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Mean-field phases of an ultracold gas in a quasicrystalline potential
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The recent experimental advancement to realize ultracold gases scattering off an eightfold optical potential
[K. Viebahn, M. Sbroscia, E. Carter, J.-C. Yu, and U. Schneider, Phys. Rev. Lett. 122, 110404 (2019)] heralds
the beginning of a new technique to study the properties of quasicrystalline structures. Quasicrystals possess
long-range order but are not periodic, and are still little studied in comparison to their periodic counterparts.
Here, we consider an ultracold bosonic gas in an eightfold symmetric lattice and assume a toy model where
the atoms occupy the ground states of the local minima of the potential. The ground-state phases of the system
are studied, with particular interest in the local nature of the phases. The usual Mott-insulator, density wave,
and supersolid phases of the standard and extended Bose-Hubbard model are observed. For nonzero long-range
interactions, we find that density wave states can spontaneously break the eightfold symmetry, and may even
possess no rotational symmetry. We find the local variation in the number of nearest neighbors to play a vital
role in the phase transitions, local structure, and global symmetries of the ground states. This variation in the
number of nearest neighbors is not a unique property of the considered eightfold lattice, and we expect our results
to be generalizable to any quasicrystalline potential where there are only small position dependent variations in
the site energy, tunneling, and interactions.
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I. INTRODUCTION

Quasicrystals are states of matter that have long-range
order but are not periodic [1–3]. Their order can be con-
sidered to arise from incommensurate projections of higher-
dimensional periodic crystals [4,5], or due to a continuous
tiling of space with discrete unit cells [6]. Over the last few
decades, quasicrystals have been studied in condensed-matter
systems [3,7,8], photonics [9,10], twisted bilayer graphene
[11], and the Gross-Pitaevskii equation with solitons [12], and
as an emergent phase in ultracold dipolar gases [13]. There
has also been a significant amount of research into the case
of one-dimensional disordered, quasirandom, and/or incom-
mensurate systems that are related to quasicrystals [14–24]. It
was also shown recently that general quantum Hamiltonians,
including those of quasicrystals, can be solved exactly by
extending the problem to a higher-dimensional space, which
is called a superspace [25].

Lately the consideration of two-dimensional quasicrys-
talline optical lattices for atomic gases has been gaining
traction [26–30], resulting in the first experimental work con-
sidering the scattering of an atomic gas from a quasicrystalline
optical potential [31]. An interesting extension to consider
is the adiabatic loading of an atomic gas into a quasicrys-
talline optical lattice, which is currently possible for relatively
weak lattice depths [32]. However, with current experimental
technologies, potentially combined with enforced adiabatic
loading schemes [33], we expect the adiabatic loading of an
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ultracold gas into a quasicrystalline optical lattice to be exper-
imentally achievable in the near future. With the realization
of Bose-Hubbard models in quasicrystal lattices, potentially
important questions on the relation between quasiperiodic
order and randomness could be probed [31,34].

Ground-state phases for ultracold atoms in an optical lat-
tice were first studied in the standard Bose-Hubbard model
[35–39], in which the well-known Mott-insulator to super-
fluid transition arises. However, by introducing long-range
interactions, density wave and supersolid phases can also
be observed [40–43]. These phases spontaneously break the
translational symmetry of a lattice and can destroy the previ-
ously present superfluid and Mott-insulating domains. Long-
range interactions can be introduced by the use of dipolar
atomic species [44–47], or can be induced by light-matter
interactions [48–52].

In this paper, we will consider the case of bosons in a lattice
geometry based on an eightfold symmetric optical lattice used
in a recent ultracold gas experiment [31]. We will assume
a toy model for this system, with the atoms occupying the
states associated to the local minima. The ground-state phases
of both standard and extended Bose-Hubbard models for
the quasicrystalline lattice are studied by a static Gutzwiller
mean-field approach using a self-consistent loop. First, we
will investigate the case of a homogeneous structure on the
quasicrystal, with constant tunneling and interaction strengths
across the lattice. This allows us to study how variations in
the local number of nearest neighbors throughout the lattice
will impact the ground-state phases. We will then finish this
paper by considering the position dependent tunneling and
interactions within the quasicrystalline lattice and confirm that
the phases are present in this scenario.
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FIG. 1. The eightfold symmetric lattice. (a) The optical potential
of Eq. (3) with a weak harmonic trap VH = 0.0004V0λ

−2
latt . (b) Po-

sitions of lattice sites when taking a cutoff value of VQC/V0 = 1 in
panel (a); bonds are shown for nearest-neighbor couplings. Positions
are in units of λlatt and V0 = 0.8ER.

