
JSS Journal of Statistical Software
April 2005, Volume 12, Issue 8. http://www.jstatsoft.org/

EbayesThresh: R Programs for Empirical Bayes

Thresholding

Iain M. Johnstone
Stanford University

Bernard W. Silverman
St Peter’s College, Oxford

Abstract

Suppose that a sequence of unknown parameters is observed subject to independent
Gaussian noise. The EbayesThresh package in the S language implements a class of
Empirical Bayes thresholding methods that can take advantage of possible sparsity in the
sequence, to improve the quality of estimation.

The prior for each parameter in the sequence is a mixture of an atom of probability at
zero and a heavy-tailed density. Within the package, this can be either a Laplace (double
exponential) density or else a mixture of normal distributions with tail behavior similar
to the Cauchy distribution. The mixing weight, or sparsity parameter, is chosen automat-
ically by marginal maximum likelihood. If estimation is carried out using the posterior
median, this is a random thresholding procedure; the estimation can also be carried out
using other thresholding rules with the same threshold, and the package provides the
posterior mean, and hard and soft thresholding, as additional options.

This paper reviews the method, and gives details (far beyond those previously pub-
lished) of the calculations needed for implementing the procedures. It explains and moti-
vates both the general methodology, and the use of the EbayesThresh package, through
simulated and real data examples.

When estimating the wavelet transform of an unknown function, it is appropriate to
apply the method level by level to the transform of the observed data. The package can
carry out these calculations for wavelet transforms obtained using various packages in R
and S-PLUS. Details, including a motivating example, are presented, and the application
of the method to image estimation is also explored.

The final topic considered is the estimation of a single sequence that may become
progressively sparser along the sequence. An iterated least squares isotone regression
method allows for the choice of a threshold that depends monotonically on the order
in which the observations are made. An alternative possibility, also discussed in detail,
is a particular parametric dependence of the sparsity parameter on the position in the
sequence.

Keywords: adaptive estimation, curve estimation, data mining, image estimation, nonlinear
smoothing, marginal maximum likelihood, sparsity, wavelets.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6303159?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.jstatsoft.org/

2 EbayesThresh: R Programs for Empirical Bayes Thresholding

1. Introduction

1.1. Background

There are many statistical problems where the object of interest is a sequence of parameters
µi on each of which we have a single observation Xi subject to noise, so that

Xi = µi + εi (1)

where the εi are N(0, 1) random variables.
Problems of this kind arise, for example, in astronomical and other image processing contexts,
in data mining, in model selection, and in function estimation using wavelets and other
dictionaries. See, for example Johnstone and Silverman (2004) for further discussion. In
many practical contexts, the sequence µi may be sparse, in some sense, and the method
implemented in the EbayesThresh package takes advantage of possible sparsity in order to
obtain more efficient estimators of the sequence µi.
A natural approach that can make use of sparsity is thresholding: if the absolute value of a
particular Xi exceeds some threshold t then it is taken to correspond to a a nonzero µi which
is then estimated, most simply by Xi itself. If |Xi| < t then the coefficient |µi| is estimated to
be zero. The quality of estimation is sensitive to the choice of threshold, with the best choice
being dependent on the problem setting. In general terms, “sparse” signals call for relatively
high thresholds (3, 4, or even higher) while “dense” signals might demand choices of 2 or even
lower.
In essence, the Empirical Bayes approach implemented in the EbayesThresh package is a
thresholding method with a threshold estimated from the data. Both theoretical and practical
considerations, demonstrated in the papers Johnstone and Silverman (2004, 2005) and in the
present paper, show that the Empirical Bayes approach has excellent adaptivity properties,
in particular by adjusting stably to the sparsity or otherwise of the underlying signal, by
choosing an appropriate threshold from the data.
The present paper reviews the approach of Johnstone and Silverman (2004, 2005) and in-
troduces the R package EbayesThresh. In addition, we provide algorithmic calculations and
details far beyond those given in the original papers. We also consider two novel extensions
of the method to the case where the thresholds vary with i in different ways, by increasing
monotonically or by being of a particular parametric form.
In addition to its scientific contribution, the paper is intended to provide a tutorial introduc-
tion to the package. The full documentation of the routines in the package is provided as an
appendix.
The EbayesThresh package is implemented in R but the programs have been written to work as
far as possible in S-PLUS as well. The source code and user manual are available at the CRAN
archive http://CRAN.R-project.org/ as the package EbayesThresh (Silverman 2004) and
other documentation is available from http://www.bernardsilverman.com/. A MATLAB
implementation has been carried out by Antoniadis, Jansen, Johnstone, and Silverman (2004).

1.2. Examples

Before explaining the algorithms in detail, we consider two examples that give a feeling for
the way that the method works in practice. In both the cases considered, the estimate is

http://CRAN.R-project.org/
http://www.bernardsilverman.com/

Journal of Statistical Software 3

0 200 400 600 800 1000

−
5

0
5

Observed data

0 200 400 600 800 1000

−
5

0
5

Estimate

Figure 1: Simulated data x and estimate ebayesthresh(x, sdev=1) for sparse example.
Only 25 of the 1000 underlying parameters µi are nonzero.

obtained from the data simply as ebayesthresh(x, sdev=1) using the main routine in the
package, and supplying the actual value of the standard deviation of the data. As will be
explained later, the default form of thresholding is not exactly hard thresholding, but the
basic principle is the same.

The first example is of data with a relatively sparse mean vector of length 1000, with 25
nonzero entries uniformly distributed on (−7, 7). The data are generated in R by

set.seed(1)
x <- rnorm(1000) + sample(c(runif(25,-7,7), rep(0,975)))

and are plotted in Figure 1, together with the estimate ebayesthresh(x, sdev=1). It can be
seen that relatively stringent thresholding has been applied to the data; the numerical value
of the threshold chosen by the procedure turns out to be 2.99, in the sense that any data
point within 2.99 standard deviations of zero is presumed to be pure noise.

The corresponding procedure was carried out for a data set constructed in exactly the same
way containing 250 nonzero mean values, a much denser signal. This time the numerical value
of the threshold was only 1.67, and so it was much easier for an observation with zero mean
to be considered as containing some signal. The results are shown in Figure 2.

Further insight into the comparison of these examples is given in Figure 3. For the sparse
signal, the high threshold has the effect that all but 4 of the 975 zero parameters are estimated
to be zero. The other 971 are estimated perfectly. However 9 of the 25 nonzero parameters
are estimated to zero, thereby presumably incurring slightly more error than if they were not
thresholded. In the case of the dense signal, a far higher proportion of the zero parameters, 89
out of 750, are estimated to be nonzero, but the proportion of nonzero parameters incorrectly
classified as zeroes is lower: 51 out of 250. The way in which the empirical Bayes method
automatically adjusts this tradeoff will be discussed more systematically in Section 3.2 below.

4 EbayesThresh: R Programs for Empirical Bayes Thresholding

0 200 400 600 800 1000

−
5

0
5

Observed data

0 200 400 600 800 1000
−

5
0

5

Estimate

Figure 2: Simulated data x and estimate ebayesthresh(x, sdev=1) for dense example. In
this case 250 of the 1000 underlying parameters µi are nonzero.

0 2 4 6 8

0
2

4
6

8

Absolute true parameter value

A
bs

ol
ut

e
va

lu
e

of
 e

st
im

at
e

*971 9

4

0 2 4 6 8

0
2

4
6

8

Absolute true parameter value

A
bs

ol
ut

e
va

lu
e

of
 e

st
im

at
e

*661 51

89

Figure 3: Comparison of the performance of the estimation for the sparse and dense examples.
In each figure, the absolute value of the estimates is plotted against the absolute value of the
corresponding parameters. In the left panel, there are 971 parameters correctly estimated to
be zero, 4 zero parameters estimated to be nonzero, and 9 nonzero parameters estimated to
be zero. The corresponding quantities for the dense signal considered in the right panel are
661, 89 and 51.

Journal of Statistical Software 5

1.3. Brief overview of the method and the master routine

Very briefly, the main aspects of our method are as follows; they will be discussed further in
Section 2.

• A Bayesian model is used for the parameters µi. Under this model, each µi is zero with
probability (1−w), while, with probability w, µi is drawn from a symmetric heavy-tailed
density γ.

• The mixing weight w is the key parameter in the prior. It is chosen automatically from
the data, using a marginal maximum likelihood approach, and then substituted back
into the Bayesian model.

• Estimation within the Bayesian model is a thresholding procedure, and the choice of w
is equivalent to a choice of threshold t(w). The method uses this data-based threshold
in estimating the underlying vector of parameters from the data.

Most users will only need to use the master routine ebayesthresh. This takes the vector x
and returns an estimate of the parameter values µi, which will be obtained by simply carrying
out

mu <- ebayesthresh(x)

The fuller syntax of the routine is

ebayesthresh(x, prior = "laplace", a = 0.5, bayesfac = FALSE,
sdev = NA, verbose = FALSE, threshrule = "median")

and reviewing the optional arguments gives an overview of some of the topics discussed in
more detail below. Further details are given in the help file for the routine.

The argument prior specifies the density γ(u), the default choice for which is a double
exponential, or Laplace, density 1

2a exp(−a|u|). The parameter a is given by the argument a.
In Section 2.1, this choice of prior is discussed further, together with an alternative possibility.

The arguments bayesfac and threshrule determine the exact way in which the data are
processed once the threshold has estimated. For most practical purposes their default values
can be used, but details of other possible approaches are given in Sections 2.2 and 2.3.

The argument sdev gives the standard deviation of the noise Xi− µi in the data; the default
is for this to be estimated from the observed data, from the median absolute value of the Xi.
The motivation for this is that even if the sequence µi is only reasonably sparse, the median
absolute value will not be affected by those observations that have nonzero means µi. Clearly
some care may be needed, if there is a possibility that the signal is very far from sparse. If a
numerical value of the standard deviation is known, or is estimated by other means, then it
can be supplied as the value of sdev.

Finally, the argument verbose, if set to TRUE, causes the routine to produce a list containing
a number of different aspects of the thresholding, such as the numerical value of the threshold
used, the estimated standard deviation, and so on. This is most useful for research purposes
rather than for the actual processing of data.

6 EbayesThresh: R Programs for Empirical Bayes Thresholding

2. Description of the method

In this section, we describe and explain the various aspects of the method. For reasons of
clarity, full details of the various algorithms and calculations are not given in this section, but
they are set out, after the more practical part of the paper, in Section 6.

2.1. The Bayesian model

In this discussion, we assume throughout that the observations Xi ∼ N(µi, 1). If the obser-
vations have variance equal to σ2 rather than 1, then we renormalize the data by dividing by
σ, and then multiply the resulting estimates of the means by σ.

