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In educational psychology, observational units are oftentimes nested within
superordinate groups. Researchers need to account for hierarchy in the data by means
of multilevel modeling, but especially in three-level longitudinal models, it is often
unclear which sample size is necessary for reliable parameter estimation. To address
this question, we generated a population dataset based on a study in the field of
educational psychology, consisting of 3000 classrooms (level-3) with 55000 students
(level-2) measured at 5 occasions (level-1), including predictors on each level and
interaction effects. Drawing from this data, we realized 1000 random samples each
for various sample and missing value conditions and compared analysis results with
the true population parameters. We found that sampling at least 15 level-2 units each
in 35 level-3 units results in unbiased fixed effects estimates, whereas higher-level
random effects variance estimates require larger samples. Overall, increasing the level-
2 sample size most strongly improves estimation soundness. We further discuss how
data characteristics influence parameter estimation and provide specific sample size
recommendations.

Keywords: random effects model, sample size, power analysis, three-level model, parameter estimation

INTRODUCTION

In educational research and the field of psychology in general, researchers oftentimes face the
statistical problem of nested data structures. Such structures occur if measured entities belong to
superordinate groups. For example, researchers might examine children (lowest level) nested within
classrooms (medium level) and schools (highest level). In statistical models, this nested structure
has to be respected. One prominent approach is multilevel analysis (MLA). The fundamental
assumption of MLA is “that there is a hierarchical data set, [. . .] with one single outcome or
response variable [. . .], and explanatory variables at all existing levels” (Hox et al., 2017, p. 8).
Hence, a system of regression equations at different hierarchical levels describes the influence of
the explanatory variables. MLA is also useful for repeated measures of the same variable over a
period of time within the same entities (e.g., diary studies).

Abbreviations: COM, simulated condition indicating complete data without missing values; DrOP2, simulation condition
indicating data with a dropout pattern such that 20% of level-2 units do not produce data for the last two measurement
occasions; DrOP3, simulation condition indicating data with a dropout pattern such that 20% of level-2 units do not
produce data for the last three measurement occasions; ES, effect size; ICC, intraclass correlation coefficient; MCAR,
simulation condition indicating data with 20% of level-1 values (measurement occasions) missing completely at random;
MLA, multilevel analysis; Peb, parameter estimation bias.

Frontiers in Psychology | www.frontiersin.org 1 May 2019 | Volume 10 | Article 1067

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/200908126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2019.01067
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fpsyg.2019.01067
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2019.01067&domain=pdf&date_stamp=2019-05-21
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.01067/full
http://loop.frontiersin.org/people/649994/overview
http://loop.frontiersin.org/people/121647/overview
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01067 May 17, 2019 Time: 16:30 # 2

Kerkhoff and Nussbeck Sample Sizes in Three-Level Models

In general, disregarding hierarchical data structures leads
to biased fixed effects estimates and standard errors (McNeish
and Wentzel, 2017), which in turn influence the accuracy
of significance tests (e.g., Chen, 2012) and statistical power
calculations (e.g., Konstantopoulos, 2008). It can also lead
to incorrect conclusions: the ecological fallacy describes the
incorrect inference that effects at the group level are the
same for individual members of the group (Piantadosi et al.,
1988). The atomistic fallacy describes the opposite case, where
conclusions based on results for a subgroup are erroneously
generalized (e.g., Hox, 1995). Applying MLA reduces the
chances of drawing these false conclusions based on inaccurate
analysis results.

Besides these general advantages of MLA, the quality
of estimation results in multilevel models is influenced by
different characteristics (e.g., the number of units at the
different levels, scale-level of variables, presence or absence
of interaction effects, violation of assumptions, or estimator
properties). Comprehensive analytical solutions to evaluate
specific estimation results are, however, rare. In the past
years, authors have derived formulae for power or sample size
calculations for different three-level models (Heo and Leon,
2008; Konstantopoulos, 2008; Cunningham and Johnson, 2016;
Hooper et al., 2016), but in comparison, empirical power has
been found to be slightly lower than theoretical power (Heo
and Leon, 2008). As an alternative to analytical solutions,
simulation studies examine the estimation quality under specific
sampling and data conditions, especially varying sample sizes.
While the majority of such studies is concerned with two-
level models (e.g., Maas and Hox, 2004, 2005), there are many
research settings where multiple nesting structures frequently
result in at least three-level data, such as the Program for
International Student Assessment (PISA) or the Trends in
International Mathematics and Science Study (TIMSS), which
have been analyzed using two-level (Caponera and Losito, 2016)
and three-level models (Webster and Fisher, 2000; Lamb and
Fullarton, 2002). Alternatively, complex data structures easily
require three-level MLA if a longitudinal component is added,
such as schools (level 3) with students (level 2), which are
studied on different measurement occasions (level 1). Notably,
a distinction is to be made between the three-level nature of a
dataset and the appropriate statistical model. Longitudinal dyadic
data with distinguishable members, where members (level-2) of
dyads (level-3) are measured over time (level-1), for example,
have to be modeled as two-level data rather than three-level
data (Laurenceau and Bolger, 2005; Kenny and Kashy, 2011;
Planalp et al., 2017).

With the present simulation study, we highlight and address
specific issues researchers in educational psychology or a
setting with comparable samples, models, and effects face when
considering MLA for three-level data. Specifically, we simulate
and analyze prototypical data based on results of an empirical
study in the field of educational psychology as a starting point
to address the following questions: What is the overall required
sample size and what is the optimal allocation of observational
units across levels in order to obtain valid and reliable results?
In particular, this study utilizes practice-relevant effects by

generating nested data based upon the prototypical three-level
regression model from an empirical study. Estimation quality
of fixed effects and random effects variances (r.e. variances in
the remainder) is assessed and compared by simulating various
sample size conditions with different numbers of units at each
data level, and analyzing these samples using MLA. By using
data reflecting typical MLA-results and sample characteristics of
an illustrative psychological study, these analyses are a practical
approach to identify important factors in similar research settings
when deciding on the appropriate overall sample size and
allocation at the different levels.

THE MULTILEVEL MODEL

Formulae (1) to (3) below provide the notation for the most
general three-level regression model with one predictor per level
as well as cross-level interactions, random slopes, and intercepts.
Depending on the data, the hypothesized effects, and their
interactions, models may in practice contain less (e.g., no random
effects) or more (e.g., additionally predictors) components on
each level. Given k = 1,. . .,K level-3 groups, j = 1,. . .,J level-2
subgroups, and i = 1,. . .,n level-1 units, this model contains the
dependent variable Yijk, and predictors Xijk, Zjk, and Wk.

Level 1

Yijk = β0jk + β1jkXijk + eijk (1)

Level 2

β0jk = γ00k + γ01kZjk + u0jk

β1jk = γ10k + γ11kZjk + u1jk (2)

Level 3

γ00k = δ000 + δ001Wk + v00k

γ10k = δ100 + δ101Wk + v10k

γ01k = δ010 + δ011Wk + v01k

γ11k = δ110 + δ111Wk + v11k (3)

Regression equation (1) corresponds to the first level of
the ML-model, with intercept β0jk, explanatory variable Xijk
multiplied with the regression coefficient β1jk, and residuals
eijk. Its components are composed of subsequent higher-level
equations. The next two formulae represent the second data level.
The first part of (2) depicts how the intercept β0jk is decomposed
into the level-2 intercept γ00k, slope γ01k times explanatory
variable Zjk, and level-2 residual u0jk. The second part shows how
the level-1 slope β1jk is decomposed into the level-2 intercept
γ10k, slope γ11k times Zjk, and the residual u1jk. Analogously,
formula (3) builds the third data level with level-3 predictor Wk,
relative intercepts δ000, δ100, δ010, and δ110, slopes δ001, δ101, δ011,
and δ111, and residuals v00k, v10k, v01k, and v11k.

While intercepts (β0jk, γ00k, γ10k, δ000, δ100, δ010, δ110) and
regression weights (β1jk, γ01k, γ11k, δ001, δ101, δ011, δ111) are
the fixed effects of the model, the residuals eijk, u0jk, u1jk, v00k,
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v10k, v01k, and v11k are random effects. Their variances are
estimated and denoted by ε2

e (level-1 residual variance), τ2
u0

(level-2 intercept variance), τ2
u1 (level-2 slope variance), σ2

v0
(level-3 intercept variance), and σ2

v1 (level-3 slope variance).
The higher level r.e. variances express the unexplained variability
of intercept and slope parameters at the different levels, while
ε2

e expresses the remaining residual variance. Hox et al. (2017),
Chapter 2 provide an in-depth explanation of the function of each
component for two-level models.