II. QUASICRYSTALLINE LATTICE

For two-dimensional systems, a crystal can have only
two-, three-, four-, and/or sixfold rotational symmetry [53].
As already stated, we will consider a lattice based on an op-
tical potential which is eightfold symmetric, which is defined
by

VQC(r) = V0

4∑
i=1

cos2

(
Ĝi

2
· r

)
, (1)

where V0 defines the lattice strength, r is the two-dimensional
position (in units of λlatt), and the reciprocal lattice vectors are

Ĝ1 =
(

1

0

)
, Ĝ2 =

(
0

1

)
,

Ĝ3 = 1√
2

(
1

1

)
, Ĝ4 = 1√

2

(−1

1

)
. (2)

This lattice potential can be realized by interfering four
mutually noninterfering one-dimensional optical lattices and
was recently realized experimentally [31,32]. We will also
consider, in part, the influence of a harmonic trap required to
trap the atomic cloud. We will account for the harmonic term
in the full lattice potential, which we define as

Vlatt (r) = VQC(r) + 1
2VH r2, (3)

where VH is a tunable harmonic strength. The form of the
lattice potential is shown in units of V0 in Fig. 1(a). We
consider a cutoff of VQC/V0 = 1 to obtain the toy model of
a finite lattice of the quasicrystal. This cutoff is equivalent
to the setting of an energy (temperature) of the ultracold gas
and/or the depth of the lattice. In this case, the gas occupies
minima in the lattice potential where VQC/V0 < 1, giving the
finite lattice shown in Fig. 1(b).

In the true physical system the atoms would usually be
loaded into a single band (or multiple bands) of the quasicrys-
talline potential which would require knowledge of the band
structure and the positions of energy gaps. With the cutoff
approach used in this paper, we will consider the case that
the ultracold gas has been cooled sufficiently to sit in the local
ground states of the potential minima for the quasicrystalline

optical lattice. This is a toy model which we will use to give a
qualitative picture of the ground-state phases.

III. MODEL

An interacting ultracold gas trapped in an optical lattice has
the Hamiltonian

Ĥ =
∫

dr�̂†(r)

(
− h̄2

2m
∇2 + Vlatt (r) − μ

)
�̂(r)

+ 1

2

∫
drdr′�̂†(r)�̂†(r′)Vint (r, r′)�̂(r)�̂(r′), (4)

where Vint (r, r′) is the two-atom interaction potential, μ is the
chemical potential, m is the mass, and �̂(r) [�̂†(r)] are the
bosonic annihilation (creation) field operators. We will define
the interaction potential to be governed by a short- and long-
range term, i.e.,

Vint (r, r′) = gδ(r − r′) + γ h(r, r′), (5)

where g and γ are the short- and long-range strengths, respec-
tively. The short-range interaction is mediated by a contact
interaction, given by a delta function. The long-range inter-
action is mediated by a general term h(r, r′), which we will
consider to have a position dependence of 1/|r − r′|3, which
is consistent with that of dipolar atomic gases [44].

It is well known that the tight-binding limit of Hamiltonian
(4) results in a Bose-Hubbard model [54]. If we retain two-site
interactions while taking the tight-binding limit we obtain the
extended Bose-Hubbard model which has a Hamiltonian of
[55]

Ĥ = −
∑
〈i, j〉

Ji j b̂
†
i b̂ j +

∑
i

Ui

2
n̂i(n̂i − 1)