Within a Bayesian context, the notion of sparsity is naturally modeled by a suitable prior
distribution for the parameters µi. We model the µi as having independent prior distributions
each given by the mixture

fprior(µ) = (1− w)δ0(µ) + wγ(µ). (2)

The nonzero part of the prior, γ, is assumed to be a fixed unimodal symmetric density.

We concentrate on two particular possibilities for the function γ. Setting prior="laplace",
the default, uses the Laplace density with scale parameter a > 0

γa(u) = 1
2a exp(−a|u|).

The default value of the argument a, the parameter a, is 0.5, but any other value can be set
by the user.

Another possibility for γ is obtained by setting prior="cauchy". (The parameter a is then
ignored.) The density γ for µ is specified by the mixture

µ|Θ = θ ∼ N(0, θ−1 − 1) with Θ ∼ Beta(1
2 , 1). (3)

This yields the density
γ(u) = (2π)−1/2{1− |u|Φ̃(|u|)/φ(u)}, (4)

which has tails that decay as u−2, the same weight as those of the Cauchy distribution. We
refer to the density (4) as the quasi-Cauchy density. Some further discussion is provided in
Section 2.3 of Johnstone and Silverman (2004). The density is one of a family whose tails
decay at polynomial rates; the main motivation for the quasi-Cauchy is its combination of
heavy tails with reasonable tractability in the present context. It is the heaviest tailed density
satisfying the theoretical assumptions made in Johnstone and Silverman (2004).

For both the Laplace and quasi-Cauchy densities, the procedures we develop are feasible
computationally, and this feasibility is exploited within the EbayesThresh package. Details
of the various calculations are given in Section 6.

2.2. Thresholding rules

Suppose µ has the prior distribution (2) and X ∼ N(µ, 1). We can now find the posterior
distribution of µ conditional on X = x; see Section 6 for details. Define µ̂(x;w) to be the
median of this posterior distribution; for any fixed w, the estimation rule µ̂(x,w) will be a

Journal of Statistical Software 7

monotonic function of x with the thresholding property that there exists t(w) > 0 such that
µ̂(x;w) = 0 if and only if |x| ≤ t(w).
Given a sequence of observations, we can apply the Bayesian procedure separately to each
observation Xi to yield an estimate of the corresponding parameter µi. The default setting
threshrule="median" uses the posterior median µ̂(Xi;w) as this estimate. This is an exact
Bayesian procedure if the Xi are independent; if the Xi are not exactly independent then
there is some loss of information in the estimation procedure, but if there is not too much
dependence then the method will give at least reasonable results.
The posterior median is not the only possible estimation rule once w has been specified; for
example one could use the posterior mean µ̃(x;w) of µ given X = x, and this is obtained by
setting threshrule="mean". Another possibility is to determine the threshold t(w) associated
with the posterior median with weight w, but then to carry out the actual estimation by hard
or soft thresholding with threshold t(w). This is achieved within the package by setting
threshrule to "hard" or "soft" respectively.
Finally, if the setting verbose=TRUE is used, it may not be appropriate to process the data
at all, but only to obtain other aspects of the estimation. Setting threshrule="none" will
have this effect.

2.3. Choosing the threshold

The key aspect of the empirical Bayes approach is the choice of mixing weight w, or equiva-
lently of threshold t(w). Assume the Xi are independent; we then estimate w by a marginal
maximum likelihood approach. Let g = γ ? φ, where ? denotes convolution.
The marginal density of the observations Xi will then be

(1− w)φ(x) + wg.

We define the marginal maximum likelihood estimator ŵ of w to be the maximizer of the
marginal log likelihood

`(w) =
n∑

i=1

log{(1− w)φ(Xi) + wg(Xi)} (5)

subject to the constraint on w that the threshold satisfies t(w) ≤
√

2 log n. For our priors,
the derivative `′(w) is a monotonic function of w, so its root is very easily found numerically,
since the function g is tractable in each case.
Having used the data once to obtain the estimate ŵ by marginal maximum likelihood, we
then plug the value ŵ back into the prior and then estimate the parameters µi by a Bayesian
procedure using this value of w, for example as the posterior median µ̂(Xi, ŵ). In our im-
plementation the cost of both parts of the procedure is linear in the number of observations
considered.
Other parameters of the prior can also be estimated by marginal maximum likelihood. In
particular, if the Laplace prior is used with a=NA, then the scale parameter a is estimated by
defining ga to be the convolution of aγ(a ·) with the normal density. Then both a and w are
estimated by finding the maximum over both parameters of

`(w, a) =
n∑

i=1

log{(1− w)φ(Xi) + wga(Xi)}.

8 EbayesThresh: R Programs for Empirical Bayes Thresholding

The bound
√

2 log n on the threshold is the so-called universal threshold for a sample of
size n. As explained on page 445 of Donoho and Johnstone (1994), it is, asymptotically,
the maximum absolute value of a sequence of n independent N(0, 1) random variables. If
the universal threshold is used, then with high probability every zero signal value will be
estimated correctly. Therefore, in simple terms, if we wish to take advantage of the possible
economy of a signal by thresholding, there is no need to consider thresholds any larger than
the universal threshold.
An alternative to the posterior median threshold is the Bayes factor threshold, defined as the
value τb(w) > 0 such that

P (µ 6= 0|X = τb(w)) = 0.5.

Invoking the routine ebayesthresh with the argument bayesfac=TRUE will use the Bayes
factor threshold instead of the posterior median threshold whenever a threshold is calculated
explicitly, for example if hard or soft thresholding is used or if the routine is invoked with the
argument verbose=TRUE to return the threshold value and other statistics of the estimation.

2.4. Wavelet thresholding and other extensions

Though the basic approach is much more widely applicable, our original motivation was
function estimation using wavelets. It is typical that the wavelet coefficients of a true signal
will be sparse at the fine resolution scales, and dense at the coarser scales. It is therefore
desirable to develop threshold selection methods that adapt the threshold level by level, and
so our approach in the wavelet case is to apply the Empirical Bayes method separately to each
level of the transform. In Section 4 we provide a full discussion, including an explanation and
demonstration of the way that wavelet thresholding is implemented within the EbayesThresh
package. A detailed treatment of the approach, including both theoretical and practical
aspects, is given in Johnstone and Silverman (2005).
Another extension, explored in Section 5.1, is to allow the threshold to increase as i increases,
reflecting the notion that early µi have a reasonably large probability of being nonzero, but
that as one proceeds along the sequence nonzero µi become rarer. An iterated least squares
monotone regression algorithm is available as part of the package makes it possible to estimate
the weights and thresholds under these monotonicity conditions.
Alternatively, it is possible to constrain the prior mixing weight to be proportional to some
prescribed sequence ci, subject to the constraint that it remains bounded between some
reasonable lower limit and 1. This approach is discussed further in Section 5.2. Algorithmic
details of both these additional approaches are given in Section 7.

3. Examples and aspects of the package

In this section, we consider a simple illustrative example, and then an example related to
one studied in Johnstone and Silverman (2004). We then go on briefly to explore some other
aspects of the methodology and of the EbayesThresh package.

3.1. A simple illustrative example

Construct a signal of length 100 with ten values equal to 3.5, and the remaining values 0.
Add normal independent noise to the signal and estimate the underlying mean vector using

Journal of Statistical Software 9

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
2

0
2

4

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
2

0
2

4

Figure 4: Simulated data, with N(0, 1) noise, from a signal of length 100 which has most of its
values zero and the remainder equal to 3.5. The result of applying the routine ebayesthresh,
with the default options, is shown as a plotted line. Left: first 90 signal values zero; Right:
first 95 signal values zero.

ebayesthresh. The following code plots the data, and calculates and plots the estimate,
joining successive estimated points with lines, as shown in the left panel of Figure 4:

set.seed(1)
mu <- c(rep(0, 90), rep(3.5, 10))
x <- rnorm(100, mu)
plot(x)
lines(ebayesthresh(x))

Most of the ninety zeroes are correctly estimated, though three of them are not estimated to
be zero; conversely, the ten values (the last ten to be plotted) that should be equal to 3.5 are
all estimated to be nonzero, though there is some shrinkage towards zero. Closer examination
of the plot shows that the largest two data points from the first part of the plot are very
similar in value to the two smallest data points in the last segment.
The right panel shows the effect of the same procedure on a sparser sample, in which only
the last five points have nonzero mean. The adaptivity of the method is demonstrated by the
fact that all the zero means are now estimated correctly; the price paid is greater shrinkage
and smoothing of the nonzero values, to the point that two of them are estimated to be zero.
This example is demanding of the method, because the sample size is relatively small, and
the value of the nonzero parameters, 3.5, is in the range where individual observations with
negative error can easily be confused with observations from a large sample with zero mean.

3.2. Varying sparsity in a larger sample

In Figure 1 of Johnstone and Silverman (2004) a number of artificial images of varying degrees

10 EbayesThresh: R Programs for Empirical Bayes Thresholding

of sparseness are considered. The images and data are plotted there as 100 × 100 images,
but for simplicity we consider them as a single vector of length 10000. To construct a sparse
vector and then find the empirical Bayes threshold, the following code can be used in R:

m <- 50
mu <- sample(c(runif(m,-5,5), rep(0,10000-m)))
x <- rnorm(10000, mu)
tt <- tfromx(x)

The routine tfromx finds the empirical Bayes choice of threshold, assuming the noise standard
deviation to be 1. Once the threshold has been found, one can hard threshold the original
data to find an estimate of µ by using the threshld routine:

muhat <- threshld(x, tt)

Note that the same estimate muhat can be obtained by the single call ebayesthresh(x,
sdev=1, threshrule="hard"), but this does not yield the threshold explicitly unless the
option verbose=TRUE is used.