The dependency in the data resulting from such a multilevel
structure is measured by the intraclass correlation coefficient
(ICC), indicating how strongly units of the same cluster are more
similar to each other than units of different clusters. The ICC
values express the variability on one data level in relation to the
overall variability in the data, and are hence calculated as in (4) to
(6), with ε2

e (level-1 variance), τ2
u0 (level-2 intercept variance),

and σ2
v0 (level-3 intercept variance) of the unconditional model

(i.e., a model including no predictor variables).

ρlevel 3 =
σ2

v0

τ2
u0
+ σ2

v0
+ ε2

e
(4)

ρlevel 2 (a) =
τ2

u0
+ σ2

v0

τ2
u0
+ σ2

v0
+ ε2

e
, or alternatively (5)

ρlevel 2 (b) =
τ2

u0

τ2
u0
+ σ2

v0
+ ε2

e
(6)

(5) and (6) both present versions for the level-2 ICC, with
(5) including the level-3 r.e. variance component as additional
variability. As Hox et al. (2017, p. 21) argue, both equations can
be used to evaluate dependencies in the data: While (5) evaluates
the correlation between two level-1 units of the same level-2 unit,
(6) is advantageous if the aim is to measure the proportion of the
total unexplained variance that is situated at level-2.

The MLA approach to clustered data is very flexible,
yet these complex models require an adequate amount of
observations at each level in order to obtain sound estimates
of fixed effects and r.e. variances. In the remainder, we
will first present coefficients representing the soundness of
model-parameter estimates, review the literature on sample-
size requirements in two- and three-level models, and finally
describe the simulation study in detail. Throughout, we refer
to the number of units on each level as follows: N3 = level-
3 sample size, N2 = level-2 sample size, and N1 = level-
1 sample size or number of measurement occasions in
longitudinal assessments.

ASSESSING QUALITY OF PARAMETER
ESTIMATION

A common measure for assessing the accuracy of parameter
estimates is the parameter estimation bias (peb) which calculates
the fraction of under- or overestimation of a true value θ by
its estimates θk

∗ in n samples using formula (7) (adapted from

Bandalos and Gagné, 2014). Muthén and Muthén (2002) suggest
that the bias should not exceed 0.10.

peb =

∑n
k=1

(
θk
∗
−θ
θ

)
n

(7)

The confidence interval is commonly used to assess the
accuracy of the estimation. The specific formula used to
calculate the confidence interval depends on the estimation
method and the (assumed) distribution of the parameter.
Equation (8) expresses the general formula for regression
coefficients with estimate θ∗ and its standard error sθ, assuming
that the standard normal distribution with α/2-quantile zα/2
can be used for a specified type I error probability α

(Davidson and MacKinnon, 1999):

C(1−α) =
[
θ∗ + sθzα/2 , θ∗ − sθzα/2

]
(8)

The coverage calculates the percentage of confidence intervals
across analysis runs, which contain the true parameter. If the
calculated coverage is lower (higher) than the proposed level,
statistical tests will be conservative (liberal). For a proposed
confidence level of 95%, Muthén and Muthén (2002) recommend
a coverage rate between 91 and 98%.

Statistical power is “the likelihood that a researcher will
be able to reject a specific null hypothesis when it is in
fact false” (Murphy, 2011, p. 1082). In simulation studies
with one sample generated and analyzed in each run,
estimated power for a specific effect equals the percentage
of runs yielding statistically significant estimates of this
effect. As an alternative, the percentage of confidence
intervals for this effect excluding zero can be used as a
measure to indicate a significant effect. A power of at
least 80% is regarded as acceptable for significance testing
(e.g., Muthén and Muthén, 2002).

RESEARCH ON SAMPLE SIZE IN
MULTILEVEL MODELS

Research on sample size requirements mainly focus on two-
level models, with fewer studies investigating general three-
level models. Therefore, we outline main findings with respect
to two- and three-level models. Tables 1–4 summarize the
simulation conditions or parameters under investigation (two-
level models: Table 1; three-level models: Table 2) and findings
and recommendations (two-level models: Table 3; three-level
models: Table 4) of previous studies.

Sample Size and Estimation Quality of
Fixed Effects Coefficients
Simulations for two-level models by Maas and Hox (2004, 2005;
one normally distributed predictor per level with ES = 0.3,
cross-level-interaction, random slope, and ICC ≤ 0.3) show
that bias for medium sized fixed effects is usually below
peb = 0.0005 for samples with at least five level-1 units
each in 30 higher-level units. For the same conditions,
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TABLE 1 | Investigated parameters of studies examining the impact of sample sizes on estimation results in two-level models.

Authors (Year) Simulation conditions: Model/data, Sample sizes, and Parameters Other conditions

Du and Wang (2016) M X1j∼N(0,1), X2j dyad, Z1 dic., X1j
∗X2j , X2j

∗Z1, X1j
∗Z1, X2j

∗X1j
∗Z1, eij , u0j Missing values (singletons): 0%, 10%,

30%, 50%, MCAR and MARS N2: 30, 50, 100, 150, 200, 300, 400, 500, 500, N1: 2

P ICC: 0.1, 0.2, 0.3, 0.5, 0.7, ε2
e = 0.5, γ00 = 1, other fixed ES = 0.3

Spain et al. (2012) M Logistic model, X1j dyad, X2j-X5j cont., eij , u0j Estimation: generalized linear mixed
model and hierarchical linear modelS N2: 50, 100, 250, 500, 2200, N1: 2

P γ00 = −2.47, τ2
u0 = 0.43, X1j = 0.05, X2j = 0.03, X3j = −0.05, X4j = 0.19, X5j = 0.08

Maas and Hox (2004) M X1j∼N(0,1), Z1∼N(0,1), X1j
∗Z1, eij , u0j , u1j u0j , u1j distribution: normal and

non-normal (χ2
1) estimator: ML and

MLR
S N2: 30, 50, 100; N1: 5, 30, 50

P ICC: 0.1, 0.2, 0.3, ε2
e = 0.5, τ2

u0 = τ2
u1, γ00 = 1, other fixed ES = 0.3

Maas and Hox (2005) M X1j∼N(0,1), Z1∼N(0,1), X1j
∗Z1, eij , u0j , u1j –

S N2: 30, 50, 100; N1: 5, 30, 50

P ICC: 0.1, 0.2, 0.3, ε2
e = 0.5, τ2

u0 = τ2
u1, γ00 = 1, other fixed ES = 0.3

Moineddin et al. (2007) M Logistic model, X1j∼N(0,1), Z1∼N(0,1), X1j
∗Z1, eij , u0j , u1j –

S N2: 30, 50, 100; N1: 5, 30, 50

P ICC: 0.04, 0.17, 0.38, τ2
u0 = 0.13, 0.67, 2.0, γ00 = −1, other fixed ES = 0.3

Mathieu et al. (2012) M X1j∼N(0,varying), Z1∼N(0,1), X1j
∗Z1, eij , u0j , u1j Variable reliability:

S N2: 20, 40, 60, 115, N1: 3, 5, 7, 18 0.8, 0.9, 1.0

P ICC: 0.15, 0.30, ε2
e = 1, various fixed effect sizes (ES = 0 to ES = 0.75) level 1 slopes SD: 0.10, 0.17, 0.22

Outcome continuous if not otherwise stated. N1, level-1 sample size per level-2 unit; N2, level-2 sample size. ICC, intraclass correlation coefficient. ES, effect size. SD,
standard deviation. ML, maximum likelihood. MLR, maximum likelihood with robust standard errors. MAR, missing at random. dic, dichotomous. dyad, dichotomous
dyad member indicator variable. Xij, Zj, eij, u0j, u1j, ε2

e, γ 00, τ2
u0, τ2

u1 refer to variables and effects on their respective level according to formulae (1) and (2) with indices
adjusted for two-level models.

TABLE 2 | Investigated parameters of studies examining the impact of sample sizes on estimation results in three-level models.