+
∑

i

(εi − μ)n̂i +
∑
〈i, j〉

Vi j n̂in̂ j, (6)

where i( j) label the lattice sites, 〈i, j〉 denotes the sum over
all nearest neighbors, b̂i (b̂†

i ) are the individual bosonic an-
nihilation (creation) operators, and n̂i = b̂†

i b̂i is the number
operator. The extended Bose-Hubbard model is the simplest
tight-binding Hamiltonian for atoms that have long-range
interactions, and it assumes that the additional two-site terms
(density-dependent tunneling and pair tunneling) are small
compared to the single-particle tunneling. We have limited the
summations to nearest neighbors (and the reciprocal term) as
the strength for each term falls off quickly with the separation
between sites. In Hamiltonian (6), we have the following
terms: J is the tunneling, U is the on-site two-atom interaction,
ε is the site energy, μ is the chemical potential, and V is
the two-site two-atom interaction. We will, unless otherwise
stated, work in units of energy of the recoil energy ER =
h2/2mλ2

latt , with λlatt the optical lattice wavelength, and units
of position of λlatt .

The properties of each lattice site in the tight-binding limit
are given by the localized complete set of Wannier functions
w(r − ri ), where r − ri is the position away from the ith
lattice site. The strength of each term in Hamiltonian (6) is
dependent on an overlap integral between Wannier functions
and the potential terms contained in Hamiltonian (4). The
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FIG. 2. The strengths of terms in the extended Bose-Hubbard
model for the eightfold symmetric lattice. All energies are in units
of ER, and the lattice depth is V0 = 0.8ER. (a) The energies εi due
to the optical lattice plus harmonic potential. (b) Same as panel
(a) but excluding the harmonic trap. (c) The site-dependent tunneling
strengths. (d) The site-dependent long-range interaction in units of
γ ER.

single-atom tunneling strength is given by

Ji j = h̄2

2m

∫
drw∗(r − ri )∇2w(r − r j )

−
∫

drw∗(r − ri )Vlatt (r)w(r − r j ), (7)

and the two-atom on-site interaction is

Ui = g
∫

dr|w(r − ri )|4

+ γ

∫
drdr′|w(r − ri )|2h(r, r′)|w(r′ − ri )|2. (8)

Due to the quasicrystalline and harmonic potential there is a
position dependent site energy of

εi =
∫

dr|w(r − ri )|2Vlatt (r) ≈ Vlatt (ri ). (9)

The two-site two-atom interaction strength is given by

Vi j = γ

2

∫
drdr′[|w(r − ri )|2|w(r′ − r j )|2h(r, r′)

+w∗(r − ri )w
∗(r′ − r j )w(r − r j )w(r′ − ri )h(r, r′)].

(10)

The position dependence of the parameter strengths of
Hamiltonian (6) is shown in Fig. 2. In these calculations we
have taken a harmonic approximation for the individual wells
of the lattice, with Wannier functions given by Gaussians. The
harmonic approximation is known to provide good qualitative
predictions, but will quantitatively underestimate certain pa-
rameters. However, as we will consider a Gutzwiller mean-
field approach in this paper it is already the case that only
qualitative predictions should be expected. The site energy is

dominated by the harmonic confinement, and even without
the harmonic term the variation in the site energy is small,
as shown in Figs. 2(a) and 2(b). Quasicrystalline potentials
might lead to the observation of disorder induced phases like
the Bose glass [35]. However, in the potential utilized for this
paper we will not observe any disorder induced ground-state
phases, which could be a result of the small differences in site
energies across the lattice as shown in Figs. 2(a) and 2(b).

In this paper, we will assume that the physics of each
individual site is dominated by its local neighborhood. This
should be a good assumption for the small lattice sizes we
are considering in this paper. We can then find the local
nearest-neighbor couplings for each individual site by finding
its nearest neighbor which will be a distance l away. We then
couple the individual site bidirectionally to all sites that are
of a distance l apart. This results in the structure of bonds
shown in Fig. 2(c), with each site coupled to its local nearest
neighbors. The tunneling strengths shown in Fig. 2(c) have a
position dependence, which arises due to the incommensurate
nature of the considered optical lattice. Another method of
taking the tight-binding limit of a quasicrystal is to consider
the tiles, and take all lines as bonds and vertices as lattice sites
[28,56], which results in a similar lattice to that considered
here.