We compare the chosen threshold with the threshold that yields the smallest mean square
error. The following routine constructs a signal of length 10000 with m nonzero values uni-
formly distributed on (−5, 5). It returns the empirical Bayes choice tebayes of threshold
and, by comparison, the threshold tbest that achieves the minimum mean square error for
hard thresholding. The corresponding summed square errors rebayes and rbest are also re-
turned. The two routines used from the EbayesThresh package are the routine tfromx to find
the empirical Bayes threshold, and the routine threshld which applies hard thresholding.

ebdem1 <- function(m)
{
set.seed(1)
zz <- rnorm(10000)
mu <- c(runif(m,-5,5), rep(0,10000-m))
x <- mu + zz
tt <- tfromx(x)
tvec <- seq(from = 0, to = 5, by = 0.1)
rvec <- rep(NA, 51)
for (j in (1:51)) rvec[j] <- sum((threshld(x, tvec[j]) - mu)^2)
reb <- sum((threshld(x, tt) - mu)^2)
rbest <- min(rvec)
tbest <- mean (tvec[rvec==rbest])
return(list(tebayes=tt, rebayes=reb, tbest=tbest, rbest=rbest))

}

To provide an example, the parameter m was allowed to vary to yield signals from the very
sparse (m = 5) to the completely dense (m = 10000). Two plots of the output of the routine
ebdem1 are shown in Figure 5. The left plot compares the Empirical Bayes choice tebayes with
the ideal, but in practice unattainable, threshold tbest. The right plot compares the summed
square errors of hard thresholded estimates with the two thresholds. It can be clearly seen

Journal of Statistical Software 11

● ● ●

●

●

●

●

●

●

●

●

5 10 50 100 500 5000

0
1

2
3

4

Number of nonzero values in signal

T
hr

es
ho

ld

+ + +
+

+
+ +

+

+

+

+ ●

●

●

●

●

●

●

●

●

● ●

5 10 50 100 500 5000

50
10

0
20

0
50

0
20

00
50

00
Number of nonzero values in signal

S
um

m
ed

 s
qu

ar
e

er
ro

r

+

+

+

+

+

+

+

+

+

+
+

Figure 5: Comparison of empirical Bayes choice of threshold with ideal choice. The signals
consist of 10000 observations; the nonzero elements in the signal are uniformly distributed
on the interval [−5, 5]. Left: Solid black, empirical Bayes threshold; dashed red, threshold
that yields hard thresholded estimate with smallest summed square error. Right: Solid black,
summed square error for empirical Bayes threshold used in hard thresholding; dashed red,
minimum summed square error for any hard thresholded estimate.

how the Empirical Bayes threshold closely tracks the best possible threshold across the range
of possible sparsity, and nearly attains the best possible summed square error right across the
range. The reason that we use hard thresholding for the Empirical Bayes threshold, rather
than the default posterior median estimator, is that allows an honest comparison with the
threshold chosen to minimize error under hard thresholding.

3.3. The posterior median thresholding function

Section 3.2 demonstrated the use of empirical Bayes method to estimate a threshold, which
was then applied as a hard threshold to the original data, and could be compared directly
with a hard threshold fixed explicitly. On the other hand, the posterior median function, as
used in Section 3.1, is the default option within the package. To gain some insight, one can
plot the thresholding function using the routine postmed, which finds the posterior median
function for given data and given mixing weight in the prior distribution. Thus, for weight
value 0.02, say, and using the quasi-Cauchy prior, we can calculate

postmed(seq(from=-8, to=8, by=0.1), w=0.02, prior="cauchy")

to produce a vector of results plotted in Figure 6, together with the diagonal y = x for
comparison. Similar figures for the Laplace prior are given in Figure 5 of Johnstone and
Silverman (2004). It should be stressed that plotting the thresholding function, or accessing
the value of the mixing weight explicitly, are not necessary for the direct use of the method
using the routine ebayesthresh.

12 EbayesThresh: R Programs for Empirical Bayes Thresholding

−5 0 5

−
5

0
5

xx

po
st

m
ed

(x
x,

 0
.0

2,
 p

rio
r

=
 "

ca
uc

hy
")

Figure 6: Posterior median thresholding function, for quasi-Cauchy prior with mixing weight
0.02

3.4. Other control parameters in the package’s routines

The simulations reported in Section 3 of Johnstone and Silverman (2004) compared a number
of different approaches. Some of these are alternative approaches, and are not included in
the package. However, some illustrate the use of control arguments in routines within the
package. Given a data vector x, some of the methods compared are implemented as follows:

ebayesthresh(x, a=NA) # Laplace prior, scale factor also estimated

ebayesthresh(x, prior="cauchy") # quasi-Cauchy prior

ebayesthresh(x, a=NA, # Laplace prior, scale factor estimated
threshrule="mean") # use posterior mean as estimator

ebayesthresh(x, a=NA, # Laplace prior, scale factor estimated
threshrule="hard") # use hard threshold with estimated threshold

ebayesthresh(x) # Laplace prior with a=0.5 (default)

ebayesthresh(x, a=0.2) # Laplace prior with a=0.2

tuniv <- sqrt(2 * length(x))
threshld(x, tuniv) # hard thresholding with universal threshold
threshld(x, tuniv, hard=FALSE) # soft thresholding with universal threshold

Of course, this list of possibilities is not exhaustive, and the reader should consult the help
page for the routine ebayesthresh for a full list of optional parameters and their values.

Journal of Statistical Software 13

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

Inductance Plethysmography Raw Data

Index

D
at

a
va

lu
e

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

Smoothed IP Data: White Noise Model

Index
D

at
a

va
lu

e

Figure 7: Left: Inductance plethysmography data; right: result of applying the
ebayesthresh.wavelet routine with the default option of the same noise standard devia-
tion at all levels.

4. Wavelet thresholding

In this section, we go beyond estimation of a single vector or sequence of parameters. We con-
sider the application of the approach to wavelet thresholding, as investigated in Johnstone and
Silverman (2005). Our main emphasis is on the first example of that paper, and is intended
both to illustrate the use of the ebayesthresh.wavelet routine within the EbayesThresh
package, and also to motivate and explain the use of the general approach in the wavelet
context. We then go on to consider an image estimation example.

Within R, the routine ebayesthresh.wavelet can be used in conjunction with the wavelet
packages waveslim (Whitcher 2004) or wavethresh (Nason 1998, 2004). In S-PLUS, it will work
with the module S+WAVELETS (Bruce and Gao 1996), which was used for the computations
in Johnstone and Silverman (2005). However, because of the present paper’s focus on R, we
shall use the waveslim package. For this reason, the image estimation discussion is based
around a data set available in waveslim rather than the less easily available data set considered
in Johnstone and Silverman (2005).

4.1. Empirical Bayes thresholding of the discrete wavelet transform

Nason (1996) described a data set obtained in an anesthesiological study using inductance
plethsmography. The data were collected in an investigation of the recovery of patients after
general anesthesia. The data are available as part of the wavethresh3 package (Nason 1998).
They are also included as the file ipd.data accompanying this paper; this file may be read
into R by using the scan command. The inductance plethysmography data are the first data
example contained in Johnstone and Silverman (2005).

The original data ipd are plotted in Figure 7. Within the EbayesThresh package, the routine

14 EbayesThresh: R Programs for Empirical Bayes Thresholding

ebayesthresh.wavelet applies the empirical Bayes thresholding method level by level within
a wavelet transform of the data. In the waveslim package, we calculate the discrete wavelet
transform transform of the data, allowing for reflection end conditions and calculating six
levels of the transform, by

ipd.dwt <- dwt(ipd, boundary="reflection", n.levels=6)

To apply the empirical Bayes approach level-by-level, using the default options within the
routine, we calculate

ipdsmooth.dwt <- ebayesthresh.wavelet(ipd.dwt)

To find the smoothed version of the data, we invert the discrete wavelet transform. (The
package waveslim deals with reflection boundary conditions by augmenting the original data
vector by a reflected version, and then using periodic boundary conditions. However its
inversion routine does not take account of this, and so to obtain a vector the same length as
the original we use only the first 4096 values.)

ipdsmooth <- idwt(ipdsmooth.dwt)[1:4096]

A plot of ipdsmooth is given in Figure 7.

The default action of the routine ebayesthresh.wavelet is to assume that the original signal
is observed with independent Gaussian noise with mean zero and constant variance. The
variance of the wavelet coefficients is then estimated from the coefficients at the finest level
by a robust approach, using the median absolute deviation from zero as implemented in the
mad command in R. This approach gives a value of 0.0108 for the noise standard deviation
of the wavelet coefficients. Setting the argument verbose=TRUE in the routine ebayesthresh
yields various properties of the wavelet transform. In particular we can obtain the value of the
estimated threshold either in absolute terms or as a multiple of the noise standard deviation.

4.2. The estimated thresholds

If the wavelet transforms are calculated using the waveslim package, then the EbayesThresh
package calls the routine ebayesthresh.wavelet.dwt to find the empirical Bayes thresholded
wavelet transform. Within this routine, the coefficients at the level labelled j are found by
the call

ebayesthresh(x.dwt[[j]], prior, a, bayesfac,vscale, FALSE, threshrule)

The value FALSE is the value given to the variable verbose in the call to ebayesthresh. To
obtain the values of the thresholds themselves, we change this value to TRUE; the call then
yields a list, one of whose members is the value of the threshold. To obtain the threshold in
terms of the noise standard deviation, we use the call

ebayesthresh(x.dwt[[j]], prior, a, bayesfac, vscale,
TRUE, threshrule)$threshold.sdevscale

Journal of Statistical Software 15

●

●

●

●

●

●

●
●

●
●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●
●

●●

●●●●

●
●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●
●

●

●

●

●

●●●

●

●

●
●

●●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●●●

●

●
●

●
●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●●

●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●●

●●●

●

●
●

●
●●

●●

●

●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●●

●

●

●
●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●
●

●●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●●
●

●

●

●

●
●

●●

●
●

●
●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●
●

●●
●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●
●

●●

●

●
●

●

●●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●
●

●●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●
●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●●

●
●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●
●

●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●●

●

●●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●
●

●●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●
●●

●

●●●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

−2 0 2

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04
Coefficients at level 1

Normal quantiles

W
av

el
et

 c
oe

ffi
ci

en
ts ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●●

●
●

●
●●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●
●●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●●

●

●●●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●
●

●●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●●
●●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●●

●
●

●
●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●●●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●
●

●

●
●●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

−3 −2 −1 0 1 2 3

−
0.

06
−

0.
04

−
0.

02
0.

00
0.

02
0.

04

Coefficients at level 2

Normal quantiles

W
av

el
et

 c
oe

ffi
ci

en
ts

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●●

●

●

●
●●●

●
●●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●
●●

●●

●

●●●

●●

●

●

●

●

●●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●●●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●●●
●●

●

●
●

●

●● ●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●●

● ●

●

●

●

●●

●●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

● ●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●●●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●●
●●

●
●●

●●

●

●

●
●●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●
●●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●●

●

●

●
●●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●●●●

●

●

●

●

●●
●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●●

●
●●

●● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●
●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●

●

●●

●
●

●

●
●

●●
●

●

●

●
●

●●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
0.