Authors (Year) Simulation conditions: Model/data, Sample sizes, and Parameters Other conditions

Dong et al. (2018)a M X1jk , Z1k , W1, W2 dic. V (distr. varying per condition), W2
∗V, eijk , u0jk , v00k Moderator slope

variation:
Non-randomly varying
or random

S N3: 40, 80, N2: 5, 10, N1: 20

P ICC3 = 0.15, ICC2 = 0.08, variance explained by X1jk , Z1k , W1: 50%, ES = 0.2 (V )

McNeish and Wentzel
(2017)

M X1jk , Z1k , and W1∼bern(0.5), X2jk , Z2k , and W2∼N(0,1), eijk , u0jk , v00k Estimator: ML, REML
or corrected REML;
Model: three-level or
misspecified as
two-level model

S N3: 4, 7, 10, N2: 15 to 25, N1: 10 to 20

P ICC3 = 0.05, 0.15, ICC2 = 0.2 ES = 0.1 (X1jk , Z1k , W2), ES = 0.2 (X2jk , Z2k , W1)

ε2
e = 22, τ2

u0 = 5.5, σ2
v0 = 0.5 (ICC3 = 0.05) or σ2

v0 = 2.5 (ICC3 = 0.15)

Cunningham and Johnson
(2016)b

M V dic., eijk , u0jk , v00k –

S N3: 2 to 30, N2: 4, 6, 8, N1: 10, 20, 30

P ICC3 = 0.03, ICC2 = 0.02

de Jong et al. (2010)c M X1jk (log-time), Zk dic. (model B only), V dic., X1jk
∗V, eijk , u0jk , v00k Dropout: 0–25%, early,

throughout the study
duration, or late

S N3: 1–100, N2: 2, 4, 8, N1: 5, 11, 21

P ICC3 = 0.18, ICC2 = 0.75, δ000 = 78.37/78.38 (model B), δ100 = −12.3/−10.56,

δ010 = −4.16, ε2
e = 71.77/71.67, τ2

u0 = 454.09/448.93, σ2
v0 = 48.60/49.53, τ2

u1 = 187.80/183.72

Heo and Leon (2008)b M W1 dic., eijk , u0jk , v00k –

S N3: 4–40, N2: 5, 10, 25, 50, N1: 3, 6

P ICC3 = 0.01, 0.05, 0.1, ICC2 = 0.4, 0.5, 0.6, δ001 = 0.3, 0.4, 0.5, δ000 = 0

Konstantopoulos (2008)a,c M W1 dic., 5 covariates per level, eijk , u0jk , v00k Misspecification
(two-level analysis)S N3: 1–96, N2: 1–12, N1: 1–60

P ICC3 = 0.1, 0.2, ICC2 = 0.067, 0.134, ES = 0.2, 0.5, variance explained by covariates: 50%

Outcome continuous if not otherwise stated. N1, level-1 sample size per level-2 unit; N2, level-2 sample size per level-3 unit; N3, level-3 sample size. ML, Maximum
Likelihood; REML, Restricted Maximum Likelihood; ICC2, intraclass correlation coefficient of level-2; ICC3, intraclass correlation coefficient of level-3. ES, effect size. dic,
dichotomous. Xijk, Zjk, W1, eijk, u0jk, u1jk, v00k, ε2

e, γ00, τ2
u0, τ2

u1, σ2
v0, δ000, δ100, δ010, δ001 refer to variables and effects on their respective level according to formulae

(1) to (3). V, predictor with varying level according to condition. aanalytical solution only, b ICC2 calculated as in (5), c ICC2 calculated as in (6).

Maas and Hox (2004) further show that coverage probabilities
for the fixed effects remain within the acceptable range of
91–98%. For dyadic data, Du and Wang (2016) found negligible

fixed effects bias for 30 or more dyads for different ICC
levels (0.1–0.7) and a model with predictors on each level
(ES = 0.3, fixed intercept ES = 1), including two-way and
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TABLE 3 | Selected results and recommendations of studies examining the impact of sample sizes on estimation results in two-level models.

Authors (Year) Results Sample size recommendations

Du and Wang (2016) N2 ≥ 30: fixed effects peb < 0.05 peb < 0.05: N2 = 50 (ICC = 0.1) or 30 (ICC ≥ 0.2) for full
data

N2 ≤ 30 and ICC ≤ 0.2: τ2
u0, ε2

e peb > 0.05

τ2
u0 peb > ε2

e peb coverage: N2 = 50 for full data, otherwise N2 = 100

N2 = 30 and 50% singletons: low coverage for fixed effects

Spain et al. (2012) GLMM: fixed effects estimates reliable, τ2
u0 is over-

(N2 > 100) or underestimated (N2 = 50), standard errors
overestimated

N2 ≥ 100 for generally acceptable results, Laplace
approximation is advised

HLM: fixed effects estimates reliable for N2 > 50, τ2
u0

slightly underestimated for N2 > 50

Maas and Hox (2004) Normal distribution of level-2 errors: Normal distribution of level-2 errors:

Fixed effects and r.e. variance component peb < 0.001
standard error coverage: 91–95%.

N2 ≥ 10 for fixed effects only

N2 ≥ 30 for r.e. variance components

Non-normal distribution of level-2 errors: N2 ≥ 50 for standard errors

Fixed effects and r.e. variance component peb negligible
standard error coverage:

Non-normal distribution of level-2 errors:
High number of groups

fixed effect: 93–95% Standard error estimates not interpretable

ε2
e: 94–96% (ML), 98–99% (MLR) Non-parametric approach is advised

τ2
u0, τ2

u1: 57–78% (ML), 80–92% (MLR)

Maas and Hox (2005) Fixed and random effects peb < 0.001
15% underestimation of τ2

u0, τ2
u1 standard errors for

N2 = 30.

N2 ≥ 100 for τ2
u0, τ2

u1 standard errors

N2 ≥ 10, N1 ≥ 5 for fixed effectsNon-coverage rate (5% nominal):

fixed effect standard errors: 5–6%

ε2
e standard errors: 5–6%

τ2
u0, τ2

u1 standard errors: 6–9%

Moineddin et al. (2007) Fixed effects overall peb: 0.01–0.04 N2 = N1 = 50 for valid effect estimates.

τ2
u0, τ2

u1 overall peb: 0.05–0.07
Fixed effects and r.e. variance estimates peb ≥ 0.10 for
N2 = 30/N1 = 5

N2 = 100, N1 = 50 do not suffice for robust τ2
u0, τ2

u1

standard errors

Standard error non-coverage rate (5% nominal):

Fixed effect: 3–7%

τ2
u0: 7–17%

τ2
u1: 3–13%

Mathieu et al. (2012)a Average power across all conditions: 0.192 power to detect CLI can be increased by sampling more N1

units, rather than N2 units. N1 sample size is most
important if additionally, lower level effects are of interest.

CLI power mainly influenced by CLI effect size, N1, N2, and
standard deviation of slopes.

power>80% for N1 = 18 and CLI effect size = 0.75 or
N1 ≥ 18/N2 = 35

N1, level-1 sample size per level-2 unit, N2, level-2 sample size. GLMM, generalized linear mixed model; HLM, hierarchical linear model; ICC, intraclass correlation
coefficient; CLI, cross-level-interaction; peb, parameter estimation bias. ES, effect size. ML, maximum likelihood. MLR, maximum likelihood with robust standard errors.
Xij, Zj, eij, u0j, u1j, ε2

e, γ 00, τ2
u0, τ2

u1 refer to variables and effects on their respective level according to formulae (1) and (2) with indices adjusted for two-level models.
aOnly power for the CLI effect was investigated.

three-way interactions, and random intercepts (level-1 residual
variance ES = 0.5). Coverage rates for fixed effects were generally
acceptable for at least 50 dyads. Moreover Spain et al. (2012)
investigated dyadic data with a binary outcome based on existing
data from the health sector (five level-1 predictors with true
values between−0.05 and 0.19, τ2

u0 = 0.43, no level-2 predictors,
no interactions, no random slopes), and found considerable bias
for fixed effects estimates for less than 100 dyads, and severe
under- or overestimation of standard errors.

For three-level models, bias of level-1 and level-2 predictors
(continuous and discrete predictors with ES = 0.1 or ES = 0.2,
ICC3 = 0.05 or 0.15, ICC2 = 0.2) has been found to fall below

peb = 0.10, even if the level-3 sample size is smaller than 10 units
(McNeish and Wentzel, 2017).

Sample Size and Estimation Quality of
Random Effects Coefficients
Previous simulation studies show that r.e. variance estimates are
generally more severely biased than estimates for fixed effects.
Most importantly, the severity of the bias depends on the sample
sizes, the statistical model, and the level of the effect. For example,
Maas and Hox (2005, see Table 1 for conditions) found a bias of
peb< 0.001 for level-1 r.e. variance estimates (true value ε2

e = 0.5)
in samples with 5 to 50 level-1 units each in 30 to 100 level-2
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TABLE 4 | Selected results and recommendations of studies examining the impact of sample sizes on estimation results in three-level models.

Authors (Year) Results Sample size recommendations

Dong et al. (2018)a Higher MDESD/smaller power for higher-level V –

Smaller MDESD/ larger power for V cont.

Power ≥80% for level-1/level-2 V dic. or any level V cont. and N3 = 80

McNeish and Wentzel
(2017)

Fixed effects: peb < 0.1; peb > 0.1 if level-3 is ignored If the third level is incidental and not of
research interest, a fixed-effects-only
model is appropriate, as results are
acceptable even for N3 = 4

τ2
u0 peb < 0.1, σ2

v0 peb > 0.1

coverage < 0.9 for level-3 predictors

REML gives better results than ML

Cunningham and
Johnson (2016)b

V on level-1: power ≥ 0.9 for N3 > 2–12 –

V on level-2: power ≥ 0.9 for N3 > 4–15

V on level-3: power ≥ 0.9 for N3 > 20–30

de Jong et al. (2010)c V on level-2, N1 = 11: Sample sizes should be large at the
level where randomization takes place
(i.e., level-2 randomization requires
larger N2, level-3 randomization
requires larger N3)

power ≥ 80% for N3 = 17/N2 = 8; N3 = 33/N2 = 4; N3 = 66/N2 = 2.