IV. GUTZWILLER MEAN FIELD

The Gutzwiller mean field is a well-known method to
predict quantum phase transition in tight-binding models, and
specifically Hubbard models [57–61]. In the Gutzwiller mean-
field approach, the many-body wave function is approximated
as a product of on-site terms given by

|�〉 =
L∏
i

z∑
n=0

f (i)
n |ni〉, (11)

where L defines the total number of lattice sites, z is the
maximum number of atoms per site, f (i)

n is the coefficient of
having n atoms in site i, and |ni〉 is the corresponding Fock
state. The coefficients are normalized such that

∑z
n=0 | f (i)

n |2 =
1. Correlations between sites are not accounted for due to the
limiting of the Hilbert space [43]. As a result, the Gutzwiller
mean field is known to give a good qualitative picture of
phases in two dimensions, but the prediction of exact tran-
sition points is quantitatively unreliable.

To implement the Gutzwiller approach, we use a self-
consistent loop which updates order parameters until con-
vergence. This approach uses local order parameters, which
are defined for each single site. The initialization of the
loop takes a random and uniformly distributed set of order
parameters for each lattice site. We then diagonalize each
local Hamiltonian with the given order parameters to solve for
the local ground state. From this ground state, we update the
local order parameters and then the loop continues to the next
site, where the process is repeated. After one cycle through
all lattice sites, we check for convergence towards the global
ground state. If convergence is not achieved, the cycle through
local lattice sites is repeated. Otherwise, the self-consistent
loop ends.
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For Hamiltonian (6), there are two order parameters which
govern the state of the system. These order parameters repre-
sent observables which can be measured in the system. The
density ρi is defined by

ρi = 〈n̂i〉 =
z∑

n=0

n
∣∣ f (i)

n

∣∣2
, (12)

and the single atom transport ϕi is defined by

ϕi = 〈b̂i〉 =
z∑

n=0

√
n f (i)

n f ∗(i)
n−1. (13)

In the extended Bose-Hubbard model, there are in general four
phases that can be defined. The Mott insulator with ρi = ρ ∀i
and ϕi = 0 ∀i, and the density wave with ρi 
= ρ ∀i and ϕi =
0 ∀i, both characterize phases with no transport properties.
The superfluid with ρi = ρ ∀i and ϕi = ϕ ∀i, and the super-
solid with ρi 
= ρ ∀i and ϕi 
= ϕ ∀i, both characterize ground
states with nonzero transport properties. The definitions of the
phases are the standard definitions considered for mean-field
results [62–64]. The supersolid and density wave are defined
as usually having long-range crystalline order, which we will
observe in the quasicrystal, with the ground state breaking the
eightfold symmetry in favor of a four- or twofold symmetry
when in the supersolid phase.

V. HOMOGENEOUS SYSTEM

We will begin by taking the homogeneous case of
strengths, with constant J , U , V , and ε throughout the lattice.
While this is not a necessarily realistic scenario for when
an ultracold gas is cooled into a quasicrystalline potential,
it will provide a clear indication of the role that the local
differences in the number of nearest neighbors play in the
phases. Note, we will also neglect the contribution of the
harmonic potential to the on-site terms, which allows for
the physics of the ground states due to the quasicrystalline
potential to be investigated. While we have used the harmonic
confinement to motivate the consideration of a finite system,
it is worth noting that other confinement options, including
box traps, are possible [65,66]. These alternative traps could
allow for finite systems without site energy contributions to be
considered experimentally.

We will confirm that the phases discussed for the homoge-
neous case can be observed in the position dependent Bose-
Hubbard model in Sec. VII. Of course, due to the local nature
of the quasicrystal we cannot consider only the usual μ − J
plots of mean-field phase diagrams. Instead, we will visualize
the local nature of the order parameters by plotting segments
of the lattice, utilizing the symmetries present to condense
multiple phases onto single plots. Each plot, unless otherwise
stated, contains four different parameter values plotted in
segments of the quasicrystal, with the values labeled (i)–(iv)
in an ascending order and plotted in a clockwise fashion. We
will consider fixed chemical potentials on single lattice plots,
with each of the four segments representing a varying of the
tunneling J or long-range interaction V . In this section, we
will work in the units of the contact interaction U as we are
treating the Bose-Hubbard model directly on the quasicrystal
structure.