10
−

0.
05

0.
00

0.
05

Coefficients at level 3

Normal quantiles

W
av

el
et

 c
oe

ffi
ci

en
ts

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●●●

●

●

● ●

●

● ●
●

●
●●

●

●

●

●

●
●

● ●
●

●

●
●

●

●

●●
●●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●
●● ●

● ●

●

●

●

●

●●
●

●

●

●
●

●

●●

●
●

●

●

●

●
●●

●

●

●
●

● ●
●

●

●

●

●
●

●
●●

● ●
●

●●●●●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●●
●

●

●

● ●●

●

●

●
●●

●
●

●

●
●

●

●

●●
●

●
●

●

●
●

●
● ●●

●

●

●

●

●

●
●

●●

●

●

●●

●
●

● ●

●
●

●●

●

●

●

●

●

●●

●

●
●

●
●

●●

●

●
●

●
●●●

●

●

●
●●

●

● ●
● ●

●

●

●
●●

● ●

●

●

●

●
● ●

●

● ●
●

●
●

●●●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

● ●
●●

●

●

●●
●

●●
●●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●
● ●

●

●
●

●

●
●

●
●●

●

●

●

●
●

●

●
●●

●●
●

●

●

●
●

●
●

●
● ●

●

●

●
● ●●

●●●

●

●

●
●

●
●

●

●

●

●

●
●

●
●●

●●

●
●

●

●

●

●● ●●

●

●
●

●

●

●
●●

●

●

● ●

●

●

●

●

●●

●●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●●
●

● ●

●
●

●
●

●

●

●

●
● ●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●●

−3 −2 −1 0 1 2 3

−
0.

15
−

0.
05

0.
00

0.
05

0.
10

0.
15

Coefficients at level 4

Normal quantiles

W
av

el
et

 c
oe

ffi
ci

en
ts

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●

●

●
●● ●●

●
●

●
●

●

●●
●

● ●
●

● ●
●

●●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●● ●

●

●
●

●

●

●

●
●

●●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●

●●

●●
● ●● ●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

● ●

●

● ●
●

●●
●● ●

●●●
●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●●●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

Coefficients at level 5

Normal quantiles

W
av

el
et

 c
oe

ffi
ci

en
ts

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●●●●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●● ●

●

●

●

●

●

●

●

●

●●

●

●
●●●●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●

●

●●
● ●●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5

Coefficients at level 6

Normal quantiles

W
av

el
et

 c
oe

ffi
ci

en
ts

Figure 8: Normal plots of the coefficients at each level of the discrete wavelet transform of
the inductance plethysmography data. In each case the solid line gives the expected plot that
would be obtained for a normally distributed data set with median absolute deviation equal
to that of the given data; the dashed line gives the corresponding line for the median absolute
deviation of the coefficients at the finest level.

16 EbayesThresh: R Programs for Empirical Bayes Thresholding

while to find the threshold in the original scale of the wavelet coefficients we pick out the
threshold.origscale member of the list given by ebayesthresh. The internal labelling
convention in waveslim is to label the finest scale as level 1, and then to number subsequent
scales consecutively. With this labelling, the thresholds estimated by the method are as in
the following table:

Level 1 2 3 4 5 6
Threshold (as multiple of noise std dev) 4.08 3.91 3.16 2.29 0 0
Threshold (in absolute terms) .044 .042 .034 .025 0 0

These thresholds are instructive. At the two finest scales of the transform, the threshold
chosen is around four standard deviations, and is in each case the universal threshold

√
2 log n

where n is the length of the vector of coefficients at the relevant level. This is the largest
threshold that the method can choose, and is the value appropriate to a very sparse signal.
On the other hand, at levels 5 and 6, the chosen threshold is zero, so that essentially no
thresholding is carried out; this is the treatment appropriate for a signal that contains no
zeroes at all. On the other hand at the intermediate levels 3 and 4, a threshold is chosen
between these extremes, corresponding to the notion that the signal is moderately sparse.

Further insight can be gained by examining Figure 8. This gives a normal quantile plot of the
wavelet coefficients at each level of the transform. In every case, the dashed line shows the
expected plot that would be obtained if the relevant coefficients were all normally distributed
with mean zero and standard deviation equal to the value σ̂1 estimated from the coefficients
at level 1. (Ignore the solid lines for the moment.) It can immediately be seen that, if the
noise in the data is assumed to be N(0, σ̂2

1) at every level, it is reasonable to assume that
virtually all the underlying signal values at levels 1 and 2 are zero, so that the observed data,
except for a very small number of extreme values, come from the noise distribution. On the
other hand, the dashed line is a poor fit at levels 5 and (especially) 6, even in the part of the
distribution near zero, so it is reasonable that the empirical Bayes method chooses a prior
probability of one that the signal values are nonzero. Finally, one can see the appropriateness
of considering the signals at levels 3 and 4 to be mixtures of a mass at zero and a nonzero
distribution. As one moves from coarser to finer levels, the treatment chosen by the method
corresponds to increasing sparsity, and hence to a higher choice of threshold at finer levels.

Even if one did not constrain the noise at all levels to have the same standard deviation,
the plots still indicate that the distributions are further from normal at the coarser levels.
The solid lines show the expected plots that would be obtained if the data were normally
distributed with standard deviation estimated separately at each level; the increasingly heavy
tails of the observations at coarser levels are clear.

4.3. The stationary noise model

Johnstone and Silverman (1997) considered the use of wavelet thresholding methods for data
where the original noise is stationary but correlated. They showed that an appropriate ap-
proach is to carry out wavelet thresholding as if the noise were independent, but to allow
different noise variances at different levels. In our context, this would correspond to estimat-
ing the noise variance using the median absolute deviation mad function separately at each
level. Such an approach, based on stationary noise rather than white noise, is available in the

Journal of Statistical Software 17

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

Smoothed IP Data: Stationary Noise Model

Index

D
at

a
va

lu
e

Figure 9: Smoothed inductance plethysmography data, obtained by applying the
ebayesthresh.wavelet routine with the option vscale="level", which corresponds to an
assumption of stationary correlated noise.

ebayesthresh.wavelet routine using the parameter value vscale="level". If this is used
then the resulting estimated thresholds are as follows:

Level 1 2 3 4 5 6
Threshold (as multiple of noise std dev) 4.08 3.91 3.40 2.61 2.07 1.70
Threshold (in absolute terms) 0.044 0.042 0.039 0.033 0.064 0.184

The treatment of the finest two levels is the same as previously, but coarser levels are thresh-
olded somewhat more severely (higher thresholds) than before, whether the thresholds are
expressed in terms of the individual standard deviations or in absolute terms. Another inter-
esting feature is the way that the signal is judged to be progressively less sparse as the scale
becomes coarser, again bearing out the impression given by Figure 8.

To obtain an estimate based on the stationary noise model, we use the following code:

ipdsmooth.dwt <- ebayesthresh.wavelet(ipd.dwt, vscale="level"))
ipdsmoothstat <- idwt(ipdsmoothstat.dwt)[1:4096]

A plot of the resulting estimate is given in Figure 9. A comparison between this estimate
and the estimate based on a white noise error model is given in Figure 10. The first segment
presented there is the one containing the highest peak in the data. There is little noticeable
difference between the two estimates in this region, but if anything the peak is more sharply
estimated in the stationary noise model. The second segment is one in which there is regular
oscillatory variation at a fairly low frequency; the slight additional smoothness in the station-
ary noise estimate perhaps yields slightly preferable estimates. In the third short segment,
including the high frequency glitch at time 3500, both methods retain the presumably spuri-
ous high frequency effect, but the stationary noise method removes the other local variability.

18 EbayesThresh: R Programs for Empirical Bayes Thresholding

100 150 200 250 300

0.
4

0.
5

0.
6

0.
7

0.
8

White noise model

Index

V
al

ue
 o

f S
m

oo
th

ed
 C

ur
ve

100 150 200 250 300

0.
4

0.
5

0.
6

0.
7

0.
8

Stationary noise model

Index

V
al

ue
 o

f S
m

oo
th

ed
 C

ur
ve

2500 2600 2700 2800 2900 3000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

White noise model

Index

V
al

ue
 o

f S
m

oo
th

ed
 C

ur
ve

2500 2600 2700 2800 2900 3000

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Stationary noise model

Index

V
al

ue
 o

f S
m

oo
th

ed
 C

ur
ve

3400 3450 3500 3550 3600

−
0.

12
−

0.
10

−
0.

08
−

0.
06

White noise model

Index

V
al

ue
 o

f S
m

oo
th

ed
 C

ur
ve

3400 3450 3500 3550 3600

−
0.

12
−

0.
10

−
0.

08
−

0.
06

Stationary noise model

Index

V
al

ue
 o

f S
m

oo
th

ed
 C

ur
ve

Figure 10: Comparison between wavelet smoothing with a white noise model (left column
of plots) for the error and a stationary noise model (right column), where the noise variance
in the wavelet coefficients is estimated separately at each level. The comparison is made for
various short segments of the data, intervals (101, 300), (2501, 3000) and (3401, 3600) of the
original index set.

Journal of Statistical Software 19

Overall the stationary noise plots remove some moderately high frequency effects still present
in the white noise plots.
The ‘glitch’ around point 3500 is caused by a single wavelet coefficient at the finest level taking
a value six estimated standard deviations from zero, and this, and its partner in the reflected
sequence of coefficients, are the only wavelet coefficients at the finest level that survives the
thresholding; such a coefficient is highly significant by any accounts. The numerical values of
the observations in the interval [3491, 3510] are

[3491] -.078 -.088 -.076 -.086 -.090 -.083 -.054 -.142 -.081 -.071
[3510] -.098 -.086 -.083 -.078 -.059 -.086 -.090 -.073 -.086 -.076

Thus, observation 3497 is somewhat higher than its neighbours, and is immediately followed
by the anomalously low observation −.142 at time 3498. Given that the instrumentation
is generally more stable than this, one possible safeguard in future data analysis would be
specifically to look out for outliers of this kind; a simple way of doing this would be to zero
out all the wavelet coefficients at the finest level, in other words to use an infinite threshold,
and the effect of this in the current plots would be just to remove the glitch.

4.4. The translation-invariant wavelet transform

It is generally recognized that improved smoothing results can often be obtained using the
translation-invariant wavelet transform; see, for example, Coifman and Donoho (1995). This
transform is also called the non-decimated, maximal overlap, or stationary wavelet transform.
Given an original sequence of length N , this transform yields a sequence of N coefficients
at each scale, rather than a pyramid of coefficient vectors whose length divides by two at
successively coarser levels. In waveslim, the transform is implemented by the routine modwt.
As discussed in detail in Johnstone and Silverman (2005), the most straightforward way of
applying the empirical Bayes approach is to threshold the coefficient vector at each level as
if it were an independent sequence. The estimated curve is then obtained by the standard
inversion algorithm for the translation-invariant wavelet transform, as implemented in the
waveslim routine imodwt.
The routine ebayesthresh.wavelet, and the routines that it calls, are written to handle
results of appropriate translation-invariant wavelet transforms in exactly the same way as the
conventional discrete wavelet transform. To apply empirical Bayes wavelet smoothing to the
inductance plethysmography data using the translation-invariant transform, and also allowing
for a stationary noise model, we therefore proceed as follows:

ipd.modwt <- modwt(ipd, boundary="reflection", n.levels=6)
ipdsmooth.modwt <- ebayesthresh.wavelet(ipd.modwt, vscale="level")
ipdsmooth <- imodwt(ipdsmooth.modwt)[1:4096]

The result of this procedure is plotted in Figure 11. It can be seen that the estimated curve is
somewhat smoother than those obtained using the standard discrete wavelet transform. The
high frequency effect at index 3500 is reduced in size. This is because, at the finest level,
the inverse of the translation-invariant wavelet transform involves averaging the inverse of
discrete transforms at two different positions, corresponding to basing the wavelets at odd or
even positions in the original data sequence. The very large wavelet coefficient only occurs in
one of these sequences, and so in the estimated curve the amplitude of the ‘glitch’ is halved.

