1,963 research outputs found

    SU(2)-in-SU(1,1) Nested Interferometer for Highly Sensitive, Loss-Tolerant Quantum Metrology

    Full text link
    We present experimental and theoretical results on a new interferometer topology that nests a SU(2) interferometer, e.g., a Mach-Zehnder or Michelson interferometer, inside a SU(1,1) interferometer, i.e., a Mach-Zehnder interferometer with parametric amplifiers in place of beam splitters. This SU(2)-in-SU(1,1) nested interferometer (SISNI) simultaneously achieves high signal-to-noise ratio (SNR), sensitivity beyond the standard quantum limit (SQL) and tolerance to photon losses external to the interferometer, e.g., in detectors. We implement a SISNI using parametric amplification by four-wave mixing (FWM) in Rb vapor and a laser-fed Mach-Zehnder SU(2) interferometer. We observe path-length sensitivity with SNR 2.2 dB beyond the SQL at power levels (and thus SNR) 2 orders of magnitude beyond those of previous loss-tolerant interferometers. We find experimentally the optimal FWM gains and find agreement with a minimal quantum noise model for the FWM process. The results suggest ways to boost the in-practice sensitivity of high-power interferometers, e.g., gravitational wave interferometers, and may enable high-sensitivity, quantum-enhanced interferometry at wavelengths for which efficient detectors are not available.Comment: 6 pages + 4 of supplemental material, 5 figure

    The Ursa Major Cluster of Galaxies. I. Cluster Definition and Photometric Data

    Full text link
    The Ursa Major Cluster has received remarkably little attention, although it is as near as the Virgo Cluster and contains a comparable number of HI-rich galaxies. In this paper, criteria for group membership are discussed and data are presented for 79 galaxies identified with the group. Of these, all 79 have been imaged at B,R,I bands with CCDs, 70 have been imaged at K' with a HgCdTe array detector, and 70 have been detected in the HI 21cm line. A complete sample of 62 galaxies brighter than M(B)=-16.5 is identified. Images and gradients in surface brightness and color are presented at a common linear scale. As has been seen previously, the galaxies with the reddest global colors are reddest at the centers and get bluer at large radii. However, curiously, among the galaxies with the bluest global colors there are systems with very blue cores that get redder at large radii.Comment: A LATEX file without figures. The postscript version (7.1Mb in gzipped format) including all the tables, figures and scanned versions of the plates can be retrieved as preprint no.208 from http://www.astro.rug.nl:80/~secr/ Accepted for publication in The Astronomical Journa

    Tocotrienol-rich fraction (TRF) improves the viability of wild-type Saccharomyces cerevisiae in the initial stationary phase

    Get PDF
    Palm oil tocotrienol-rich fraction (TRF) containing majorly of αα, β, γ andδδ-tocotrienols and some αα-tocopherols, was reported to have anti-ageing effects in both human and non-human model organisms, but still remains unexplored in the yeast model. It was reported to have the ability to extend the lifespan of several organisms. Chronological lifespan is one of the means to measure ageing in yeasts. The effect of TRF on the viability of three strains of Saccharomyces cerevisiae (wild-type, CTT1ΔΔand GPx2Δ) was studied. Phenotypic growth analysis of all strains was carried out for 15 hours by measuring the absorbance at OD600nm and cell counting. The optimum dose of TRF was optimised by determining the number of colony-forming unit by the wild-type strain at the end of a 24-hour treatment with TRF (ranging from 0μg/ml to 300μg/ml). TRF at 300 μg/mL showed the best result, and selected as a working dose. Treatment of cells with 300 μg/mL of TRF improved the viability of the wild-type strain in the initial stationary phase, but not on the knockout strains. These finding suggests that TRF has a potential in prolonging the chronological lifespan of S. cerevisiae, and perhaps other organisms as well

    Plasma optical modulators for intense lasers

    Get PDF
    Optical modulators can be made nowadays with high modulation speed, broad bandwidth, while being compact, owing to the recent advance in material science and microfabrication technology. However, these optical modulators usually work for low intensity light beams. Here, we present an ultrafast, plasma-based optical modulator, which can directly modulate high power lasers with intensity up to 10 16 W c

    C-axis lattice dynamics in Bi-based cuprate superconductors

    Full text link
    We present results of a systematic study of the c axis lattice dynamics in single layer Bi2Sr2CuO6 (Bi2201), bilayer Bi2Sr2CaCu2O8 (Bi2212) and trilayer Bi2Sr2Ca2Cu3O10 (Bi2223) cuprate superconductors. Our study is based on both experimental data obtained by spectral ellipsometry on single crystals and theoretical calculations. The calculations are carried out within the framework of a classical shell model, which includes long-range Coulomb interactions and short-range interactions of the Buckingham form in a system of polarizable ions. Using the same set of the shell model parameters for Bi2201, Bi2212 and Bi2223, we calculate the frequencies of the Brillouin-zone center phonon modes of A2u symmetry and suggest the phonon mode eigenvector patterns. We achieve good agreement between the calculated A2u eigenfrequencies and the experimental values of the c axis TO phonon frequencies which allows us to make a reliable phonon mode assignment for all three Bi-based cuprate superconductors. We also present the results of our shell model calculations for the Gamma-point A1g symmetry modes in Bi2201, Bi2212 and Bi2223 and suggest an assignment that is based on the published experimental Raman spectra. The superconductivity-induced phonon anomalies recently observed in the c axis infrared and resonant Raman scattering spectra in trilayer Bi2223 are consistently explained with the suggested assignment.Comment: 29 pages, 13 figure