FIG. 3. Mott-insulator to superfluid transition in the ground state
of an eightfold symmetric quasicrystal. (a, b) The case of μ/U = 0.5
with (i) J/U = 0.02, (ii) J/U = 0.04, (iii) J/U = 0.06, and (iv)
J/U = 0.08, showing an order-1 MI transitioning to a superfluid.
(c, d) Same as the cases of panels (a) and (b) but for μ/U =
1.5 and showing an order-2 MI transitioning to a superfluid at a
different critical point. Panels (a) and (c) show the local-density order
parameters and panels (b) and (d) show the local transport order
parameters. Note all ground states shown are eightfold symmetric.

First, we consider the ubiquitous Mott-insulator to super-
fluid transition with V = 0. This is shown in Fig. 3, where
we consider two values of μ [(a, b) μ/U = 0.5 and (c, d)
μ/U = 1.5] for a set of different J’s. The Mott-insulator to
superfluid transition is observed clearly, and the transition
is at different points for different values of μ, as would
be expected. The single-atom transport and density of the
superfluid is not homogeneous in the lattice, and is therefore
more generally a supersolid. This is a finite-size effect with the
modulation being small, and this state is therefore effectively
a superfluid but on a finite-size system [44]. We observe
the transition from Mott insulator to superfluid effectively
“spreading” through the system, as each site has in essence a
different Mott to superfluid transition point due to the varying
number of nearest neighbors. In this quasicrystalline lattice,
the superfluid is seen to initially populate the central portion
of the lattice and then spreads over the lattice for increasing J .
All ground states observed in Fig. 3 are eightfold symmetric,
preserving the quasicrystal symmetry.

We then consider the case of nonzero two-site two-atom
interactions in Fig. 4. With a strong chemical potential
[Figs. 4(a) and 4(b)], we start with a standard superfluid (with
finite-size variations) for V/U = 0. The nonlocal interactions
make the bosonic atoms want to increase their separation,
and with intermediate V we observe a supersolid with a
large density modulation favoring the edge of the system [see
Fig. 4(a-iii)]. For large V , we observe an interesting supersolid
phase which has a mix of three different local integer densities
of ρ = 0, 2, 3. In this phase, the single-atom transport is
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FIG. 4. Phase transitions for nonzero long-range interactions in
the ground state of an eightfold symmetric quasicrystal. (a, b) The
case of μ/U = 2.5 and J/U = 0.1 with (i) V/U = 0, (ii) V/U = 0.1,
(iii) V/U = 0.25, and (iv) V/U = 0.4, showing a superfluid transi-
tioning to a supersolid. (c, d) The case of μ/U = 1.5 and J/U =
0.01 with (i) V/U = 0, (ii) V/U = 0.07, (iii) V/U = 0.17, and (iv)
V/U = 0.25, showing an order-2 Mott insulator transitioning to an
edge density wave. Panels (a) and (c) show the local-density order
parameters and panels (b) and (d) show the local transport order
parameters.

nonzero for sites with nonzero density, and the state has
spontaneously broken the lattice symmetry to be only fourfold
symmetric, which is reminiscent of the staggered or twisted
phases observed in standard lattice geometries [67]. Taking
the large V limit, this phase retains its density structure and
tends to a transport order parameter that is zero throughout
the lattice.

In Figs. 4(c) and 4(d), we consider an initial phase of a
Mott insulator, then ramp up the two-site interaction strength.
In this case, we observe a supersolid for intermediate V [see
Fig. 4(c-ii)], which is again fourfold symmetric. When the
two-site interaction is increased a regime is reached where
there is a ρ = 1, 2 density wave on the edge of the lattice and
the ground state is again eightfold symmetric. This density
wave is a combination of an order-2 and -1 Mott insulator,
with the order-2 one on the edge to reduce the energetic
cost of multiple atoms in neighboring sites. Therefore, the
edge density wave is a consequence of the varying number
of nearest-neighbor lattice sites in the quasicrystal and the
long-range interactions.