20 EbayesThresh: R Programs for Empirical Bayes Thresholding

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

TI Wavelets/Stationary Noise Model

Index

S
m

oo
th

ed
 IP

 D
at

a
V

al
ue

Figure 11: Smoothed inductance plethysmography data, obtained from a translation-invariant
wavelet transform and then applying the ebayesthresh.wavelet routine with the option
vscale="level", which corresponds to an assumption of stationary correlated noise.

4.5. Smoothing an image

We now consider the possible use of the method for the processing of the wavelet transform
of a two-dimensional image. The example we use will be the image of Ingrid Daubechies
contained in the waveslim package. Especially when processing images, it may be appropriate
to use dictionaries other than the standard two-dimensional wavelet transform. Therefore this
section should be read in a ‘tutorial’ way; its purpose is not to set out a black box recipe, but
to illustrate how the basic ebayesthresh routine can be used in a broader context.
Having loaded the package waveslim, we make the test image available and we reverse its sign,
in order to obtain an image that comes out in positive rather than negative when using image
with the option col=gray(1:100/100). We then construct a noisy image dauerr by adding
random normal noise. The standard deviation of the original image is about 35 and for this
example we use noise with standard deviation 10. Finally, we construct the two-dimensional
wavelet transform of dauerr using the routine dwt.2d and the Daubechies d6 wavelet.

data(dau) # load data set
dau <- -dau # negate the image
set.seed(55) # set random seed
dauerr <- dau + rnorm(256*256, sd=10) # generate and add noise
dauerr.dwt <- dwt.2d(dauerr, wf="d6") # perform wavelet transform

The transform dauerr.dwt is a list of length 13, with names

"LH1" "HL1" "HH1" "LH2" "HL2" "HH2" "LH3" "HL3" "HH3" "LH4" "HL4" "HH4" "LL4"

Each member of the list is a matrix of coefficients. In each case, the first two letters of the
name indicate whether the corresponding basis functions correspond to a high or low pass

Journal of Statistical Software 21

Figure 12: Top left: original image of Ingrid Daubechies; top right: effect of adding normal
independent noise; bottom left: result of applying the empirical Bayes smoothing method
to the individual matrices of coefficients; bottom right: kernel smooth of noisy image, with
bandwidth chosen to minimize the average absolute error.

filter in the X or Y direction respectively. The number refers to the scale. Thus, the first
three matrices all relate to detail at the finest scale, and the first matrix dauerr.dwt$LH1
gives the coefficients of the function φ(x)ψ(y) suitably rescaled and shifted, where φ is the
scaling function of the wavelet family and ψ the mother wavelet.

In order to estimate the noise standard deviation from the data, we apply the median absolute
deviation function to the wavelet coefficients at level 1:

sd <- mad(c(dauerr.dwt$LH1, dauerr.dwt$HL1, dauerr.dwt$HH1))

which gives the result 10.25, very close to the theoretical value 10. The matrix dauerr.dwt$LL4
gives the scaling coefficients at the coarsest level considered; we preserve these unchanged in
the estimate. We apply the Empirical Bayes thresholding method to the remaining coeffi-
cients as follows, first copying dauerr.dwt to dauerr.smooth.dwt, then estimating each of
the 12 matrices in the list using ebayesthresh, and finally inverting the transform to find
the estimate:

22 EbayesThresh: R Programs for Empirical Bayes Thresholding

dauerr.smooth.dwt <- dauerr.dwt
for (j in (1:12)) {
dauerr.smooth.dwt[[j]] <- ebayesthresh(dauerr.dwt[[j]], sdev=10.25) }

dauerr.smooth <- idwt.2d(dauerr.smooth.dwt)

It is of interest to consider the thresholds estimated by the method. To do this most easily,
we define a function get.thresh and then apply it to each of the matrices in the transform:

get.thresh <- function(xx) ebayesthresh(xx,verbose=T,sdev=sd)$threshold.sdevscale
ttl <- lapply (dauerr.dwt , get.thresh)

The list ttl then contains the estimated thresholds, each in the scale of the standard deviation;
printing out round(unlist(ttl)) gives the result

LH1 HL1 HH1 LH2 HL2 HH2 LH3 HL3 HH3 LH4 HL4 HH4 LL4
4.41 3.81 4.41 2.42 2.58 3.26 1.01 0.92 1.85 0.00 0.00 0.00 0.00

These thresholds are interesting. There is no thresholding at level 4. At the finest level 1,
on the other hand, the LH and HH coefficients are thresholded at the universal threshold√

2 log(128 × 128) for data sets of their size, while the HL coefficients are subject to thresh-
olding nearly as stringent. At levels 2 and 3 the thresholding applied to the HH coefficients
is higher than that applied to the LH or HL coefficients. It is reasonable to consider the
HH2 coefficients as being at a level intermediate between level 1 and 2, and the HH3 as being
intermediate between levels 2 and 3, and so on; with this convention, the estimated thresholds
increase monotonically as one moves from coarser to finer levels.

Figure 12 shows the original image, the noisy image, and the estimate of the image as obtained
using ebayesthresh as set out in this section. In addition, we show a kernel smooth calculated
in R by

kk <- kernel("fejer", r=2, m=2)
dsm1 <- kernapply(t(dauerr), kk, circular=TRUE)
dauerr.smooth <- kernapply(t(dsm1), kk, circular=TRUE)

The bandwidth parameter m=2 has been adjusted to minimize the L1 distance between the
estimate and the original image dau; the average L1 error of both the kernel smooth and the
fully automatic ebayesthresh smooth is 3.07.

In the kernel smooth, there is considerable remaining random error in the flat parts of the
plot, and some of the highlights and details are slighly more smoothed out than in the wavelet
plot. On the other hand, in the wavelet plot there are some spurious artefacts. In addition,
it is encouraging that the EbayesThresh method has succeeded in automatically achieving
the L1 error of the kernel estimate chosen by reference to the true image. Furthermore, it
is now well understood that the standard two-dimensional wavelet transform is not a very
good dictionary for the representation of images. In principle, our empirical Bayes approach
is equally applicable whatever the transform used, and will take advantage of sparsity in the
representation of the function or image being estimated, and so if a dictionary more specifically
suited to the representation of this type of image were used, one could expect even better
results.

Journal of Statistical Software 23

0 500 1000 1500 2000

−
6

−
4

−
2

0
2

4
6

Index

pa
ra

m
et

er
 v

al
ue

0 500 1000 1500 2000

0
10

0
20

0
30

0
40

0
Index

C
um

ul
at

iv
e

nu
m

be
r

of
 n

on
ze

ro
 e

le
m

en
ts

Figure 13: Left panel: A signal of increasing sparsity. Right panel: the cumulative number
of nonzero elements up to each point of the sequence.

5. More general mixture weight structure

In considering wavelet decompositions, the empirical Bayes approach was applied allowing a
different mixture weight w at each level of the decomposition. In this section, we consider
two further extensions of our original method, allowing the mixture weight to vary in two
different ways.

5.1. Increasing sparsity along the sequence

Suppose we have a single sequence µi believed to become more sparse as i increases, in the
sense that the prior probability that µi is zero may reasonably be considered to increase as i
increases. For example, µi may be the coefficients of a function in a dictionary where the early
terms in the sequence describe large-scale aspects of the function or phenomenon of interest,
while as we proceed further along the sequence, the terms describe finer and finer detail. For
example, Jansen, Nason, and Silverman (2004) construct just such a basis for the analysis of
data observed on an irregular set of points in two dimensions.
A natural approach is to model µi as having prior distributions of the same form as previously,
but with weight wi depending on i, so that µi has prior density

(1− wi)δ(u) + wiγ(u)

where δ is a Dirac delta function at zero. If we assume only that the weights wi decrease as
i increases, then we can, in principle, estimate the weights by marginal maximum likelihood.
The estimating sequence ŵi will be chosen to maximize the log marginal likelihood

`(w1, . . . , wn) =
n∑

i=1

log{(1− wi)φ(xi) + wig(xi)} (6)

subject to the constraint w1 ≥ w2 ≥ . . . ≥ wn. An algorithm for carrying out this maximiza-
tion is described in Section 7.1. Once the weights have been estimated, we estimate each µi

24 EbayesThresh: R Programs for Empirical Bayes Thresholding

separately, using a thresholding rule based on the Bayesian model with mixing parameter wi.

The routine wmonfromx carries out this estimation procedure, subject to the additional con-
straint that all the thresholds corresponding to the wi are bounded by

√
2 log n. As an exam-

ple, of a signal with increasing sparsity, see the sequence of length 2000 plotted in Figure 13.
This was generated using the code

set.seed(1)
pp <- 1- ((1:2000)/2000)^0.25
mu <- runif(2000, -7,7)*rbinom(2000,1,pp)

Each nonzero value in the signal is uniformly distributed on [−7, 7]. The increasing sparsity
is demonstrated by the right hand panel in the figure, which shows the number of nonzero
values up to a particular point in the sequence. It can be seen, for example, that more than
half the nonzero values occur in the first quarter of the sequence. There are 123 nonzero
values in the first 250 places in the sequence, but only 8 in the last 250.

Noise rnorm(2000) was added to give a data sequence x. This sequence is shown in Figure 14,
together with the mixing weights wmon estimated by the monotone estimation procedure, the
corresponding thresholds thresh, and the result muhat of using the monotone weights in the
estimation. The code for these calculations is as follows:

wmon <- wmonfromx(x)
thresh <- tfromw(wmon)
muhat <- postmed(x,wmon)

Note that the thresholds do not enter into the calculation of the posterior median estimator,
because that calculation is carried out using the weights. It can be seen from Figure 14
that the estimated weights remain constant over intervals and then jump downwards (with
corresponding upward jumps in the thresholds). This is characteristic of sequences estimated
subject to monotonicity constraints. In some contexts, the points at which the jumps take
place can be used as candidates for segmenting the series into artificial ’levels’. See, for
example, Jansen et al. (2004) for an example of this approach, when the series considered
consists of the coefficients of the representation of a function, by a dictionary constructed to
represent finer detail as the sequence progresses.

