66 research outputs found

    user centered design approaches and methods for p5 ehealth

    Get PDF
    As seen throughout this book, eHealth informed by P5 approach gives full recognition to patients' contexts, needs, desires, and personal characteristics. These aspects should not only be considered as cornerstones for technology evaluation, but as fundamental guidelines for design in the first place. This relates to User-Centered Design, that is, any technology/service design where final users influence how the design itself takes place. In other words, eHealth development should be based on research data gathered among final users about their needs and contexts of use, in order to be specifically tailored on final users even before the realization of low-level prototypes. This methodological contribution presents a critical presentation, description, and evaluation of research tools to be employed not to evaluate technology's results and effectiveness, but the specific characteristics of users in order to orient design and development. Such an approach should be considered the "gold standard" of P5 eHealth solutions

    Learning new sensorimotor contingencies:Effects of long-term use of sensory augmentation on the brain and conscious perception

    Get PDF
    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation

    Magnet measurement workshop: magnet measurement task force

    No full text

    Superconducting Energy Storage Development for Electric Utility Systems

    Get PDF
    High load factors are desirabe goals for all electric utilities to reduce the total power generation cost. Superconducting Magnetic Energy Storage (SMES) technology has progressed to where it shows promise as an alternate energy storage method to pumped hydrostorage to improve electric utility load factors. Experiments at the Los Alamos Scientific Laboratory indicate that a SMES system responds quickly (i.e. in milliseconds) to power system demand and has a high energy storage efficiency. The next generation superconductors suitable for larger SMES units are discussed, component and system test results are presented and some energy storage experiments of a 100-kJ coil and twelve-pulse converter interfaced with an ac power system are described
    • …
    corecore