We also observe intriguing intermediate density wave
phases as shown in Fig. 5. These density waves are character-
ized by their uniform zero ϕ. In Fig. 5(a) we show an example
where there is a combination of zeroth-, first-, second-, and
third-order Mott-insulator states, whereas in Fig. 5(c) we
observe a density wave of first- and second-order Mott states.
We note that these density waves have no rotational symmetry,

FIG. 5. Density waves for nonzero long-range interactions in the
ground state of an eightfold symmetric quasicrystal. (a, b) The case
of μ/U = 2.5 and J/U = 0.1 with V/U = 0.8, showing a density
wave of ρ = 0, 1, 2, and 3 Mott states; note this ground state has no
rotational symmetry. (c, d) The case of μ/U = 1.5 and J/U = 0.01
with V/U = 0.1, showing a density wave of ρ = 1 and 2 Mott states;
note this ground state also has no rotational symmetry. Panels (a) and
(c) show the local-density order parameters and panels (b) and
(d) show the local transport order parameters.

having spontaneously broken all rotational symmetries of
the lattice. As these states do not possess any rotational or
inversion symmetry, they do not fall into the categories of the
usual crystal or quasicrystal phases, i.e., the order has been
destroyed. The physics and dynamics of atoms in these phases
with fully broken symmetry could be an interesting area of
further study.

As mentioned at the start of this section, the homogeneous
case allows for the consideration of the influence of the
local variation in the number of nearest neighbors. Without
nonlocal interactions, the variation in the number of neighbors
results in slightly different local transition points of the Mott
insulator to superfluid. As can be seen in Fig. 3, the superfluid
state starts in the central portion of the lattice and propagates
out when the tunneling is increased. For nonzero nonlocal
interactions, the number of nearest neighbors plays a more
prominent role. This is especially evident in the highly struc-
tured density waves for strong nonlocal interactions observed
in Fig. 5. In the symmetry-breaking density waves of Fig. 5 it
is the variation in the number of nearest neighbors that causes
the full symmetry breaking for the ground state. This can be
observed by considering the local symmetries of the density
wave. For some individual lattice sites it can be observed that
there is a local rotational symmetry, e.g., a staggering of order
parameters. This local rotational symmetry is not present for
all lattice sites, though, due to the variation in the number of
nearest neighbors. This variation means it is difficult to obtain
a staggering of the order parameters and to respect any global
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FIG. 6. Phase diagrams for the homogeneous eightfold symmet-
ric quasicrystal. (a) The standard Bose-Hubbard model, exhibiting
the expected MI and supersolid (SS) phases with the SS phase
induced by the lattice geometry. (b) The extended Bose-Hubbard
model with V/U = 0.1, exhibiting the expected MI, SS, and density
wave (DW) phases, though the density wave phase takes a comblike
form in destroying the MI.

rotational symmetry, resulting in the ground state containing
no rotational symmetry.

VI. PHASE DIAGRAMS

So far, we have considered a couple of different phase
transitions and individual phases for specific values of the
tunneling and long-range interactions. It is usual for the
consideration of phases in ultracold gases in Bose-Hubbard
models to be plotted on μ − J diagrams. For the case of
quasicrystals, these phase diagrams will not, as we have
seen, tell the full story of the rotational symmetries present
in the ground state. However, they will define the regions
where the ground state belongs to one of the four possible
phases. It is also known that the symmetry breaking phases
discussed in the previous section will only occur in regions
where the ground state is of the supersolid or density wave
type. Therefore, knowing the regions where the supersolid and
density wave phases dominate is vital to observe the intriguing
symmetry-breaking phases shown in Figs. 4 and 5.

The phase diagrams are found by calculating the order
parameters for a range of chemical potential and tunneling.
We then check these order parameters against a set of thresh-
old conditions for the various phases as defined in Sec. IV.
The precise point of the phase boundaries is set by our
threshold conditions and we assume that an order parameter
is constant if it has variations that are less than 0.5% of the
maximum value of the order parameter for that ground state.
We also require that there exists a critical point between each
phase, and this rules out small superfluid regions that would
be predicted by the threshold conditions but which are not
physical.