V on level-3, N1 = 11:

power ≥ 80% for N3 = 37/N2 = 8; N3 = 53/N2 = 4; N3 = 86/N2 = 2.

Numbers of measurements, adding a significant slope predictor or 25%

dropout have negligible effect on power.

Heo and Leon (2008)b ES = 0.3: power ≥ 0.8 for N2 = 5, N3 > 40; N2 = 25/50, N3 > 22 To increase power, more N3 should be
sampled, since the impact of N3 on
power is larger than N2 on power

ES = 0.4: power ≥ 0.8 for N2 = 10, N3 > 17; N2 = 25/50, N3 > 13

ES = 0.5: power ≥ 0.8 for N2 = 5, N3 > 15; N2 = 10/25/50, N3 > 10

Empirical power < theoretical power

Konstantopoulos
(2008)a,c

Increasing N3 impacts power in all conditions –

N1 and N2 have non-substantial effect on power

Two-level analyses decrease power substantially

Including covariates increases power, e.g., N3 = 16/N2 = 2/N1 = 20,

ES = 0.5, ICC3 = 0.1, ICC2 = 0.067: power = 89% with covariates (power = 66% without covariates)

N1, level-1 sample size per level-2 unit; N2, level-2 sample size per level-3 unit; N3, level-3 sample size. ML, Maximum Likelihood; REML, Restricted Maximum Likelihood;
ICC2, intraclass correlation coefficient of level-2; ICC3, intraclass correlation coefficient of level-3. ES, effect size; MDESD, minimum detectable effect size difference; dic.,
dichotomous; cont., continuous. τ2

u0, σ 2
v0 refer to variables and effects on their respective level according to formulae (1) to (3). V, predictor with varying level according

to condition. aanalytical solution only, b ICC2 calculated as in (5), c ICC2 calculated as in (6).

units, whereas Moineddin et al. (2007) used a two-level logistic
regression model with one medium sized (ES = 0.3), normally
distributed predictor at each level (ICC = 0.04 to 0.38), and found
a bias of peb ≥ 1.00 for the level-2 random intercept variance
estimate in small samples (30 to 50 groups with 5 units each). As
a general rule, level-1 residual variance estimates are less biased
than higher-level r.e. variance components, as shown by Maas
and Hox (2004, see Table 1), who report sufficient coverage for
level-1 residual variance estimates, but coverage below 80% for
level-2 r.e. variance estimates in samples with at least 5 level-
1 units each in 30 level-2 units. For analyses of dyadic data
(Spain et al., 2012; Du and Wang, 2016; see Tables 1, 3), the
inclusion of random effects is limited, since there need to be
more units per cluster in the data than specified random variables
in order for the model to be identified (Kenny et al., 2006;
Du and Wang, 2016).

In three-level models, McNeish and Wentzel (2017) found the
level-2 random intercept variance estimate (true value τ2

u0 = 5.5)
to be unbiased (peb < 0.10), even in samples with less than
ten level-3 units, while the level-3 random intercept variance
estimate (true value σ2

v0 = 0.5 for ICC3 = 0.05, or σ2
v0 = 2.5 for

ICC3 = 0.15) in such samples is more heavily biased (see Table 2
for further conditions).

Sample Size Allocation Across Levels
In addition to the overall sample size, the allocation of units
across levels also influences the estimation results. Research on
the sample size allocation has shown that generally, increasing the
higher-level sample size leads to improved estimation accuracy
in terms of both fixed effects and r.e. variance estimates on all
levels (e.g., Maas and Hox, 2004, 2005, for two-level models;
Konstantopoulos, 2008 for three-level models). If randomization
is used to investigate a treatment effect, the total required sample
size depends on the level of randomization. Generally, overall
larger samples are required for higher-level randomization
(Cunningham and Johnson, 2016; Hooper et al., 2016), and
increasing the sample size at the level of randomization most
strongly improves power (de Jong et al., 2010; longitudinal
model with log-time at level-1, a level-2 covariate, ICC3 = 0.18,
and ICC2 = 0.75, see Table 2 for further conditions). Heo
and Leon (2008) derived formulae for power calculations to
investigate necessary sample sizes to detect a level-1 effect in
models with randomization at level three. They found that the
required level-3 sample size is strongly (negatively) related to
the size of the effect (ES = 0.3, 0.4, or 0.5), and showed that
increasing the level-3 sample size is much more efficient to
reliably (power ≥80%) detect the level-1 effect than increasing
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the level-2 sample size. Dong et al. (2018) further showed that
power to detect a medium sized moderation effect in three-level
models with a treatment-effect variable on level-3 (varying level
of the moderator, ICC3 = 0.15, ICC2 = 0.08, including covariates
on each level) generally depends on the level-3 sample size,
although the level-1 sample size is also important for detecting
lower level moderator effects. Aside from these findings, Snijders
(2005) states, as a general rule, that the sample size of the level
at which a particular variable is measured is most important for
estimation accuracy of that variable’s effect. Regarding missing
values, Hox (2013) further states that missing data at level one
poses no problem for the analysis results, but missing higher-level
data may require additional steps, such as multiple imputation,
for reliable inference.

Available Sample Size
Recommendations
As multilevel analysis results are influenced by various factors,
recommendations with regards to sample size strongly
depend on the data, especially the sizes of the effects
and model characteristics. Therefore, recommendations
summarized in Table 3 (two-level models) and Table 4
(three-level models) relate to the simulation conditions in
Tables 1, 2. In most simulation studies concerned with
three-level models, findings were compared to existing
recommendations for two-level models. Therefore, we briefly
outline important results for two-level models, followed by
results for three-level models. In summary, the most important
findings are:

(i) In two-level models: Maas and Hox (2005) suggest a higher-
level sample size of at least 100 for accurate estimation of
higher-level r.e. variance components and their standard
errors (see Table 1 for conditions). However, they argue
that smaller level-2 sample sizes might be sufficient in
practice, as they showed that sampling 50 level-2 units
provides acceptable results for higher-level r.e. variance
estimates, with a non-coverage rate of 7.3% as opposed to
the nominal 5%. Mathieu et al. (2012) investigated cross-
level-interactions in models with one normally distributed
predictor per level (ICC: 0.15 or 0.30; various ES ≤ 0.75),
and recommend sampling more thoroughly on level-1,
rather than on level-2, especially if lower level effects are
of interest in addition to the cross-level-effect. For dyadic
data, Du and Wang (2016) recommend at least 50 dyads
in order to reliably estimate fixed effects and r.e. variance
components in case of non-missing data (see Table 1
for conditions). In case of missing data (10 to 50% of
singletons), they recommend at least 100 dyads. They point
out, however, that such sample sizes might not be sufficient
for adequate power to detect effects. Recently, Lane and
Hennes (2018) developed and demonstrated a guide to
determine power for a user specified dyadic data model.

(ii) In three-level models: de Jong et al. (2010) showed that
sufficient power for large fixed effects can be reached with
relatively small level-2 sample sizes given that the level-3

sample size is large, such as 17 level-3 units with 8 level-
2 units each, or 66 level-3 units with 2 level-2 units each
(see Table 2 for conditions). However, they argue that
estimates for both coefficients and their standard errors
could be strongly biased for these small level-2 sample
sizes. McNeish and Wentzel (2017) show that if the third
level is not of research interest, but solely included due
to the sampling procedure, four level-3 units can ensure
sound estimation results and sufficient coverage rates at
level-2 and level-1 (see Table 2 for conditions). To detect
a level-1 effect of a dichotomous variable in a three-level
model with randomization at level three (ICC3 = 0.01, 0.1,
ICC2 = 0.4, 0.5, 0.6), Heo and Leon (2008) found that effects
of size ES = 0.3 with fewer than 10 level-1 and level-2 units
require more than 30 level-3 units for sufficient power. For
larger level-2 sample sizes (N2 = 25), 6 level-3 units can
be sufficient. To find larger effects of size 0.5, overall small
sample sizes can be sufficient (e.g., N1 = 6, N2 = 5, N3 > 9).
Cunningham and Johnson (2016) furthermore found that
for an effect of ES = 1.8, a level-2 sample size of 4 to 8, and
a level-1 sample size of 10 to 30, a power of 90% can be
reached with less than 12 level-3 units when randomization
takes place at level-1, and a few more required units in case
of level-2 randomization, while between 20 and 30 units are
required if randomization takes place at the highest level.