    Molecular Plasmonic Silver Forests for the Photocatalytic-Driven Sensing Platforms

    Get PDF
    Structural electronics, as well as flexible and wearable devices are applications that are possible by merging polymers with metal nanoparticles. However, using conventional technologies, it is challenging to fabricate plasmonic structures that remain flexible. We developed three-dimensional (3D) plasmonic nanostructures/polymer sensors via single-step laser processing and further functionalization with 4-nitrobenzenethiol (4-NBT) as a molecular probe. These sensors allow ultrasensitive detection with surface-enhanced Raman spectroscopy (SERS). We tracked the 4-NBT plasmonic enhancement and changes in its vibrational spectrum under the chemical environment perturbations. As a model system, we investigated the sensor’s performance when exposed to prostate cancer cells’ media over 7 days showing the possibility of identifying the cell death reflected in the environment through the effects on the 4-NBT probe. Thus, the fabricated sensor could have an impact on the monitoring of the cancer treatment process. Moreover, the laser-driven nanoparticles/polymer intermixing resulted in a free-form electrically conductive composite that withstands over 1000 bending cycles without losing electrical properties. Our results bridge the gap between plasmonic sensing with SERS and flexible electronics in a scalable, energy-efficient, inexpensive, and environmentally friendly way.</p

    Surface translocation of ACE2 and TMPRSS2 upon TLR4/7/8 activation is required for SARS-CoV-2 infection in circulating monocytes

    Get PDF
    Infection of human peripheral blood cells by SARS-CoV-2 has been debated because immune cells lack mRNA expression of both angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease type 2 (TMPRSS2). Herein we demonstrate that resting primary monocytes harbor abundant cytoplasmic ACE2 and TMPRSS2 protein and that circulating exosomes contain significant ACE2 protein. Upon ex vivo TLR4/7/8 stimulation, cytoplasmic ACE2 was quickly translocated to the monocyte cell surface independently of ACE2 transcription, while TMPRSS2 surface translocation occurred in conjunction with elevated mRNA expression. The rapid translocation of ACE2 to the monocyte cell surface was blocked by the endosomal trafficking inhibitor endosidin 2, suggesting that endosomal ACE2 could be derived from circulating ACE2-containing exosomes. TLR-stimulated monocytes concurrently expressing ACE2 and TMPRSS2 on the cell surface were efficiently infected by SARS-CoV-2, which was significantly mitigated by remdesivir, TMPRSS2 inhibitor camostat, and anti-ACE2 antibody. Mass cytometry showed that ACE2 surface translocation in peripheral myeloid cells from patients with severe COVID-19 correlated with its hyperactivation and PD-L1 expression. Collectively, TLR4/7/8-induced ACE2 translocation with TMPRSS2 expression makes circulating monocytes permissive to SARS-CoV-2 infection

    GABA transporter function, oligomerization state, and anchoring: correlates with subcellularly resolved FRET

    Get PDF
    The mouse γ-aminobutyric acid (GABA) transporter mGAT1 was expressed in neuroblastoma 2a cells. 19 mGAT1 designs incorporating fluorescent proteins were functionally characterized by [^3H]GABA uptake in assays that responded to several experimental variables, including the mutations and pharmacological manipulation of the cytoskeleton. Oligomerization and subsequent trafficking of mGAT1 were studied in several subcellular regions of live cells using localized fluorescence, acceptor photobleach Förster resonance energy transfer (FRET), and pixel-by-pixel analysis of normalized FRET (NFRET) images. Nine constructs were functionally indistinguishable from wild-type mGAT1 and provided information about normal mGAT1 assembly and trafficking. The remainder had compromised [^3H]GABA uptake due to observable oligomerization and/or trafficking deficits; the data help to determine regions of mGAT1 sequence involved in these processes. Acceptor photobleach FRET detected mGAT1 oligomerization, but richer information was obtained from analyzing the distribution of all-pixel NFRET amplitudes. We also analyzed such distributions restricted to cellular subregions. Distributions were fit to either two or three Gaussian components. Two of the components, present for all mGAT1 constructs that oligomerized, may represent dimers and high-order oligomers (probably tetramers), respectively. Only wild-type functioning constructs displayed three components; the additional component apparently had the highest mean NFRET amplitude. Near the cell periphery, wild-type functioning constructs displayed the highest NFRET. In this subregion, the highest NFRET component represented ~30% of all pixels, similar to the percentage of mGAT1 from the acutely recycling pool resident in the plasma membrane in the basal state. Blocking the mGAT1 C terminus postsynaptic density 95/discs large/zona occludens 1 (PDZ)-interacting domain abolished the highest amplitude component from the NFRET distributions. Disrupting the actin cytoskeleton in cells expressing wild-type functioning transporters moved the highest amplitude component from the cell periphery to perinuclear regions. Thus, pixel-by-pixel NFRET analysis resolved three distinct forms of GAT1: dimers, high-order oligomers, and transporters associated via PDZ-mediated interactions with the actin cytoskeleton and/or with the exocyst
    • …
    corecore