In Fig. 6, we show two example phase diagrams of bosons
in a quasicrystalline lattice for the homogeneous case, i.e.,
constant J and V with zero ε. For the case of the usual Mott-
insulator to superfluid transition, in Fig. 6(a), we actually ob-
serve a Mott-insulator to supersolid transition. This supersolid
phase is a direct result of the finite size of the quasicrystalline

FIG. 7. Plots of the average order parameters across the lattice
for the homogeneous eightfold symmetric quasicrystal. J/U = 0.001
and V/U = 0.1. (a) The average density ρ̃ across the lattice. (b) The
average transport ϕ̃ across the lattice. Shaded regions correspond to
DW, SS, and MI phases with the colors corresponding to those shown
in Fig. 6(b).

lattice, with the finite geometry favoring a supersolid over a
superfluid phase. For the supersolid, the phase in the central
portion of the lattice is a standard superfluid, with constant
density, as is shown in Figs. 3(a-iv) and 3(c-iv).

We also observe, in Fig. 6(b), for nonzero V that density
waves destroy the standard Mott-insulating lobes as expected.
For the case of nonzero V , the domination of the supersolid
over the superfluid phases is already expected in regular lattice
structures. In the quasicrystalline lattice, the supersolid is
introduced not only by the two-site interactions but also by the
aperiodic nature of the lattice. However, the density waves do
not appear as single lobes replacing each of the Mott-insulator
lobes as would be usually expected, but as a comblike set of
lobes. As usual, each density wave consists of the mixing of
multiple-order Mott-like states. The breakup of the usual lobe
for each order of density wave is due to the quasicrystalline
nature of the lattice. That is, discrete stepwise increases in
the average density across the lattice are favored due to the
quasicrystalline lattice. To show this, we consider the average
density, ρ̃, and transport, ϕ̃, across the lattice for a single
tunneling strength in Fig. 7. These plots show clearly the
Mott-insulator (integer ρ̃), density wave (noninteger ρ̃), and
supersolid (nonzero ϕ̃) phases. It is observed that each density
wave lobe corresponds to a stepwise increase in the average
density. This increase on the average corresponds to a higher
proportion of the lattice being filled with higher ρ Mott-like
states and is a consequence of the varying number of nearest
neighbors.

In Fig. 8, we show two cutouts of the variance in the order
parameters for constant μ/U . The variances are given by
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FIG. 8. Plots of the difference of the order parameters across the
lattice for the homogeneous eightfold symmetric quasicrystal. The
solid (black) line is ρ̄, the difference between the maximum and
minimum value of ρ across the lattice, and the dashed (red) line is ϕ̄,
the difference between the maximum and minimum value of ϕ across
the lattice. (a) A cut along μ/U = 0.5 of Fig. 6(a). (b) A cut along
μ/U = 2.4 of Fig. 6(b). The two cutouts show clearly the existence
of a single critical point.

ρ̄ = max(ρ) − min(ρ) and ϕ̄ = max(ϕ) − min(ϕ). These
cutouts show the clear transition point between the phases.

VII. POSITION DEPENDENT SYSTEM

The case of an eightfold optical lattice will naturally result
in the various terms of the Bose-Hubbard model having
position dependent strengths. This was discussed in Sec. III
with the nonhomogeneous strengths of site energy, tunneling,
and long-range interactions shown in Fig. 2. In this section,
we consider if the phases of the previous sections can be
observed when the position dependence of the strengths of
the terms in the Bose-Hubbard model is taken into account.
We have seen for the case of homogeneous strengths that
various phases are possible in the extended Bose-Hubbard
model and these phases can contain the eightfold symmetry
of the lattice, or spontaneously break the rotational symmetry.
In this section, we will show that these phases can exist even
when the nonhomogeneous nature of the terms in the model
is considered. Note, we are still considering the mean-field
ground states, therefore all quoted values are qualitative only
and should be considered with care.

We will assume that the atoms sit in the ground states of
the local minima of the quasicrystalline potential and take
the harmonic approximation for each individual well. We
will calculate the coefficients of the Bose-Hubbard models
considered from Eqs. (7)–(10). Note that this means that the
constants set for the model of g and γ will now be in units of
ERλ3

latt . An important consequence of the nonuniform nature
of the quasicrystalline lattice is that the ground state of each