5.2. Parametric dependence

In Section 5.1 we considered weights that were constrained to decrease along the sequence.
Another possibility is that we have known constants ci and that we wish, as far as possible,
for the weights to be proportional to ci, leaving a constant of proportionality to be estimated.
Such a possibility could arise, for instance, when the θi are the coefficients of the expansion of
an unknown function in a particular dictionary of increasingly finer scale functions, and the
ci were some measure of the size of support of the ith dictionary function. See Jansen et al.
(2004) for an example. The algorithm described in this section is implemented as the routine
zetafromx in the EbayesThresh package.

Suppose, therefore, we have data zi for i = 1, . . . , n, and consider the basic model wi = ciζ
where ci are known constants. Let wlo be the weight whose corresponding threshold t(wlo) =

Journal of Statistical Software 25

0 500 1000 1500 2000

−
5

0
5

Data

Index

D
at

a
va

lu
e

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated weights

Index

M
ix

in
g

W
ei

gh
t

0 500 1000 1500 2000

−
5

0
5

Estimate of signal

Index

V
al

ue
 o

f e
st

im
at

e

0 500 1000 1500 2000

0
1

2
3

4

Estimated thresholds

Index

T
hr

es
ho

ld

Figure 14: Top left: Raw data; top right: weights estimated by the monotone marginal
maximum likelihood approach; bottom left: estimate of underlying signal; bottom right:
posterior median thresholds corresponding to estimated weights. The effect of the estimation
is to allow through the data in the early part of the signal, but to perform quite stringent
thresholding near the end.

26 EbayesThresh: R Programs for Empirical Bayes Thresholding

√
2 log n. In order to enforce the constraints wlo ≤ wi ≤ 1 we refine the model to

wi(ζ) = median{wlo, ciζ, 1}, (7)

so that ζ becomes a weight parameter rather than simply a constant of proportionality. Letting
g be the convolution of γ with φ, the marginal log likelihood function is then given by

`(ζ) =
∑

i

log[{1− wi(ζ)}φ(zi) + wi(ζ)γ(zi)] (8)

The maximization of `(ζ) is not entirely straightforward, but can be carried out by an approach
described in detail in Section 7.2. We consider, as a simple example, the same data as in
Section 5.1. We shall set ci = i−1 so that the weights decrease, as far as possible, inversely
as the position in the sequence. We now find the value of ζ, the corresponding values w(ζ),
the thresholds, and the estimate of the signal, by using the routine zetafromx. This provides
a list including elements zeta, the estimated value of ζ (in this case 236) and the weights
w(236). So the weights wts, the estimate muhat and the corresponding thresholds thresh
can be found as follows:

wts <- zetafromx(x, cs=1/(1:2000))$w # find weights
muhat <- postmed(x, wts) # carry out estimation
thresh<- tfromw(wts) # find thresholds

Figure 15 shows the estimated weight sequence and the corresponding thresholds, as well as
the estimate obtained using these weights. The figure also shows the discrepancy between the
estimates obtained by the parametric and monotone methods, plotted on the same scale as the
estimate itself. It is interesting that most of the difference is in the first part of the sequence,
where the ‘parametric’ threshold is exactly zero, but the ‘monotone’ threshold starts to move
away from zero.

There are also some individual large discrepancies further on in the sequence, the largest two
of which are set out in the following table:

Monotone Parametric
i x µ weight threshold estimate weight threshold estimate

1158 2.36 0 0.298 2.177 0.924 0.204 2.438 0
1205 −2.37 0 0.298 2.177 −0.952 0.196 2.462 0

In both cases, it can be seen that the discrepancy between the two estimates arises because
the observation falls just above the threshold for the ‘monotone’ method but just below that
for the ‘parametric’ method. As it happens, both the true parameter values are equal to zero,
and each observation is in the extreme 1% of the relevant tail of the error distribution. The
thresholds chosen by the two methods are not dramatically discrepant, but observations that
fall between the two thresholds will be treated somewhat differently by the two methods.

6. Algorithmic and mathematical details for the basic method

In this section, we give details of the calculations involved in implementing our core method-
ology, where the same w is used in the prior for each µi in the sequence under consideration.

Journal of Statistical Software 27

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Estimated weights

Index

va
lu

e
of

 w
ei

gh
t

0 500 1000 1500 2000

−
5

0
5

Estimate

Index

V
al

ue
 o

f e
st

im
at

e

0 500 1000 1500 2000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Estimated threshold

Index

T
hr

es
ho

ld
 v

al
ue

0 500 1000 1500 2000

−
5

0
5

Difference between parametric and monotone

Index

di
sc

re
pa

nc
y

Figure 15: Top left: weights chosen by parametric approach; top right: posterior median
estimate found using these weights; bottom left: thresholds corresponding to the estimated
weights; bottom right: difference between estimate obtained by the parametric method and
that obtained by the monotone method.

28 EbayesThresh: R Programs for Empirical Bayes Thresholding

The details go considerably beyond those presented in previous papers. We begin by setting
out generic calculations for the relevant quantities, and then address the Laplace and quasi-
Cauchy priors specifically. Throughout, we use φ and Φ to denote, respectively, the standard
normal density and cumulative distribution functions, and we define Φ̃(t) = 1−Φ(t) for all t.

6.1. Generic calculations

Posterior probability that parameter is nonzero Define

β(x) = g(x)/φ(x)− 1. (9)

Then the posterior probability wpost(x) = P (µ 6= 0|X = x) will satisfy

wpost(x) = wg(x)/{wg(x) + (1− w)φ(x)} = (1 + β(x))/(w−1 + β(x)), (10)

and hence can be found using the function β alone.

Posterior mean Define

f1(µ|X = x) = f(µ|X = x, µ 6= 0),

so that the posterior density

fpost(µ|X = x) = (1− wpost)δ0(µ) + wpostf1(µ|x).

Let µ1(x) be the mean of the density f1(·|x). The posterior mean µ̃(x;w) is then equal to
wpost(x)µ1(x).

Posterior median To find the posterior median µ̂(x;w) of µ given X = x, let

F̃1(µ|x) =
∫ ∞

µ
f1(u|x)du.

If x > 0, we can find µ̂(x,w) from the properties

µ̂(x;w) = 0 if wpost(x)F̃1(0|x) ≤ 1
2

F̃1(µ̂(x;w)|x) = {2wpost(x)}−1 otherwise
(11)

Note that if wpost(x) ≤ 1
2 then the median is necessarily zero, and it is unnecessary to evaluate

F̃1(0|x). If x < 0, we use the antisymmetry property µ̂(−x,w) = −µ̂(x,w).

Marginal maximum likelihood weight The explicit expression for the function g facili-
tates the computation of the maximum marginal likelihood weight in the single sequence case.
Define the score function S(w) = `′(w). Then

S(w) =
n∑

i=1

g(xi)− φ(xi)
(1− w)φ(x) + wg(x)

=
n∑

i=1

β(xi)
1 + wβ(xi)

=
n∑

i=1

βi

1 + wβi
(12)

Journal of Statistical Software 29

where βi = β(xi). Define wlo to be such that t(wlo) =
√

2 log n. Then it is easy to show
that S(w) is a decreasing function of w for w in [0, 1]. Furthermore, the maximum marginal
likelihood estimate of w will be given by the root of S(w) = 0 for w in the interval [wlo, 1];
this can be found by a binary search algorithm. In the package this binary search is done on
the logarithmic scale, so that at each stage the next value of w is the geometric mean of the
endpoints of the interval on which the root is known to lie. If S(1) > 0 then the estimate of w
is 1, while if S(wlo) ≤ 0 then the estimate is wlo. Note that once the βi have been found, and
the endpoint wlo, the algorithm does not depend on the prior at all, only on the values βi.
Therefore to cater for a new prior, it is only necessary to have a routine to find the function
β, and to evaluate the limiting weight wlo.

6.2. Finding the Bayes factor threshold

The posterior median threshold is defined to be the value t(w) such that

P (µ > 0|X = t(w)) = 0.5.

Thus t(w) is the largest value of the observed data for which the estimated µ will be zero, if
the estimate is carried out by the posterior median. By contrast, the Bayes factor threshold,
as introduced in Section 2.3, is defined as the value τb(w) > 0 such that

P (µ 6= 0|X = τb(w)) = 0.5, (13)

and leads to simpler calculations in some cases.

To find the Bayes factor threshold τb = τb(w), we express the definition (13) in odds rather
than probabilities, to give

Odds(µ 6= 0|X = τb) =
wg(τb)

(1− w)φ(τb)
= 1.

Rearranging, this yields
β(τb) + 1 = (1− w)/w = w−1 − 1.

so that, provided w ≤ 1/(2 + β(0))

β(τb) = w−1 − 2. (14)

This equation can be used in two ways. If we wish to find the w corresponding to a given
threshold, we have

w = (2 + β(τb))−1

so we only need to be able to evaluate the function β in order to find w from τb. To find
τb from w, on the other hand, provided w ≤ 1/(2 + β(0)), we can solve equation (14) by
a binary search, because of the monotonicity of β. If w > 1/(2 + β(0)), then we will have
P (µ 6= 0|X = x) > 0.5 for all x, even x = 0, and we define the Bayes factor threshold τb = 0.

6.3. Laplace prior

The calculations set out above show that the key quantities are the marginal density g, the
function β, the mean function µ1(x), and the tail conditional probability function F̃1. In this

30 EbayesThresh: R Programs for Empirical Bayes Thresholding

section, much fuller details are given for the Laplace prior. The subheadings in each case give
the names of the relevant routines in the software package.

The routine beta.laplace

For the Laplace distribution prior, we have

g(x) = 1
2a exp(1

2a
2){e−axΦ(x− a) + eaxΦ̃(x+ a)},

and therefore

β(x) = β(x, a) = 1
2a{

Φ(x− a)
φ(x− a)

+
Φ̃(x+ a)
φ(x+ a)

} − 1. (15)

In practice, it is appropriate to use the approximation Φ̃(y)/φ(y) ≈ 1/y for y > 35, say,
in order to avoid obtaining a result containing the indeterminate NaN. (The quantity Φ(x −
a)/φ(x − a) can yield a result that overflows and is therefore numerically infinite, but this
does not cause problems in subsequent calculations.) Also, it is best to write a routine for
positive x and to use the symmetry of β if x is negative.
Once the values β(xi) have been evaluated, the only quantity needed to find the marginal
maximum likelihood weight for fixed a is the lower bound wlo on the weight as defined just
after (12). The routine wfromx does the calculations for the actual maximization of the
likelihood, in the manner set out in Section 6.1; the bound on the weight corresponding to
the upper bound

√
2 log n on the threshold is found using the routine wfromt described below.