Aim of This Study and Research
Questions
In summary, previous studies have focused mainly on estimation
quality in two-level models, and recent findings on three-
level models reveal a complex interplay of factors influencing
estimation quality. Hence, the soundness of fixed effects and
r.e. variance estimates in three-level models is not sufficiently
well known. In particular, it is not clear if there are differences
in the estimation quality between level-2 and level-3 model
parameters depending on the overall sample size and allocation
of observational units to the different levels. Yet, this information
is of high importance, since sample size recommendations
for three-level models with repeated measures are sparse,
with even fewer studies including a longitudinal trend (e.g.,
linear or quadratic trajectories) and higher order clustering.
Moreover, most simulation studies have generated data following
theoretical considerations rather than empirical findings. As a
consequence, researchers who analyze empirical three-level data
lack information on how large their sample sizes need to be for
each data level, and how sample size recommendations from
artificially created datasets apply to their research setting.

The present simulation study helps researchers in planning
their study with respect to the sampling procedure by comparing
estimates obtained under various sample size conditions to
known true values of population data. We use data from a
typical research setting in developmental psychology, yielding
practice-relevant samples, effects, and models. We examine how
sample sizes and missing values affect estimation quality of the
MLA for fixed effects (including cross-level-interactions) and r.e.
variance estimates across the three data levels. By using data
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reflecting typical MLA-results and sample characteristics of an
illustrative psychological study, we aim to help researchers in
similar research settings decide on the appropriate sample sizes.
As a consequence, results and their derived recommendations
are intended for models and data which are comparable to the
conditions in these analyses.

MATERIALS AND METHODS

The Illustrative Study
The study published by Maulana et al. (2013) serves as a suitable
basis for our simulation study for several reasons:

(i) the research setting – observing children clustered within
classes over a period of time – is common in educational
research

(ii) the study provides sufficient methodological information in
order to recreate comparable data

(iii) the multilevel model of the study uses three-level-data
including predictors on each level, a continuous dependent
variable, random slopes, and intercepts on levels two and
three, and repeated measures at the first level

(iv) the study depicts a realistic sampling process with typical
samples and analysis results, which are transferable to
similar research contexts

In the study, the authors investigated the link between
student-teacher interpersonal relationship, academic motivation,
and its development over time by surveying 504 Indonesian
first-grade secondary students (level 2) from 16 classes (level 3)
about their academic motivation and perceived influence and
proximity of their teachers over the course of one school-year
with five measurement occasions (level 1). Our analyses are based
on Model 2 in Maulana et al. (2013, p. 472), which assesses how
motivation develops over time, and how it is affected by perceived
teacher influence at each measurement occasion (level-1), gender
(level-2), subject taught (level-3), and classtype (level-3). For our
population data and model, we removed the predictor subject
taught in order to obtain a realistic, yet concise model depicting a
growth process with one covariate at every level. Table 5 depicts
the analysis results as reported in Table 4 of Maulana et al.
(2013) and indicates which variables are used for the population
data and analyses. In line with the original study, we included
random intercepts and random slopes for the linear effect of time
at both higher levels. Equations (9) to (11) depict the resulting
three-level model:
Level 1:

Motivationijk =

β0jk + β1jkTimeijk + β2jkTime2
ijk + β3jkInfluenceijk + eijk (9)

Level 2:
β0jk = γ00k + γ01kGenderjk + u0jk

β1jk = γ10k + γ11kGenderjk + u1jk

TABLE 5 | ML growth curve results by Maulana et al. (2013).

Influence on controlled motivation

Variable Coefficient SE

Fixed effects level 1

intercept 3.2032∗∗∗ 0.0860

time 0.0547∗∗ 0.0205

influence 0.1493∗ 0.0694

Fixed effects level 2

gender 0.0072 0.0647

Fixed effects level 3

subject taught 0.0314 0.0711

classtype 0.2946∗∗∗ 0.0781

Interaction effects

time × classtype 0.0092 0.0107

time × subject taught −0.0055 0.0106

time × gender 0.0056 0.0081

time × time −0.0039∗∗ 0.0015

influence × classtype −0.1514 0.0848

Random variance level 3

intercept 0.0041 0.0073

intercept × time 0.0001 0.0008

time 0.0002 0.0002

Random variance level 2

intercept 0.1950 0.0346

intercept × time −0.0069 0.0040

time 0.0009 0.0006

Random variance level 1

residual 0.2622 0.0123

SE, standard error. Bold components indicate variables and effects included
in the data generating process. Sample size = 1892. ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

β2jk = γ20k

β3jk = γ30k (10)

Level 3:

γ00k = δ000 + δ001Classtypek + v00k

γ01k = δ010

γ10k = δ100 + δ101Classtypek + v10k

γ11k = δ110

γ20k = δ200

γ30k = δ300 + δ301Classtypek (11)

The Experimental Design
In order to investigate how the parameter estimates in MLA
are affected by the sampling plan and missing data, we vary
three factors: The level-3 sample size (number of classrooms:
N3 = 15, 35, 55), the level-2 sample size (number of students
per class: N2 = 5, 15, 35), and the level-1 sample size by means
of missing value patterns: (i) no missing values (complete data:
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COM), (ii) 20% of students missing level-1 reports completely
at random at arbitrary measurement occasions (this pattern
is referred to as: MCAR), and (iii) 20% of students dropping
out and thus not reporting level-1 variable values for the
last two measurement occasions (DrOP2), or (iv) the last
three measurement occasions (DrOP3). The 20% of missing
data in the drop-out conditions DrOP2 and DrOP3 are also
missing completely at random. To assess how our sample size
conditions compare to sample sizes of recent studies in the
educational setting, we conducted a non-exhaustive literature
search of relevant studies. We limited our search to include
studies which (1) were published in academic journals in
2013 or more recently, (2) are listed in PsychINFO, (3) use
either three-level multilevel analysis or multilevel growth curves,
and (4) analyze data in the school context. We identified
20 studies which sampled and analyzed data according to
our criteria and found median sample sizes of 49 schools
(min = 10, max = 933), 68 classes (min = 16, max = 565),
1943 children or adolescents (min = 55, max = 29153), and
four measurement occasions (min = 2, max = 14). We further
identified 30 studies analyzing pre-existing, large-scale data
(e.g., PISA, TIMSS) and found median sample sizes of 259
schools (min = 44, max = 11075), 594.5 classes (min = 103,
max = 18761), 7718 children or adolescents (min = 1698,
max = 470000), and four measurement occasions (min = 3,
max = 5). Hence, our sample size conditions, ranging from
75 students in 15 classes to 1925 students in 55 schools,
lie within the range of recently analyzed sample sizes in the
field. The percentage of missing values was chosen based
on typically reported attrition rates in research concerning
the educational system (e.g., Wagner et al., 1997; Miles and
Stipek, 2006; Zvoch and Stevens, 2006; Konstantopoulos and
Chung, 2011). Table 6 describes the missing value patterns
by depicting the percentage of data used for analysis at
each measurement occasion. In total, the simulation study
encompasses 3× 3× 4 = 36 conditions.

The Data Generating Process
Firstly, we generated the population data using version 14.1. of
Stata (StataCorp, 2015) according to the information provided
in the illustrative study. In total, we generated the population
data to consist of 3000 classrooms, with 1000 classrooms
for each of the three N2 (5, 15, or 35) conditions. We
used the variable means, standard deviations, and distributions
reported in the illustrative study to generate values for the
independent variables, and used the reported MLA results
(i.e., fixed effects estimates and r.e. variance estimates) to
generate values for the dependent variable (see Equations 9 to
11). The independent variables are gender (56% girls; binary),
classtype (52% heterogeneous-ability classes; binary), time passed
since baseline measure in months (0, 1.5, 4, 7, and 10), and
interaction terms. Since the illustrative study did not report
non-normal data, the metric variable influence was modeled as
normally distributed with M = 0.42 and SD = 0.36. Random
effects are also modeled as normally distributed variables with
mean zero and variances equal to those reported in the
illustrative study.

TABLE 6 | Percentage of students data used for analysis for each
missing value pattern.

T0 T1 T2 T3 T4

COM 100% 100% 100% 100% 100%

MCAR R R R R R

DrOP2 100% 100% 100% 80% 80%

DrOP3 100% 100% 80% 80% 80%

T0, baseline measurement, T1 to T4 denote successive measurements. COM to
DrOP3 correspond to missing value patterns described in the section “Materials
and Methods.” R = 20% of overall data is missing completely at random.

