucleon SU(2) Lagrangian including both virtual photons and leptons for relativistic baryon chiral perturbation theory up to fourth order. We include the light leptons as explicit dynamical degrees of freedom by introducing new building blocks which represent these leptons.Comment: 11 page
    • …
    corecore