The routine postmean.laplace

Consider first the evaluation of the posterior mean. As explained in Section 6.1, the calculation
(10) allows the posterior probability wpost(x) to be found using the routine beta.laplace,
and it remains to find the mean µ1(x) of the posterior distribution of µ conditional on µ 6= 0.
We have

f1(µ|x) =

{
eaxφ(µ− x− a)/{e−axΦ(x− a) + eaxΦ̃(x+ a)} if µ ≤ 0
e−axφ(µ− x+ a)/{e−axΦ(x− a) + eaxΦ̃(x+ a)} if µ > 0

(16)

which is a weighted sum of truncated normal distributions. Hence it can be shown that, for
x > 0,

µ1(x) = x− a{e−axΦ(x− a)− eaxΦ̃(x+ a)}
e−axΦ(x− a) + eaxΦ̃(x+ a)

. (17)

The posterior mean is now equal to wpost(x)µ1(x), as set out in Section 6.1.

The routine postmed.laplace

Now turn to the determination of the posterior median. Suppose x > 0. For µ ≥ 0, we have

F̃1(µ|x) =
e−axΦ̃(µ− x+ a)

e−axΦ(x− a) + eaxΦ̃(x+ a)
.

Hence, if the posterior median is greater than zero, we will have, using (11),

e−axΦ̃(µ̂− x+ a)
e−axΦ(x− a) + eaxΦ̃(x+ a)

=
wg(x) + (1− w)φ(x)

2wg(x)

= a−1w−1 exp(−1
2a

2)φ(x)
1 + wβ(x)

e−axΦ(x− a) + eaxΦ̃(x+ a)
.

Journal of Statistical Software 31

Simplifying, this leads to

Φ̃(µ̂− x+ a) = a−1w−1φ(x− a){1 + wβ(x)},

so that, using the property that Φ̃−1(u) = −Φ−1(u), we have

µ̂ = x− a− Φ−1(z0),

where
z0 = a−1φ(x− a){w−1 + β(x)}. (18)

As x→∞, the limiting value of z0 is 0.5, and it is helpful to use this approximation when x
is so large that φ(x−a) is numerically zero and β(x) is numerically infinite. If x is sufficiently
small that the value of z0 given by (18) is greater than 1, or that x− a−Φ−1(z0) is negative,
then the posterior median will be equal to zero. Therefore, we set

µ̂ = max[0, x− a− Φ−1{min(1, z0)}].

The routine tfromw(prior="laplace")

The posterior median threshold will be the value t(w) such that t−a−Φ−1(z0) = 0. Therefore

Φ(t− a)− a−1φ(t− a){w−1 + β(t)} = 0,

an equation that can be solved by binary search to find t from w. The left hand side of this
equation is evaluated by the function laplace.threshzero. Furthermore, by rearranging we
obtain an explicit expression giving w = w(t) in terms of t:

w(t)−1 = aΦ(t− a)/φ(t− a)− β(t). (19)

This is evaluated by the function wfromt.laplace.

The routine wandafromx

For the Laplace distribution, it is possible to estimate the scale factor by marginal maximum
likelihood. In order to maintain the constraint 0 ≤ t ≤

√
2 log n, and also to gain numerical

stability, we work in terms of t and a. The function to be minimized is then

S∗(t, a) = −
n∑

i=1

log{1 + w(t)β(xi, a)}

where w(t) is given by (19). This function is evaluated by the routine negloglik.laplace.
The optimization is carried out subject to the box constraints 0 ≤ t ≤

√
2 log n and, to avoid

unrealistic values of a, 0.04 ≤ a ≤ 3. The optimization routine used is optim in R and nlminb
in S-PLUS.

6.4. Quasi-Cauchy prior

We now turn to the quasi-Cauchy prior. The calculations for this case largely depend on
standard Bayesian manipulations from the definition given in (3). Some fuller details are
given in the next subsection.

32 EbayesThresh: R Programs for Empirical Bayes Thresholding

The routine beta.cauchy

Conditional on Θ = θ, the distribution of µ is N(0, θ−1 − 1) and so the distribution of X is
N(0, θ−1). Integrating out over the distribution of Θ for 0 < Θ < 1, we obtain

g(x) = (2π)−
1
2x−2(1− e−

1
2
x2

)

so that
β(x) = x−2{φ(0)/φ(x)− 1} − 1.

The routine postmean.cauchy

Cognate to the Laplace calculations, the posterior weight wpost(x) is found using the routine
beta.cauchy. The key result for the determination of the posterior mean is then

µ1(x) = x(1− e−
1
2
x2

)−1 − 2x−1. (20)

The routine postmed.cauchy

After some manipulation, for µ > 0, we have

F̃1(µ|x) = (1− e−
1
2
x2

)−1{Φ̃(µ− x)− xφ(µ− x) + (µx− 1)eµx− 1
2
x2

Φ̃(µ)}. (21)

Suppose x > 0. If it has a positive solution, the equation F̃1(µ̂(x;w)|x) = {2wpost}−1 in (11)
can then be solved numerically for µ̂(x;w). This can be expressed as the equation

− Φ̃(µ̂−x)+xφ(µ̂−x)− (µ̂x−1)eµ̂x− 1
2
x2

Φ̃(µ̂)+ 1
2(1−e−

1
2x2

)+ 1
2(1/w−1)x2e−

1
2x2

= 0. (22)

For positive x, this can be solved by a binary search algorithm over the range [0, x] to find
µ̂. Since the tail probability is decreasing as a function of µ there is necessarily at most one
root, and the property that the posterior median is a shrinkage rule ensures that we need not
look higher than x. If there is no zero in the interval then the posterior median is zero.

The routine tfromw(prior="cauchy")

The threshold will be given by setting µ̂ = 0 and x = t in (22), to yield

−Φ(t) + tφ(t) + 1
2 + 1

2 t
2e−

1
2
t2(1/w − 1) = 0.

In order to find t from w, a numerical search is required. However, it is straightforward to
express w in terms of t. In particular, we can find explictly the value of w for which t is equal
to
√

2 log n. This calculation is carried out by the routine wfromt.cauchy.

6.5. Further details of calculations for quasi-Cauchy prior

Because the results we have used above are not entirely straightforward to derive, in this
section some additional details are provided. The various components of the part of the
model for µ 6= 0 are

(X|µ) ∼ N(µ, 1)
(µ|θ) ∼ N(0, θ−1 − 1)

f(θ) = 1
2θ

− 1
2 0 < θ < 1.

Journal of Statistical Software 33

By integrating out over µ, we have

(X|θ) ∼ N(0, θ−1).

Hence the marginal density g is given by

g(x) =
1√
2π

∫ 1

0
θ

1
2 e−

1
2
x2θ × 1

2θ
− 1

2dθ

=
1√
2π

∫ 1

0

1
2e

− 1
2
x2θdθ

=
1√
2π
x−2(1− e−

1
2
x2

).

Now turn to the derivation of the posterior distribution of µ given x. We will need the two
results, for u > 0,

1
2
√

2π

∫ 1

0
s−1/2e−

1
2
u2/sds = φ(u)− uΦ̃(u) (23)

and
1

2
√

2π

∫ 1

0
s−3/2e−

1
2
u2/sds = u−1Φ̃(u). (24)

By standard Bayesian theory for inference in the Normal distribution, we have

(µ|X = x, θ) ∼ N((1− θ)x, (1− θ)).

Also by standard Bayesian manipulations

f(θ|X = x) ∝ f(x|θ)f(θ) ∝ e−
1
2
x2θ.

Integrating over the interval [0, 1] to obtain the constant of proportionality yields

f(θ|X = x) =
1
2x

2e−
1
2
x2θ

1− e−
1
2
x2
.

For x = 0 the posterior density of θ is 1 on [0, 1].

We therefore have

E(µ|X = x) =
∫ 1

0
E(µ|X = x, θ)f(θ|X = x)dθ =

∫ 1

0
(1− θ)xf(θ|X = x)dθ

which leads to the posterior mean (20).

Now turn to the difficult calculation of the posterior distribution itself. Assume u > 0 and
x 6= 0. Use a standard result of conditional probability, then integrate by parts, substitute in
the integral, and use the results (23) and (24), to obtain

(1− e−
1
2
x2

)P (µ > u|X = x) = (1− e−
1
2
x2

)
∫ 1

0
f(x|θ)P (µ > u|x, θ)dθ

=
∫ 1

0

1
2x

2e−
1
2
x2θΦ̃

(
u− (1− θ)x√

1− θ

)
dθ (25)

34 EbayesThresh: R Programs for Empirical Bayes Thresholding

= −e−
1
2
x2θΦ̃

(
u− (1− θ)x√

1− θ

)∣∣∣∣1
0

(26)

−1
2

∫ 1

0
e−

1
2
x2θφ

(
u− (1− θ)x√

1− θ

)
{(1− θ)−3/2u+ (1− θ)−1/2x}dθ

= Φ̃(u− x)− 1
2
√

2π
eux− 1

2
x2

∫ 1

0
(us−3/2 + xs−1/2)e−

1
2
u2/sds

= Φ̃(u− x)− eux− 1
2
x2{Φ̃(u) + xφ(u)− uxΦ̃(u)} (27)

Standard manipulations of the normal density, and use of the property that P (µ > −∞|X =
x) lead to the result given in equation (21).

For completeness, we note that for x = 0, the posterior distribution of µ is a mixture of
N(0, 1 − θ) distributions over a uniform distribution for θ. Performing the mixture integral,
using the result (23), we find that the posterior density of µ given x = 0 is φ(u)− |u|Φ̃(|u|).
For u > 0, this yields

P (µ > u|X = 0) = 1
2(1 + u2)Φ̃(u)− 1

2uφ(u),

while for u = 0 the limiting value 1/2 for this expression is the correct probability.

For values of u < 0, appropriate tail probabilities can be found by using the relation P (µ <
u|X = x) = P (µ > −u|X = −x). Finally, for u = 0, a separate calculation of the integral
in (25) shows that the result in (27) still holds. The need for these separate calculations is
demonstrated, among other things, by the necessity of u > 0 for the evaluation of (26) to be
correct as stated.

7. Extended weight dependence: Some algorithmic issues

In this section, we set out algorithmic details underlying the two approaches considered in
Section 5, monotonic and parametric dependence of the weight wi on the index i.

7.1. Monotone weight dependence

To maximize
∑n

i=1 log{(1−wi)φ(xi)+wig(xi)} subject to the constraint w1 ≥ w2 ≥ . . . ≥ wn,
an iteratively reweighted isotone regression method was used. Published algorithms for this
problem do not seem to be readily available, so we have provided a routine for the purpose;
the underlying algorithm is set out here.

Define βi = β(xi) and note that the negative of the objective function differs by a constant
depending only on the observations from

U(w) = −
∑

i

log(1 + wiβi).

