5,763 research outputs found

    In-situ, real time gas composition measurements for SOFC's using laser spectroscopy

    Get PDF
    The use of standard gas composition measurement techniques, such as gas chromatography, in large scale solid oxide fuel cells (SOFC's) operating at high temperatures can be both complex and time consuming. One of the main constraints is the necessity to condense out the water vapour present in the gas streams prior to measurement in the Gas Chromatograph (GC). True gas compositions can only be extracted through back-calculation, with each measurement taking in the order of minutes, and a number of measurement points needed to make the final measurement. For system status monitoring such a time delay between condition changes and measurement is a serious disadvantage. One of the main concerns for systems running on natural gas is the risk of methane slippage through the internal reformer, which increases the risk of carbon formation on the SOFC anode, invariably leading to irreversible loss of performance. It is therefore highly advantageous to measure gas stream compositions within the SOFC system in real time, enabling a rapid response to composition deviation outside of acceptable limits. Gas chromatography can never be made to work as a real-time system status monitoring product solution. A suitable, in-situ, solution for measurement is tuneable diode laser spectroscopy, TDLS. Using this technique it is possible to measure both the gas concentration and system pressure simultaneously for a number of different species, without condensing out the water vapour: reducing analysis time considerably and reducing errors associated with back calculation. In this paper, data taken on an operational fuel cell system is presented for methane, and a comparison with results obtained using a GC is made

    Empirical Bayes selection of wavelet thresholds

    Full text link
    This paper explores a class of empirical Bayes methods for level-dependent threshold selection in wavelet shrinkage. The prior considered for each wavelet coefficient is a mixture of an atom of probability at zero and a heavy-tailed density. The mixing weight, or sparsity parameter, for each level of the transform is chosen by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold. Details of the calculations needed for implementing the procedure are included. In practice, the estimates are quick to compute and there is software available. Simulations on the standard model functions show excellent performance, and applications to data drawn from various fields of application are used to explore the practical performance of the approach. By using a general result on the risk of the corresponding marginal maximum likelihood approach for a single sequence, overall bounds on the risk of the method are found subject to membership of the unknown function in one of a wide range of Besov classes, covering also the case of f of bounded variation. The rates obtained are optimal for any value of the parameter p in (0,\infty], simultaneously for a wide range of loss functions, each dominating the L_q norm of the \sigmath derivative, with \sigma\ge0 and 0<q\le2.Comment: Published at http://dx.doi.org/10.1214/009053605000000345 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    EbayesThresh: R Programs for Empirical Bayes Thresholding

    Get PDF
    Suppose that a sequence of unknown parameters is observed sub ject to independent Gaussian noise. The EbayesThresh package in the S language implements a class of Empirical Bayes thresholding methods that can take advantage of possible sparsity in the sequence, to improve the quality of estimation. The prior for each parameter in the sequence is a mixture of an atom of probability at zero and a heavy-tailed density. Within the package, this can be either a Laplace (double exponential) density or else a mixture of normal distributions with tail behavior similar to the Cauchy distribution. The mixing weight, or sparsity parameter, is chosen automatically by marginal maximum likelihood. If estimation is carried out using the posterior median, this is a random thresholding procedure; the estimation can also be carried out using other thresholding rules with the same threshold, and the package provides the posterior mean, and hard and soft thresholding, as additional options. This paper reviews the method, and gives details (far beyond those previously published) of the calculations needed for implementing the procedures. It explains and motivates both the general methodology, and the use of the EbayesThresh package, through simulated and real data examples. When estimating the wavelet transform of an unknown function, it is appropriate to apply the method level by level to the transform of the observed data. The package can carry out these calculations for wavelet transforms obtained using various packages in R and S-PLUS. Details, including a motivating example, are presented, and the application of the method to image estimation is also explored. The final topic considered is the estimation of a single sequence that may become progressively sparser along the sequence. An iterated least squares isotone regression method allows for the choice of a threshold that depends monotonically on the order in which the observations are made. An alternative possibility, also discussed in detail, is a particular parametric dependence of the sparsity parameter on the position in the sequence.

