447 research outputs found

    The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models

    Get PDF
    Kerkhoff D, Nussbeck FW. The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models. Frontiers in Psychology. 2019;10: 1067.In educational psychology, observational units are oftentimes nested within superordinate groups. Researchers need to account for hierarchy in the data by means of multilevel modeling, but especially in three-level longitudinal models, it is often unclear which sample size is necessary for reliable parameter estimation. To address this question, we generated a population dataset based on a study in the field of educational psychology, consisting of 3000 classrooms (level-3) with 55000 students (level-2) measured at 5 occasions (level-1), including predictors on each level and interaction effects. Drawing from this data, we realized 1000 random samples each for various sample and missing value conditions and compared analysis results with the true population parameters. We found that sampling at least 15 level-2 units each in 35 level-3 units results in unbiased fixed effects estimates, whereas higher-level random effects variance estimates require larger samples. Overall, increasing the level-2 sample size most strongly improves estimation soundness. We further discuss how data characteristics influence parameter estimation and provide specific sample size recommendations

    Simulation of Micro-Electronic FlowFET Systems

    Get PDF
    A microelectronic fluidic system has been investigated by modeling and 3D simulation of fluid flow controlled by an applied gate voltage. The simulations have helped to characterize a novel FlowFET (a fluidic Field Effect Transistor) device under fault-free conditions. The FlowFET operates by applying a voltage field from a gate electrode in the insulated side wall of a microchannel to modulate the ␣-potential at the shear plane [1]. The change in ␣-potential can be used to control both the magnitude and direction of the electroosmotic flow in the microchannel

    The Influence of Sample Size on Parameter Estimates in Three-Level Random-Effects Models

    Get PDF
    In educational psychology, observational units are oftentimes nested within superordinate groups. Researchers need to account for hierarchy in the data by means of multilevel modeling, but especially in three-level longitudinal models, it is often unclear which sample size is necessary for reliable parameter estimation. To address this question, we generated a population dataset based on a study in the field of educational psychology, consisting of 3000 classrooms (level-3) with 55000 students (level-2) measured at 5 occasions (level-1), including predictors on each level and interaction effects. Drawing from this data, we realized 1000 random samples each for various sample and missing value conditions and compared analysis results with the true population parameters. We found that sampling at least 15 level-2 units each in 35 level-3 units results in unbiased fixed effects estimates, whereas higher-level random effects variance estimates require larger samples. Overall, increasing the level-2 sample size most strongly improves estimation soundness. We further discuss how data characteristics influence parameter estimation and provide specific sample size recommendations

    Extracorporeal bullet trajectory determination from scanned phantoms with bullet defects

    Get PDF
    Shots with two different calibres (0.32 Auto and 9 mm Luger) were fired through phantoms that simulated human torsos, mounted on undercarriages with witness panels. The perforated phantoms were scanned with computed tomography (Siemens) using 80 kV and 140 kV and a slice thickness of 1 mm. The intracorporeal trajectories in the phantoms were compared to the known extracorporeal trajectories, derived from the perforations in witness panels. The discrepancy between the intracorporeal and extracorporeal trajectories, denoted as the absolute angle, was calculated for the trajectories before (front) and after (rear) the phantoms. Mean absolute angles at the front were lower than at the rear (2.27° vs. 4.54°) and the difference was statistically significant (p < 0.001). The results of the study imply that the line between the entrance and the exit wound in a scanned victim can be extended to the extracorporeal bullet trajectory leading towards the entrance wound. The absolute angles presented in this study give an impression of the expected errors with the two calibres. This can be helpful in shooting investigations to assess the position of the shooter from entrance and exit wounds in a scanned victim

    Error estimation on extracorporeal trajectory determination from body scans.