FIG. 9. Phases for the position dependent eightfold symmetric
quasicrystal with nonhomogeneous tunneling and on-site and long-
range interactions as shown in Fig. 2. Lattice depth is set to V0 =
0.8ER. (a, b) The case of μ = 1.5ER with γ = 0 and (i) g = 5ERλ3

latt ,
(ii) g = 10ERλ3

latt , (iii) g = 15ERλ3
latt , and (iv) g = 20ERλ3

latt , showing
a superfluid transitioning to an order-1 MI. (c, d) The case of
μ = 2.5ER for (i) attractive g = −2481ERλ3

latt and γ = 35ERλ3
latt

and (ii) attractive g = −8684ERλ3
latt and γ = 10ERλ3

latt showing a
density wave to supersolid transition. Panels (a) and (c) show the
local-density order parameters and panels (b) and (d) show the local
transport order parameters.

lattice site will be different, with a 0.3λlatt variation in the size
of the harmonic states in our example lattice.

We will take a lattice depth of V0 = 0.8ER. Considering a
chemical potential of μ = 1.5ER and a two-body interaction
of g = 5 − 20ERλ3

latt , in Figs. 9(a) and 9(b), we observe the
standard superfluid to Mott-insulator transition. Note, the
superfluid has a structure which is dominated by the harmonic
trap but that still propagates out from the center during the
transition. By considering a fixed short-range interaction and
a variable long-range interaction of γ = 35 − 10ERλ3

latt in
Figs. 9(c) and 9(d), we can also observe a density wave to
supersolid transition. The supersolid and density waves have
densities which are not dominated by the harmonic trap, with
the long-range interactions causing more interesting structures
to appear. This includes a density wave in Fig. 9(c-i) which
has spontaneously broken the eightfold rotational symmetry
of the lattice, and instead possesses a mirror symmetry. The
supersolid of Fig. 9(c-ii) is fourfold symmetric.

For large long-range interactions in the homogeneous case,
we observed spontaneous symmetry breaking of all rotational
symmetries of the quasicrystalline lattice. These interesting
states can also be observed for the position dependent case
of nonhomogeneous strengths with an example shown in
Fig. 10. This ground state is a density wave with ρ = 2, 3, 4
and possesses no rotational symmetry due to an effective
defect in the second innermost ring. Higher-order density
waves can be observed for increased chemical potential. All
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FIG. 10. Example density wave for strong long-range interac-
tions for the position dependent eightfold symmetric quasicrystal.
We take the parameters V0 = 0.8ER, μ = 15ER, and attractive g =
−12390ERλ3

latt and γ = 50ERλ3
latt . Panel (a) shows the local-density

order parameter and panel (b) shows the local transport order
parameter.

examples including long-range interactions require a relative
strength between the contact and long-range interactions of
γ /g ∼ 10−3 which we would expect to be achievable with
current techniques with dipolar atoms [44,68]. The small ratio
required for the density wave phases is in part due to the
requirement that the on-site contact and dipolar interactions
cancel each other out.

VIII. CONCLUSION

With the recent realization of a quasicrystalline optical
lattice for ultracold atomic gases [31], the experimental inves-
tigation of quasicrystalline two-dimensional Bose-Hubbard
models is within reach. We consider a toy model for the

ground-state phases of bosonic cold atoms in a quasicrys-
talline lattice. For the standard Bose-Hubbard model we ob-
serve the expected Mott-insulator phase as well as a supersolid
phase. This supersolid phase is a direct result of the finite
size of the lattice. We also consider the case of an extended
Bose-Hubbard model, containing interactions between atoms
in adjacent sites. This allows for density waves to also be
observed. Both the supersolid and density wave phases can
have interesting local structures that break the underlying
eightfold symmetry of the quasicrystal. For strong long-range
interactions, we observe interesting density waves that spon-
taneously break all rotational symmetry.

The various intriguing phases observed in this paper are a
direct result of the aperiodic nature of the underlying lattice,
with the variation of the local number of nearest neighbors
being key. We have confirmed that in the eightfold lattice
with position dependent site energy, tunneling, and long-range
interactions the various phases discussed in this paper can
occur. Also, this paper shows that structurally complex phases
can be observed in quasicrystalline lattices without invoking
disorder. However, a future interesting path of study could be
to consider any potential relationship between the observed
ground-state phases of this paper, including those without
rotational symmetry, and the predicted phases of disordered
systems [16,35].
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