3,236 research outputs found

    Finite-temperature Bell test for quasiparticle entanglement in the Fermi sea

    Full text link
    We demonstrate that the Bell test cannot be realized at finite temperatures in the vast majority of electronic setups proposed previously for quantum entanglement generation. This fundamental difficulty is shown to originate in a finite probability of quasiparticle emission from Fermi-sea detectors. In order to overcome the feedback problem, we suggest a detection strategy, which takes advantage of a resonant coupling to the quasiparticle drains. Unlike other proposals, the designed Bell test provides a possibility to determine the critical temperature for entanglement production in the solid state.Comment: 6 pages, 3 figures, essentially revised and extended versio

    Ground states in the Many Interacting Worlds approach

    Full text link
    Recently the Many-Interacting-Worlds (MIW) approach to a quantum theory without wave functions was proposed. This approach leads quite naturally to numerical integrators of the Schr\"odinger equation. It has been suggested that such integrators may feature advantages over fixed-grid methods for higher numbers of degrees of freedom. However, as yet, little is known about concrete MIW models for more than one spatial dimension and/or more than one particle. In this work we develop the MIW approach further to treat arbitrary degrees of freedom, and provide a systematic study of a corresponding numerical implementation for computing one-particle ground and excited states in one dimension, and ground states in two spatial dimensions. With this step towards the treatment of higher degrees of freedom we hope to stimulate their further study.Comment: 16 pages, 8 figure

    Control and coherence of the optical transition of single defect centers in diamond

    Full text link
    We demonstrate coherent control of the optical transition of single Nitrogen-Vacancy defect centers in diamond. On applying short resonant laser pulses, we observe optical Rabi oscillations with a half-period as short as 1 nanosecond, an order of magnitude shorter than the spontaneous emission time. By studying the decay of Rabi oscillations, we find that the decoherence is dominated by laser-induced spectral jumps. By using a low-power probe pulse as a detuning sensor and applying post-selection, we demonstrate that spectral diffusion can be overcome in this system to generate coherent photons.Comment: 5 pages,4 figure

    Large Scale Variational Inference and Experimental Design for Sparse Generalized Linear Models

    Get PDF
    Many problems of low-level computer vision and image processing, such as denoising, deconvolution, tomographic reconstruction or super-resolution, can be addressed by maximizing the posterior distribution of a sparse linear model (SLM). We show how higher-order Bayesian decision-making problems, such as optimizing image acquisition in magnetic resonance scanners, can be addressed by querying the SLM posterior covariance, unrelated to the density's mode. We propose a scalable algorithmic framework, with which SLM posteriors over full, high-resolution images can be approximated for the first time, solving a variational optimization problem which is convex iff posterior mode finding is convex. These methods successfully drive the optimization of sampling trajectories for real-world magnetic resonance imaging through Bayesian experimental design, which has not been attempted before. Our methodology provides new insight into similarities and differences between sparse reconstruction and approximate Bayesian inference, and has important implications for compressive sensing of real-world images.Comment: 34 pages, 6 figures, technical report (submitted

    Higher-order contributions and non-perturbative effects in the non-degenerate nonlinear optical absorption of direct-gap semiconductors

    Get PDF
    The semiconductor Bloch equations for a two-band model including inter- and intraband excitation are used to study the nonlinear absorption of single and multiple light pulses by direct-gap semiconductors. For a consistent analysis the contributions to the absorption originating from both the interband polarization and the intraband current need to be included. In the Bloch equation approach theses contributions as well as different excitation pathways in terms of sequences of inter- and intraband excitations can be evaluated separately which allows for a transparent analysis, the identification of the dominant terms, and analyzing their dependence on the excitation conditions. In the perturbative regime, we obtain analytical expressions for the multi-photon absorption coefficients for continuous-wave excitation. These results are shown to agree well with numerical results for short pulses and/or finite dephasing and relaxation times and we confirm the previously predicted strong enhancement of two-photon absorption for non-degenerate conditions for pulsed excitation. We discuss the dependencies on the light frequencies, initial band populations, and the time delay between the pulses. The frequency dependence of the two-photon absorption coefficient for non-degenerate excitation is evaluated perturbatively in third-order. The higher-order contributions to the optical absorption include three- and four-photon absorption and show a rich frequency dependence including negative regions and dispersive lineshapes. Non-perturbative solutions of the Bloch equations demonstrate a strongly non-monotonous behavior of the intensity-dependent optical absorption for a single incident pulse and in a pump-probe set-up

    Fast Convergent Algorithms for Expectation Propagation Approximate Bayesian Inference

    Get PDF
    We propose a novel algorithm to solve the expectation propagation relaxation of Bayesian inference for continuous-variable graphical models. In contrast to most previous algorithms, our method is provably convergent. By marrying convergent EP ideas from (Opper&Winther 05) with covariance decoupling techniques (Wipf&Nagarajan 08, Nickisch&Seeger 09), it runs at least an order of magnitude faster than the most commonly used EP solver.Comment: 16 pages, 3 figures, submitted for conference publicatio

    Researching employee experiences and behavior in times of crisis: Theoretical and methodological considerations and implications for human resource management

    Get PDF
    Over the past 2 years, numerous empirical studies in the fields of human resource management, organizational behavior, and industrial, work, and organizational psychology have investigated employee experiences and behavior during the COVID-19 pandemic. The goal of this paper is to take a step back and to outline several theoretical and methodological considerations when researching employee experiences and behavior in times of crisis more generally. These insights may be useful when developing conceptual models, designing empirical studies, and managing people in the context of future crises. We first review theoretical approaches that could be applied to explain changes in employee experiences and behavior in times of crisis, including stress theories, theories of adjustment to work-related changes, career construction theory, event system theory, transition-adaptation theories, the crisis management and resilience framework, and the social identity model of identity change. Second, we outline methodological considerations and best practices regarding the research design of quantitative empirical studies, sampling, measurement, and analytic strategies. Throughout, we highlight empirical studies on employee experiences and behavior during the COVID-19 pandemic that have adopted these theoretical approaches and methodological best practices. We conclude with several suggestions for future theory development and empirical studies on employee experiences and behavior as well as human resource management in times of crisis

    Dielectric screening in extended systems using the self-consistent Sternheimer equation and localized basis sets

    Full text link
    We develop a first-principles computational method for investigating the dielectric screening in extended systems using the self-consistent Sternheimer equation and localized non-orthogonal basis sets. Our approach does not require the explicit calculation of unoccupied electronic states, only uses two-center integrals, and has a theoretical scaling of order O(N^3). We demonstrate this method by comparing our calculations for silicon, germanium, diamond, and LiCl with reference planewaves calculations. We show that accuracy comparable to planewaves calculations can be achieved via a systematic optimization of the basis set.Comment: 6 pages, 3 figure
    • …
    corecore