In a next step, we realized samples from the population
data according to the N2 (number of students per class) and
N3 (number of classrooms) conditions with full data (missing
value pattern: COM). For each N3/N2 combination, we drew
the desired number of classes (i.e., 15, 35, or 55) from the
1000 classes in the population data that contained the desired
number of students (i.e., 5, 15, or 35). The classes for each
realized sample were drawn without replacement, such that
no particular simulated sample contains duplicates of level-3
units. We repeatedly drew samples to obtain 1000 datasets for
each of the 3 × 3 × 1 = 9 conditions (N2 × N3 conditions)
with complete data. For the missing value patterns MCAR,
DrOP2, and DrOP3, we repeated the data generation process
described above separately for each of the three patterns, and
in an additional step deleted values according to the desired
condition (see section “The Experimental Design”). As a result,
we obtained 1000 samples for each of the 3 × 3 × 3 = 27
conditions with missing values.

Analysis Procedure
All analyses were carried out using R (R Development Core
Team, 2016). In a first step, the true parameters from the
population were obtained by applying the lmer()-function of
the LME4-package (Bates et al., 2016). To assess variability due
to clustering in the population data, ICC values for levels two
and three were computed as in (4) to (6). Notably, since the
population r.e. variances are modeled according to the values
reported in the illustrative study, the ICC values are evaluated
but not varied as an additional analysis condition in this study.
In order to more easily interpret the original study and evaluate
its results, effect size values for fixed effects and r.e. variances are
advantageous. However, the reduction of variability on each level
as a measure of effect size is not applicable for longitudinal data
(Hox et al., 2017), and available effect sizes in multilevel models
have been developed for measures of mean differences between
groups (e.g., Tymms, 2004; Hedges, 2011) only. In order to
nonetheless provide a general understanding for the magnitude
of effects in our analyses, we used the approach by Tymms
(2004) to calculate effect sizes as the regression weight relative
to the remaining residual variance of the full model. Hence, the
resulting values are not exact effect sizes, and should therefore
only serve as an approximate indicator of the magnitude of
effects within this study. (12) and (13) provide formulae for
dichotomous and continuous variables, respectively, for a given
regression coefficient β, the predictor variable standard deviation
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SDPredictor , and the level-1 residual variance ε2
e.

ESdichotomous =
β

ε2
e

(12)

EScontinuous =
2∗β∗SDPredictor

ε2
e

(13)

For the r.e. variances, Tymms (2004) recommends using their
close relationship to the ICC and calculate the level-wise effect
size for the random part of the model as in (14). This formula is
applicable for ICC values (4) to (6) presented above.

ESrandom =

√
4∗ICC

1− ICC
(14)

After evaluating the population data, the samples were
analyzed using the same model and lmer()-function. For each
condition, the peb over all 1000 simulated samples was then
calculated for all fixed effects and r.e. variance estimates. Since
the LME4-package does not provide p-values for multilevel
analysis results1, the 95%-confidence intervals were constructed
(see Wald-method in Bates et al., 2016) for fixed effects.
For each parameter of fixed effects individually, coverage was
evaluated by whether it ranges between 91% and 98%, and
power was assessed for each predictor in each condition by the
percentage of simulated samples with the confidence interval not
including the value zero.

RESULTS

Population Model
The data generation process yielded a population that
corresponds very closely to the sample reported by Maulana et al.
(2013) with respect to descriptive statistics (see Table 7) and

1Following arguments by Bates (2006), the reliability of significance tests for
coefficients of the MLA-model is controversial, as degrees of freedom cannot be
conclusively determined. Hence, the lmer()-function does not calculate p-values.
In order to provide an approximate measure for statistical significance, we
calculated confidence intervals using the confint()-function for the lmer() model
parameter estimates. Coverage and power results in this contribution hold only
under the assumption that degrees of freedom are reliably estimated.

TABLE 7 | Population characteristics and values reported by Maulana et al. (2013).

M [Study M] SD [Study SD] Fraction [Study fraction] in %

Influencea 0.42 [0.42] 0.36 [0.36] –

Motivationa 3.54 [3.55] 0.73 [0.70] –

Genderb

girls – – 55.67 [56]

boys – – 44.33 [44]

Classtypec

heterogeneous – – 50.70 [52]

homogeneous – – 49.30 [48]

M, mean; SD, standard deviation. Values reported by Maulana et al. (2013)
indicated in brackets. aBased on 275000 reports. bBased on 55000 students.
cBased on 3000 classrooms.

model parameters of the MLA using the full population data (see
Table 8). Perceived influence scores across measurements are
equal to the values reported in the illustrative study (M = 0.42,
SD = 0.36), and motivation scores differ only by 0.01 points
in mean (M = 3.54) and 0.03 points in standard deviation
(SD = 0.73). 55.67% of the population consists of girls (56%
in the illustrative study), and 50.70% of the classrooms are
heterogeneous (52% in the illustrative study).

Table 8 presents the results of the MLA analysis of the
whole population, which serve as true values for subsequent
analyses. The largest deviations from the original study are
0.0101 points for fixed effect estimates (classtype: population
coefficient = 0.2845) and 0.0004 points for r.e. variance estimates
(level-3 intercept: population variance = 0.0045).

Table 9 presents the r.e. variance estimates of the population
empty model and the resulting ICC values. As can be seen,
stochastic dependency in the data due to clustering mainly

TABLE 8 | Results of the MLA for the population.

Model: influence on controlled motivationa

Variable Coefficient

Fixed effects level 1

intercept 3.2110

time 0.0529

influence 0.1465

Fixed effects level 2

gender 0.0083

Fixed effects level 3

classtype 0.2845

Interaction effects

classtype × time 0.0100

gender × time 0.0057

influence × classtype −0.1419

time × time −0.0038

Random variances level 3

intercept 0.0045

time 0.0002

Random variances level 2

intercept 0.1926

time 0.0009

Random variance level 1

residual 0.2626

aPopulation size = 275000.

TABLE 9 | Random effects variance components and ICC values for the multilevel
model without predictors (empty model) for the population data.

Variance component ICC

Level-1 (Residual) ε2
e = 0.30 –

Level-2 Intercept τ2
u0 = .20 ρlevel2 (a) = 0.44 ρlevel2 (b) = 0.39

Level-3 Intercept σ2
v0 = 0.03 ρclasses = 0.05

ICC, intraclass correlation coefficient. Version (a) of the level-2 Intercept ICC is
calculated according to (5), (b) is calculated according to (6).
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occurs with regards to the level-2 intercepts (using equation (15):
ICC = 0.44; using equation (16): ICC = 0.39).

Table 10 presents the estimated effect sizes for each predictor
following Tymms (2004). In a simulation study, Tymms (2004)
showed that large effect sizes, such as for time, time × time,
and classtype, are slightly underestimated (below 10% of
underestimation). The results in Table 10 show a range of small
and large effects for both main effects (e.g., ESgender = 0.02;
EStime = 0.75) and interaction effects (e.g., ESgender × time = 0.08;
EStime × time = −0.55). As the coefficients of this case study are
subject of evaluation and the effect sizes cannot be calculated
accurately, further analysis results will refer to regression
coefficients rather than effect sizes.

Estimation Bias: Fixed Effects
In samples without missing values (COM; see Table 11), the
peb consistently falls below 0.10 for the following regression
coefficients2: intercept, time, and time × time. For conditions
with N2 = 5, coefficients are underestimated for the level-3
effect classtype (peb ranging from−0.16 to −0.13), level-1 effect
influence (N3 = 35: peb = −0.10, N3 = 55: peb = −0.12), the
cross-level-interactions classtype × time (peb between −0.25
and −0.20), and classtype × influence (N3 = 55: peb = −0.14).

2We henceforth refer to regression coefficients associated to predictions of
intercepts using the name of the predictor (e.g., classtype refers to the level-3
regression coefficient), and to regression coefficients associated to predictions of
slope parameters by the product of the variables (e.g., time× classtype).

TABLE 10 | Effect sizes of predictors and random effects variance components.

Regression
coefficient

standard
deviation of

predictor
variable

Effect sizea

Predictors level 1

time 0.05 3.63 0.75

influence 0.15 0.36 0.21

Predictor level 2

gender 0.01 – 0.02

Predictor level 3

classtype 0.28 – 0.56

Interaction effects

time × time −0.0038 37.51 −0.55

gender × time 0.01 3.51 0.08

classtype × time 0.01 3.40 0.13

influence × classtype −0.14 0.33 −0.18

Random effects Variance
componentb

ICC Effect sizeb

Level-2 intercept (a) 0.20 0.44 1.76

Level-2 intercept (b) 0.20 0.39 1.59

Level-3 intercept 0.03 0.05 0.46

aBased on Tymms (2004) with ε2
e from the full model. bVariance components

and, hence, effect sizes are based on the empty model. ICC, intraclass correlation
coefficient. Random slopes are excluded as they are not part of the empty model
used to calculate ICC values. TA
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Coefficients for gender (level-2) are consistently overestimated
in N2 = 5 (peb between 0.35, and 0.99) and N2 = 15 (peb
between 1.13, and 1.47), but underestimated for N2 = 35
(peb ranging from −0.76 to −0.26). The cross-level interaction
gender × time, in contrast, is underestimated for N2 = 5
(peb between −0.55 and −0.41) and N2 = 15 (15 classes:
peb =−0.14; 55 classes: peb =−0.15), whereas it is overestimated
for N2 = 35/N3 = 35 (peb = 0.14) and N2 = 35/N3 = 55
(peb = 0.11). For fixed effects, peb is mainly improved by
increasing the number of students per classroom, with gender
(level-2) requiring at least N2 = 35 to substantially improve
estimation quality.