    Mean-field phases of an ultracold gas in a quasicrystalline potential

    Get PDF
    The recent experimental advancement to realise ultracold gases scattering off an eight-fold optical potential [Phys. Rev. Lett. 122, 110404 (2019)] heralds the beginning of a new technique to study the properties of quasicrystalline structures. Quasicrystals possess long-range order but are not periodic, and are still little studied in comparison to their periodic counterparts. Here, we consider an ultracold bosonic gas in an eight-fold symmetric lattice and assume a toy model where the atoms occupy the ground states of the local minima of the potential. The ground state phases of the system are studied, with particular interest in the local nature of the phases. The usual Mott-insulator, density wave, and supersolid phases of the standard and extended Bose-Hubbard model are observed. For non-zero long-range interactions, we find that density wave states can spontaneously break the eight-fold symmetry, and may even possess no rotational symmetry. We find the local variation in the number of nearest neighbours to play a vital role in the phase transitions, local structure, and global symmetries of the ground states. This variation in the number of nearest neighbours is not a unique property of the considered eight-fold lattice, and we expect our results to be generalisable to any quasicrystalline potential where there are only small position dependent variations in the site energy, tunnelling and interactions.Comment: 10 pages, 10 figures, accepted to PR

    Near infrared spectroscopy for fibre based gas detection

    Get PDF
    Gas sensing systems based on fibre optic linked near infra red absorption cells are potentially a flexible and effective tool for monitoring accumulations of hazardous and noxious gases in enclosed areas such as tunnels and mines. Additionally the same baseline technology is readily modified to measure concentrations of hydrocarbon fuels - notably but not exclusively methane, and monitoring emissions of greenhouse gases. Furthermore the system can be readily implemented to provide intrinsically safe monitoring over extensive areas at up to ~250 points from a single interrogation unit. In this paper we review our work on fibre coupled gas sensing systems. We outline the basic principles through which repeatable and accurate self calibrating gas measurements may be realised, including the recover of detailed line shapes for non contact temperature and / or pressure measurements in addition to concentration assessments in harsh environments. We also outline our experience in using these systems in extensive networks operating under inhospitable conditions over extended periods extending to several years

    Staggered Ground States in an Optical Lattice

    Get PDF
    Non-standard Bose-Hubbard models can exhibit rich ground state phase diagrams, even when considering the one-dimensional limit. Using a self-consistent Gutzwiller diagonalisation approach, we study the mean-field ground state properties of a long-range interacting atomic gas in a one-dimensional optical lattice. We first confirm that the inclusion of long-range two-body interactions to the standard Bose-Hubbard model introduces density wave and supersolid phases. However, the introduction of pair and density-dependent tunnelling can result in new phases with two-site periodic density, single-particle transport and two-body transport order parameters. These staggered phases are potentially a mean-field signature of the known novel twisted superfluids found via a DMRG approach [PRA \textbf{94}, 011603(R) (2016)]. We also observe other unconventional phases, which are characterised by sign staggered order parameters between adjacent lattice sites.Comment: 11 pages, 7 figures, comments welcom

    Internal agent states : experiments using the swarm leader concept

    Get PDF
    In recent years, an understanding of the operating principles and stability of natural swarms has proven to be a useful tool for the design and control of artificial robotic agents. Many robotic systems, whose design or control principals are inspired by behavioural aspects of real biological systems such as leader-follower relationship, have been developed. We introduced an algorithm which successfully enhances the navigation performance of a swarm of robots using the swarm leader concept. This paper presents some applications based on that work using the simulations and experimental implementation using a swarming behaviour test-bed at the University of Strathclyde. Experimental and simulation results match closely in a way that confirms the efficiency of the algorithm as well as its applicability

    A Physical Limit to the Magnetic Fields of T Tauri Stars

    Get PDF
    Recent estimates of magnetic field strengths in T Tauri stars yield values B=1B=1--4kG4\,{\rm kG}. In this paper, I present an upper limit to the photospheric values of BB by computing the equipartition values for different surface gravities and effective temperatures. The values of BB derived from the observations exceed this limit, and I examine the possible causes for this discrepancy
    corecore