    Get PDF
    This study explores the magnitude of two sources of error that are introduced when extracorporeal bullet trajectories are based on post-mortem computed tomography (PMCT) and/or surface scanning of a body. The first source of error is caused by an altered gravitational pull on soft tissue, which is introduced when a body is scanned in another position than it had when hit. The second source of error is introduced when scanned images are translated into a virtual representation of the victim's body. To study the combined magnitude of these errors, virtual shooting trajectories with known vertical angles through five "victims" (live test persons) were simulated. The positions of the simulated wounds on the bodies were marked, with the victims in upright positions. Next, the victims were scanned in supine position, using 3D surface scanning, similar to a body's position when scanned during a PMCT. Seven experts, used to working with 3D data, were asked to determine the bullet trajectories based on the virtual representations of the bodies. The errors between the known and determined trajectories were analysed and discussed. The results of this study give a feel for the magnitude of the introduced errors and can be used to reconstruct actual shooting incidents using PMCT data

    Comparison and interpretation of impressed marks left by a firearm on cartridge cases - Towards an operational implementation of a likelihood ratio based technique.

    Get PDF
    Firearm examination is subject to increased scrutiny regarding its foundational validity and inherent subjective nature. The increased use of automatic comparison systems may help to reduce subjectivity. In this paper, we present the performance and limits of an automatic comparison system that assigns a weight to the forensic findings for the comparisons between firing pin marks, breechface marks, or a combination of the two. This weight is expressed by a likelihood ratio (LR) based on 3D topographical measurements coupled with a bi-dimensional statistical model. As the performance of such systems may depend on the reference databases used to inform the model, we investigated the impact of the brand of ammunition and the number of samples. We show that reference databases used to calculate LRs should ideally consist of the same type of ammunition as is seen in the case under investigation and that 7 specimens fired by the same firearm are enough to obtain rates of misleading evidence of a similar magnitude compared to those obtained when far more specimens (60) are used. Additionally, the automatic system was used to assess the outcomes of 7 cases with known same-source or different-source ground truths. These cases were also examined by 8 qualified firearm examiners. In all cases, the experts' appraisals were in line with the ground truth. The automatic system showed some limitations in cases were the data were not sufficient to calculate a robust LR, but also that it can assist and enhance the examiners in their decision process

    Relationship between bullet diameter and bullet defect diameter in human calvariums

    Get PDF
    Existing literature on the relationship between bullet diameter and bullet defect diameter in the human calvarium is summarized and discussed. The hypothesis, derived from the literature, that bullet deformation influences bullet defect diameter was studied in a small controlled experiment. The mean defect size caused by non-deforming projectiles was found to be smaller than the mean defect size caused by deforming projectiles of equal original mass and size. The p value of the difference between the two means, measured in two different ways, was found to be 0.002 for both in a Mann-Whitney U test and was significant if the confidence level is set at 5%

    Experimental Verification of 3D Plasmonic Cloaking in Free-Space

    Full text link
    We report the experimental verification of metamaterial cloaking for a 3D object in free space. We apply the plasmonic cloaking technique, based on scattering cancellation, to suppress microwave scattering from a finite-length dielectric cylinder. We verify that scattering suppression is obtained all around the object in the near- and far-field and for different incidence angles, validating our measurements with analytical results and full-wave simulations. Our near-field and far-field measurements confirm that realistic and robust plasmonic metamaterial cloaks may be realized for elongated 3D objects with moderate transverse cross-section at microwave frequencies.Comment: 12 pages, 8 figures, published in NJ

    Modeling of Micro-Electronic Fluidic Systems

    Get PDF
    A microelectronic fluidic system is studied using modeling and simulation of fluid flow controlled by applying gate voltage. 2D simulations were used to characterize the fluidic Field Effect Transistor (FlowFET) device under fault-free conditions. The FlowFET operates by applying a voltage from a gate electrode in the insulated side wall of a microchannel, to modulate the z-potential at the shear plane. The change in z-potential can be used to control both the magnitude and the direction of the electroosmotic flow in the microchannel
    corecore