In samples with missing values or dropout (MCAR, DrOP2,
DrOP3), peb does not differ substantially compared to samples
without missing values (COM; see Supplementary Tables A1–3).
For gender, the peb decreases slightly for most sample sizes, but
does not fall above peb = −0.25 (N2 = 35/N3 = 15 in MCAR),
staying close to the results for samples without missing values
(peb = −0.26, in the same sample size). peb further decreases for
most interaction effects in samples with N2 = 5 and MCAR, with
the largest decrease for gender × time in N2 = 5/N3 = 35 (no
missing values: peb =−0.55; missing values: peb =−0.43).

Estimation Bias: Random Effects
Table 12 provides peb values for r.e. variance estimates
in samples without missing values (COM; for results with
missing values, see Supplementary Tables A4–6). The bias
exceeds peb = 0.10 for the r.e. variance estimate of the
level-3 intercept in all conditions but N2 = 35/N3 = 35
(range: peb = −0.11 in N2 = 35/N3 = 55 to peb = 1.94 in
N2 = 5/N3 = 15). The r.e. variance estimate of the level-
3 slope is overestimated for N2 = 5/N3 = 35 (peb = 0.46),
N2 = 5/N3 = 55 (peb = 0.20), and N2 = 15/N3 = 15 (peb = 0.17),
whereas the r.e. variance estimate of the level-2 slope is only
overestimated in N2 = 5/N3 = 15 (peb = 0.10). For all other
sample sizes and variables, bias is below 0.10. For r.e. variance
estimates, peb is mostly reduced by increasing the number of
students per class.

For samples including missing values, most pebs do not change
by more than 0.01, except for the level-2 random slope variance
in samples with N2 = 5 and MCAR (N3 = 15: peb = 0.20;

N3 = 35: peb = 0.09; N3 = 55: peb = 0.02) showing an increase
of up to 0.09. Results for the level-3 r.e. variances are mixed.
For the r.e. variance estimate of the level-3 intercept, mean bias
decreases for N2 = 35/N3 = 55 and MCAR (peb = −0.07) with
peb below 0.10. In most other conditions, peb of the r.e. variance
estimate of the level-3 intercept becomes larger, with increases
of more than 1.00 in peb for MCAR. Increases in peb for the
r.e. variance estimate of the level-3 slope mainly concern sample
sizes with N2 = 5 and additionally N2 = 15 in samples with
MCAR. For N2 = 5/N3 = 15, peb reaches 0.69. In total, missing
values in N2 = 35 do not lead to considerable changes in the
r.e. variance estimates, while missing values in N2 = 15 mainly
affect level-3 effects. Missing values in N2 = 5 lead to stronger
estimation bias in all conditions except for the level-1 residual
variance estimates.

Estimation Fluctuations
The association of estimation fluctuations, measured by the
parameters’ standard deviation over all replications, and peb
expresses if stronger biases are related to less stable estimates.
Figure 1 depicts these associations for gender, classtype × time,
and the level-3 random intercept variance across all conditions
(for all other effects, which show consistently comparable
findings, see Supplementary Figures A1–3). Increasing the
number of students per classroom generally leads to substantial
improvements in estimation quality in terms of less estimation
fluctuations (more efficiency) and peb (less bias). Moreover, for
the smallest sample size at level-2, we find the largest peb and the
largest standard deviations across the replications.

Coverage
Coverage rates for all fixed effects fall within the acceptable range
of 91% to 98%, with the lowest being cov = 91.5% for the level-3
variable classtype in N2 = 5/N3 = 55 with MCAR, and the highest
being cov = 97.3% for the level-1 variable time in N2 = 35/N3 = 55
with DrOP2. Complete tabulated coverage values can be found in
the Supplementary Tables A7–10.

Statistical Power
Overall, power for fixed effects is greater than 80% in all
conditions for the level-1 regression intercept, but it is below 80%
in any condition for the smallest effects: gender, gender × time

TABLE 12 | Parameter estimation bias (peb) of samples without missing values for variances of random effects.

N2/N3 Level-3 intercept peb Level-3 slope peb Level-2 intercept peb Level-2 slope peb Level-1 residual peb

5/15 1.944 0.455 −0.067 0.104 0.002

5/35 0.766 0.200 −0.066 0.060 0.007

5/55 0.389 0.063 −0.060 0.090 0.011

15/15 0.795 0.173 −0.025 −0.040 0.001

15/35 0.419 0.099 −0.014 −0.031 < 0.001

15/55 0.307 0.084 −0.014 −0.034 0.002

35/15 0.108 0.010 0.004 −0.014 −0.001

35/35 −0.078 −0.028 0.012 −0.009 −0.002

55/55 −0.105 −0.028 0.013 −0.013 −0.002

N2, Number of students per class (level-2 sample size per group). N3, Number of classes (level-3 sample size). Bolded numbers indicate peb > 0.1.
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FIGURE 1 | Parameter estimation bias (peb) for level-2 predictor gender, cross-level interaction classtype × time, and level-3 random intercept variance, in relation to
the standard deviation of their estimated parameter values over 1000 simulation runs for each sample size condition. Shades differentiate between numbers of
students per class (N2), shapes differentiate between numbers of classrooms per sample (N3). As results are very similar between samples with and without missing
values, plots do not differentiate between missing value patterns.

and classtype × time. Power results for the remaining effects
are summarized below and displayed in Figure 2. Full tabulated
results can be found in the Supplementary Tables A11–12.

In complete samples (COM) with N2 = 35, effects are most
reliably detected, with power ≥80% for all remaining effects
except influence× classtype in N2 = 35/N3 = 15 (power = 58.7%).
Sampling either N2 = 35/N3 = 35 or N2 = 35/N3 = 55 results
in power >90% for all remaining effects. Additionally, sampling
N2 = 15/N3 = 35 or N2 = 15/N3 = 55 provides sufficient power
for the linear and quadratic time effect, classtype, and influence,
whereas the cross-level interaction influence × classtype reaches
power >80% for N2 = 15/N3 = 55 only. In order to statistically
detect the effect of classtype, influence, and the quadratic time
effect, N2 = 15/N3 = 35 is required, and time requires at

least N2 = 5/N3 = 55, or alternatively N2 = 15 regardless
of the N3 condition.

In conditions with missing values, power generally decreases
with the most pronounced decrease for the MCAR-condition.
DrOP2 results in the smallest decrease, where only one additional
effect (the linear time effect in N2 = 15/N3 = 15) has a
power below 80% (complete samples: power = 83.8%, DrOP2:
power = 79.8%). As in samples without missing values, conditions
N2 = 15/N3 = 35, 15/55, and samples with N2 = 35, provide
sufficient power for the effects time, time × time, and classtype.
This also holds true for the effect of influence, with the
exception of N2 = 35/N3 = 15, where power = 79.3%. For
classtype, however, power drops below 80% for MCAR in
N2 = 5/N2 = 55 (power = 77.4%) and N2 = 15/N3 = 15

Frontiers in Psychology | www.frontiersin.org 13 May 2019 | Volume 10 | Article 1067

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-10-01067 May 17, 2019 Time: 16:30 # 14

Kerkhoff and Nussbeck Sample Sizes in Three-Level Models

FIGURE 2 | Statistical power for the time effect, level-1 predictor influence, level-3 predictor classtype, and the cross-level interaction of influence × classtype. The
sample size condition is displayed as “level-2 sample size/level-3 sample size,” e.g., 5/15 corresponds to “5 students each in 15 sampled classrooms.” The missing
value conditions (see section “Materials and Methods” and Table 6) are displayed by the type and shade of lines. The light dotted line marks the minimum sufficient
power of 80%.
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(power = 76.6%). For the interaction influence× classtype, power
is still sufficient for N2 = 35/N3 = 35 and N2 = 35/N3 = 55,
but drops below 80% for MCAR (power = 74.6%) and
DrOP3 (power = 79.9%).