Given a current estimate (w0
i), let a0

i = (1 + w0
i βi)/βi = β−1

i + w0
i . By a Taylor expansion,

U(w)− U(w0) ≈
∑

i

{−(a0
i)
−1(wi − w0

i) + 1
2(a0

i)
−2(wi − w0

i)
2}

=
∑

i

1
2(a0

i)
−2{wi − (w0

i + a0
i)}2 + C(w0)

Journal of Statistical Software 35

Therefore the next stage in an optimization of U is obtained by a weighted least squares
isotonically decreasing fit to the values w0

i + a0
i with weights (a0

i)
−2. The cycle of iteratively

reweighting and re-estimating the isotone regression is repeated to convergence, which is
typically achieved quite rapidly. Setting all the w0

i to 1 initially works well.

The weighted least squares isotone fit is carried out using the routine isotone; given a
sequence of values bi and of weights ωi, the least squares isotone increasing regression finds
the monotone increasing sequence b∗i for which

∑
ωi(bi − b∗i)

2 is minimized. It does this by
the standard pool-adjacent violators algorithm, modified to allow for weights ωi. Because
of the weighting, it is convenient to carry out the weighted isotone regression as follows, for
an increasing regression; for decreasing regression, work with the negatives of the data and
negate the result:

1. Begin with the data bi themselves

2. Find all local maxima and minima in the current sequence, and locate each decreas-
ing subsequence, as the sequence between a local maximum and the succeeding local
minimum.

3. Keeping track of the address of the beginning of the subsequence in the original se-
quence bi, replace the subsequence by a single value equal to the weighted average of
the subsequence, and the weight by the sum of the weights over the subsequence. This
yields three sequences: values b′i, weights ω′i, and addresses ji.

4. Iterate to termination, achieving a sequence b†i with addresses ji.

5. Reconstruct a sequence of the same length as the original, by setting b∗k = b†i for ji ≤
k < ji+1.

7.2. Estimation of the weight in the case of parametric dependence

We now set out the algorithm for estimating the parameter ζ in the model considered in
Section 5.2. Define ζlo = wlo(max ci)−1 and ζhi = whi(min ci)−1. If ζ < ζlo then all the wi will
be wlo and if ζ > ζhi the all the wi will be 1, regardless of how far outside the interval ζ lies.
Therefore, we need only consider ζ only over the interval [ζlo, ζhi]. Our strategy for finding
the global maximum of ` is first to find all local minima, to search between consecutive local
minima to find all local maxima, and then to evaluate the function ` at all local maxima to
find which one is the global maximum.

Define
βi = g(zi)/φ(zi)− 1.

Then βi > −1 for all i, and

`(ζ) =
∑

i

log{1 + βiwi(ζ)}+ C(z)

where C(z) is a constant that depends on the zi but not on the parameter ζ. Each function
w(ζ) is continuous and piecewise linear, with derivative ci on the interval (c−1

i wlo, c
−1
i) and

zero outside this interval. Hence `′(ζ) is continuous except on the set J of all points equal to
c−1
i wlo or c−1

i for some i.

36 EbayesThresh: R Programs for Empirical Bayes Thresholding

1. Demonstrate that the log likelihood is piecewise concave between points in J :
For any particular ζ, define

I(ζ) = {i : c−1
i wlo < ζ < c−1

i }.

Leaving aside points ζ in J for the moment, I(ζ) is the set of i for which w′i(ζ) is nonzero.
The derivative `′(ζ) will have jumps at the points in J , but otherwise will be given by

`′(ζ) =
∑

i∈I(ζ)

ciβi

1 + ζciβi
.

Between two consecutive points in J , the set I(ζ) will not change, and so the function `′(ζ)
will be decreasing. Therefore local minima of `(ζ) can only occur at points ζ in J .

2. Check which points in J are local minima: To deal with points in J , define

I−(ζ) = {i : c−1
i wlo < ζ ≤ c−1

i } and I+(ζ) = {i : c−1
i wlo ≤ ζ < c−1

i }.

By elementary properties of the piecewise linear functions wi(ζ), we then have, for all ζ,

`′(ζ−) =
∑

i∈I−(ζ)

ciβi

1 + ζciβi
and `′(ζ+) =

∑
i∈I+(ζ)

ciβi

1 + ζciβi
.

If a point ζ in J is a local minimum, then `′(ζ−) ≤ 0 and `′(ζ+) ≥ 0, and so we locate all the
local minima of ` by checking the signs of the left and right derivatives at each point in J .
Let M be the number of these local minima, and sort them into order as ζ1 < ζ2 < . . . < ζM .

3. Locate the local maximum between each consecutive pair of local minima:
Consider each of the M − 1 intervals [ζj , ζj+1] in turn. Within each of these the derivative
`′(ζ) will cross (downwards) across zero at exactly one point, and this crossing point ζmax

j

can be found by a binary search. Our use of weak inequalities in constructing the list of local
minima ensures that both the left and right derivatives are strictly positive on the interval
(ζj , ζmax

j) and strictly negative on the interval (ζmax
j , ζj+1). For definiteness, the binary search

is on the value of the right derivative. Note that `′(ζ+) may not be strictly decreasing across
the interval; there may be jumps upwards, but none of these will be a jump across zero,
because the interval contains no local minima.

The smallest and largest points in J , ζlo and ζhi, need special consideration. If `′(ζlo+) > 0
then ζlo is a local minimum, and is treated in the usual way. On the other hand if `′(ζlo+) ≤ 0
then ζlo is a local maximum and is added to the list of local maxima without the need for
a binary search. Similarly, ζhi is a local minimum if `′(ζhi−) < 0 and a local maximum
otherwise.

4. Find the global maximum: We now evaluate `(ζmax
j) for each j, and find the j for

which this is greatest. The corresponding ζ is the global maximum.

Journal of Statistical Software 37

8. Concluding remarks

The empirical Bayes method set out in this paper and implemented in the EbayesThresh
package has wide potential applicability. There are increasingly many contexts where, im-
plicitly or explicitly, one is estimating a large number of parameters and it is necessary or
advisable to take advantage of possible sparsity in the parameter set. While it was the wavelet
context that gave the authors the original motivation for investigating this methodology, both
theoretical and practical considerations have already shown that it has much wider relevance,
and it is our hope that the EbayesThresh package will enable this potential to be realised.

Acknowledgements

This work was supported in part by NIH EB1988-09 and NSF DMS 00-72661.

References

Antoniadis A, Jansen M, Johnstone IM, Silverman BW (2004). EbayesThresh: MATLAB
Software for Empirical Bayes Thresholding. URL http://www-lmc.imag.fr/lmc-sms/
Anestis.Antoniadis/EBayesThresh/.

Bruce A, Gao HY (1996). Applied Wavelet Analysis with S-PLUS. Springer-Verlag.

Coifman RR, Donoho DL (1995). “Translation-Invariant De-Noising.” In A Antoniadis (ed.),
“Wavelets and Statistics,” Lecture Notes in Statistics. Springer.

Donoho DL, Johnstone IM (1994). “Spatial Adaptation via Wavelet Shrinkage.” Biometrika,
81, 425–455.

Jansen M, Nason GP, Silverman BW (2004). “Multivariate Nonparametric Regression Using
Lifting.” Submitted for publication.

Johnstone IM, Silverman BW (1997). “Wavelet Threshold Estimators for Data with Corre-
lated Noise.” Journal of the Royal Statistical Society, Series B, 59, 319–351.

Johnstone IM, Silverman BW (2004). “Needles and Straw in Haystacks: Empirical Bayes
Estimates of Possibly Sparse Sequences.” Annals of Statistics, 32, 1594–1649.

Johnstone IM, Silverman BW (2005). “Empirical Bayes Selection of Wavelet Thresholds.”
Annals of Statistics, 33(4), to appear.

Nason GP (1996). “Wavelet Shrinkage Using Cross-Validation.” Journal of the Royal Statis-
tical Society, Series B, 58, 463–479.

Nason GP (1998). WaveThresh3 Software. Department of Mathematics, University of Bristol,
UK. URL http://www.stats.bris.ac.uk/~wavethresh/.

Nason GP (2004). wavethresh: Software to Perform Wavelet Statistics and Transforms. URL
http://CRAN.R-project.org/src/contrib/Descriptions/wavethresh.html.

http://www-lmc.imag.fr/lmc-sms/Anestis.Antoniadis/EBayesThresh/
http://www-lmc.imag.fr/lmc-sms/Anestis.Antoniadis/EBayesThresh/
http://www.stats.bris.ac.uk/~wavethresh/
http://CRAN.R-project.org/src/contrib/Descriptions/wavethresh.html

38 EbayesThresh: R Programs for Empirical Bayes Thresholding

Silverman BW (2004). EbayesThresh: Empirical Bayes Thresholding and Related Methods.
URL http://CRAN.R-project.org/src/contrib/Descriptions/EbayesThresh.html.

Whitcher B (2004). The waveslim Package: Basic Wavelet Routines for One-, Two- and
Three-dimensional Signal Processing. URL http://CRAN.R-project.org/src/contrib/
Descriptions/waveslim.html.

Affiliation:

Iain M. Johnstone
Department of Statistics
Stanford University
Stanford CA 94305-4065, United States of America
E-mail: imj@stat.stanford.edu
URL: http://www-stat.stanford.edu/people/faculty/johnstone/

Bernard W. Silverman
St Peter’s College
Oxford OX1 2DL, United Kingdom
E-mail: bernard.silverman@spc.ox.ac.uk
URL: http://www.bernardsilverman.com/

Journal of Statistical Software Submitted: 2005-01-10
April 2005, Volume 12, Issue 8. Accepted: 2005-04-06
http://www.jstatsoft.org/

http://CRAN.R-project.org/src/contrib/Descriptions/EbayesThresh.html
http://CRAN.R-project.org/src/contrib/Descriptions/waveslim.html
http://CRAN.R-project.org/src/contrib/Descriptions/waveslim.html
mailto:imj@stat.stanford.edu
http://www-stat.stanford.edu/people/faculty/johnstone/
mailto:bernard.silverman@spc.ox.ac.uk
http://www.bernardsilverman.com/
http://www.jstatsoft.org/

	Introduction
	Background
	Examples
	Brief overview of the method and the master routine

	Description of the method
	The Bayesian model
	Thresholding rules
	Choosing the threshold
	Wavelet thresholding and other extensions

	Examples and aspects of the package
	A simple illustrative example
	Varying sparsity in a larger sample
	The posterior median thresholding function
	Other control parameters in the package's routines

	Wavelet thresholding
	Empirical Bayes thresholding of the discrete wavelet transform
	The estimated thresholds
	The stationary noise model
	The translation-invariant wavelet transform
	Smoothing an image

	More general mixture weight structure
	Increasing sparsity along the sequence
	Parametric dependence

	Algorithmic and mathematical details for the basic method
	Generic calculations
	Finding the Bayes factor threshold
	Laplace prior
	Quasi-Cauchy prior
	Further details of calculations for quasi-Cauchy prior

	Extended weight dependence: Some algorithmic issues
	Monotone weight dependence
	Estimation of the weight in the case of parametric dependence

	Concluding remarks

