206 research outputs found

    Methane fluxes during the initiation of a large-scale water table manipulation experiment in the Alaskan Arctic tundra

    Get PDF
    Much of the 191.8 Pg C in the upper 1 m of Arctic soil of Arctic soil organic mater is, or is at risk of, being released to the atmosphere as CO2 and/or CH4. Global warming will further alter the rate of emission of these gases to the atmosphere. Here we quantify the effect of major environmental variables affected by global climate change on CH4 fluxes in the Alaskan Arctic. Soil temperature best predicts CH4 fluxes and explained 89% of the variability in CH4 emissions. Water table depth has a nonlinear impact on CH4 efflux. Increasing water table height above the surface retards CH4 efflux. Decreasing water table depth below the surface has a minor effect on CH4 release once an aerobic layer is formed at the surface. In contrast with several other studies, we found that CH4 emissions are not driven by net ecosystem exchange (NEE) and are not limited by labile carbon supply

    The prognostic significance of allelic imbalance at key chromosomal loci in oral cancer

    Get PDF
    Forty-eight primary oral squamous cell carcinomas (SCC) were screened for allelic imbalance (AI) at 3p24–26, 3p21, 3p13, 8p21–23, 9p21, 9q22 and within the Rb, p53 and DCC tumour suppressor genes. AI was detected at all TNM stages with stage 4 tumours showing significantly more aberrations than stage 1–3. A factional allelic loss (FAL) score was calculated for all tumours and a high score was associated with development of local recurrence (P = 0.033) and reduced survival (P = 0.0006). AI at one or more loci within the 3p24–26, 3p21, 3p13 and 9p21 regions or within the THRB and DCC genes was associated with reduced survival. The hazard ratios for survival analysis revealed that patients with AI at 3p24–26, 3p13 and 9p21 have an approximately 25 times increase in their mortality rate relative to a patient retaining heterozygosity at these loci. AI at specific pairs of loci, D3S686 and D9S171 and involving at least two of D3S1296, DCC and D9S43, was a better predictor of prognosis than the FAL score or TNM stage. These data suggest that it will be possible to develop a molecular staging system which will be a better predict of outcome than conventional clinicopathological features as the molecular events represent fundamental biological characteristics of each tumour. © 1999 Cancer Research Campaig

    Mu-Opioid Receptors Transiently Activate the Akt-nNOS Pathway to Produce Sustained Potentiation of PKC-Mediated NMDAR-CaMKII Signaling

    Get PDF
    BACKGROUND: In periaqueductal grey (PAG) matter, cross-talk between the Mu-opioid receptor (MOR) and the glutamate N-methyl-D-Aspartate receptor (NMDAR)-CaMKII pathway supports the development of analgesic tolerance to morphine. In neurons, histidine triad nucleotide binding protein 1 (HINT1) connects the regulators of G protein signaling RGSZ1 and RGSZ2 to the C terminus of the MOR. In response to morphine, this HINT1-RGSZ complex binds PKCgamma, and afterwards, the interplay between PKCgamma, Src and Gz/Gi proteins leads to sustained potentiation of NMDAR-mediated glutamate responses. METHODOLOGY/PRINCIPAL FINDINGS: Following an intracerebroventricular (icv) injection of 10 nmol morphine, Akt was recruited to the synaptosomal membrane and activated by Thr308 and Ser473 phosphorylation. The Akt activation was immediately transferred to neural Nitric Oxide Synthase (nNOS) Ser1417. Afterwards, nitric oxide (NO)-released zinc ions recruited PKCgamma to the MOR to promote the Src-mediated phosphorylation of the Tyr1325 NMDAR2A subunit. This action increased NMDAR calcium flux and CaMKII was activated in a calcium-calmodulin dependent manner. CaMKII then acted on nNOS Ser847 to produce a sustained reduction in NO levels. The activation of the Akt-nNOS pathway was also reduced by the binding of these proteins to the MOR-HINT1 complex where they remained inactive. Tolerance to acute morphine developed as a result of phosphorylation of MOR cytosolic residues, uncoupling from the regulated G proteins which are transferred to RGSZ2 proteins. The diminished effect of morphine was prevented by LNNA, an inhibitor of nNOS function, and naltrindole, a delta-opioid receptor antagonist that also inhibits Akt. CONCLUSIONS/SIGNIFICANCE: Analysis of the regulatory phosphorylation of the proteins included in the study indicated that morphine produces a transient activation of the Akt/PKB-nNOS pathway. This activation occurs upstream of PKCgamma and Src mediated potentiation of NMDAR activity, ultimately leading to morphine tolerance. In summary, the Akt-nNOS pathway acts as a primer for morphine-triggered events which leads to the sustained potentiation of the NMDAR-CaMKII pathway and MOR inhibition
    • …
    corecore