SUMMARY AND DISCUSSION

This simulation study sheds light on the quality of parameter
estimates in MLA for data situations that are comparable
to the one encountered by Maulana et al. (2013). The data
was hierarchically structured on three-levels, with random
effects on levels two and three, five measurement occasions,
four main effects (Level-1 βtime = 0.05, ES = 0.75; Level-1
βinfluence = 0.15, ES = 0.21; Level-2 βgender = 0.01, ES = 0.02;
Level-3 βclasstype = 0.28, ES = 0.56), four interaction effects
(βtime × time < 0.01, ES =−0.55; βclasstype × time = 0.01, ES = 0.13;
βgender × time = 0.01, ES = 0.08; βinfluence × classtype = −0.14,
ES = −0.18), and a continuous response variable. We realized
conditions differing in overall sample size, unit allocation,
and missing value patterns, and investigated differences in
estimation quality using MLA. When comparing analysis
results across conditions, it has become apparent that in this
setting, the quality of the analysis results strongly depends
on the sample size, particularly the unit allocation to level-
2, which describes the number of students. In the following
subsections, we summarize the required sample sizes for
sound estimation results, derive sampling recommendations,
and discuss limitations and future prospects. In this regard, the
recommendations presented are based on the specific simulation
conditions in this study.

Required Sample Sizes
The simulation study showed that all model parameters can
be reliably estimated except for the small effect of gender,
which requires sample sizes greater than those examined. This
is most plausibly due to its standard error being equally large
as the model parameter. Results for interaction effects are
mixed, with some cross-level-interactions requiring at least 15
level-2 units (gender × time, classtype × time), and both
time × time and influence × classtype being unbiased even
in small samples with 5 level-2 and 15 level-3 units. The
results for the r.e. variance estimates are mostly consistent with
previous studies (e.g., Maas and Hox, 2004, 2005; Moineddin
et al., 2007; McNeish and Wentzel, 2017). Bias is very high for
level-3 r.e. variance estimates, even for large sample sizes, but
smaller for level-2 r.e. variance estimates. Bias of level-1 residual
variances is negligible with pebs < 0.015. Heavy fluctuations
in the level-3 r.e. variance estimates might also be due to
their small size.

The results show that there is a minimum number of
classrooms (level-3 sample size) needed for stable results,
as results for samples with only 15 classrooms are most
strongly biased due to strong fluctuations in estimates. Notably,
studies on different three-level models report far smaller level-
3 sample sizes to be sufficient in terms of peb (Heo and
Leon, 2008; Cunningham and Johnson, 2016; McNeish and

Wentzel, 2017). Apart from that, the number of students per
class (level-2 sample size) is consistently more important than
adding more classrooms to the sample, with especially low
estimation quality in samples with only five students per class.
Specifically, the highest-level sample size in this study does
not impact results most, as the majority of previous studies
suggests (e.g., Maas and Hox, 2004, 2005; Konstantopoulos,
2008; Heo and Leon, 2008; Scherbaum and Ferreter, 2009;
Dong et al., 2018). This conflicting result might be due to
a less pronounced multilevel-structure, as the r.e. variance
components on classroom-level and, consequently, the ICC,
are very small. Furthermore, for the level-3 predictor, the
number of classrooms seems to be as important as the number
of students. This is at least in parts in line with previous
findings stating that a parameter is estimated most accurately
if the sample size at the corresponding level is sufficiently
large (Snijders, 2005). In addition to the peb as a measure of
bias, we evaluated the strength of the fluctuation in parameter
estimates as a measure of statistical efficiency. Results show
that efficiency and unbiasedness are closely related, such that
in small samples, obtained estimation results might not just be
biased, but also potentially different in size if the analysis is
repeated with another sample from the same population. As
the abovementioned studies did not evaluate the strength of
estimation fluctuation, the ability to compare our results in this
respect is limited.

Recommendations for Researchers
This simulation study is meant to help researchers decide on
sufficient sample sizes for a three-level longitudinal study with
(assumed) population and sample characteristics, effects and
models similar to the simulated conditions.

Given that the proposed model and data are comparable to the
one examined in this simulation, researchers should consider at
least 15 students each in 35 classes for stable fixed effects results,
and more students when the analysis of small effects is considered
important. If r.e. variances are of interest, additional level-3 units
are required, particularly for higher-level effects, where more
than 55 classrooms are needed.

If primarily estimation bias is of concern, researchers
should consider sampling at least 15 students per classroom
regardless of coefficient size, in order to equally decrease
bias and fluctuation in estimation results. If significance tests
or confidence intervals are used for interpretation, sufficient
power for relatively large effects is reliably reached by
sampling at least 15 classes with 15 students each. Smaller
effects, however, require larger samples with 35 students in
each class, which is a difficult task given that such large
classrooms are the exception (see OECD, 2013 for worldwide
average class sizes).

Limitations and Future Prospects
Results of this case-study are naturally limited by the study design
and sample characteristics of the illustrative study. Particularly,
results and recommendations are specific to settings where
researchers can assume comparable population and sample
characteristics (e.g., distribution of variables, ICC values) and
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use comparable predictor and outcome variables with similar
expected effect sizes. Additionally, recommendations are a
result of the model fitted to the data [i.e., as in (9) to
(11), including predictors on all levels, cross-level-interactions,
random intercepts, and random slopes]. As a consequence,
sample size recommendations are not ubiquitously generalizable.
Especially if the model or data give reason to suspect lower
statistical power due to smaller effect sizes or a more complex
model than investigated in this study, the recommended samples
sizes will most likely be too small. On the other hand, if the
assumed power is higher, e.g., due to larger expected effect
sizes, the recommendations presented might be conservative,
and thus serve as an approximate upper bound for required
sample sizes, as it is not necessary to increase sample sizes
above the provided recommendations. In addition to that, we
limited our analyses to data with balanced sample sizes, since in
each sample, there is a fixed number of students per class, and
students attend or fail to attend at a fixed number of measurement
occasions. We therefore did not investigate how estimation
quality might be different for unbalanced designs, for example
in samples where classes differ with respect to the number of
students. In practice, these unbalanced designs can occur either
naturally due to the sampling process, or deliberately, e.g., by
oversampling students in classes with higher expected attrition
over time. Potentially, oversampling might prevent bias or loss
of statistical power due to expected missingness, and the strength
of the imbalance might further influence estimation quality on
all levels. To assess the potential benefits and consequences
of oversampling, future research might focus on comparing
estimation quality of balanced samples to samples with unequal
cluster sizes, but on average the same sample sizes per level as
the balanced data.

Furthermore, we did not reduce the level-2 sample size to two
students per class (dyadic data) due to the restricted number
of admissible random effects at the higher level: data have to
contain more units per cluster than random effects at this level
(Kenny et al., 2006; Du and Wang, 2016). In order to scrutinize
the extent of necessary simplification, we conducted additional
analyses by drawing samples of two students per classroom
(100 replications for each N3 condition without missing values)
for reduced models, i.e., (a) a three-level model with random
intercepts at levels two and three, but not random slopes, and (b)
a two-level model with a random intercept, but no random slope
and no consideration of the classroom level. For both reduced
models, more than a third of analysis runs resulted in r.e. variance
components being estimated as close or equal to zero, leading
to a singular fit. In conclusion, sampling only two students per
class would require a much simpler analysis model for successful
estimation, which would make evaluations of estimation quality
incomparable to the initial sample size conditions, and inferred
sample size recommendations would not be based on the same
underlying model specifications.

While the complexity of the statistical model and the
specificity of the data and analysis conditions are meant to ensure

practical relevance for the field, there are a variety of additional
potential factors which influence the required sample size but
were not investigated in this study. For example, since we based
our parameter values on one illustrative study, the ICC values
were not varied as an additional simulation condition. As the ICC
is a direct representation of the (unexplained) pronouncedness
of the multilevel structure and hence relevant if the estimation
of random effects is of interest, varying ICC values in three-level
models relevant for applied psychological research can provide
a better understanding of the importance of each data level
for accurate estimation results. To ensure practical relevance,
future studies might generate data according to reported ICC
values in the field, or alternatively base their simulations on
a variety of sample studies depicting different estimated r.e.
variance components. For longitudinal studies, measurement
occasions can be varied to more clearly examine the importance
of the level-1 sample size, i.e., the longitudinal component. In
this regard, future studies should consider examining systematic
dropout in order to provide recommendations for samples with
systematic missing values, as researchers oftentimes are unsure
how to handle such missing data (cf. Jeličić et al., 2009, for
an overview). Other characteristics, such as multicollinearity
and heteroscedasticity, should be further examined, as such
characteristics are not uncommon in applied research, but
not comprehensively studied in three-level models (in two-
level models: cf. Korendijk et al., 2008, for heteroscedasticity;
Shieh and Fouladi, 2003, for multicollinearity). In conclusion,
analyses of a representative choice of study designs and settings
might assist researchers in choosing the adequate sample
sizes, sample size allocations, and variables, for a variety of
research questions.
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