9,788 research outputs found
A study of the effects of environmental and ablator performance uncertainties on heat shielding requirements for hyperbolic entry vehicles. Volume 2 - Summary of calculations
Calculated ablative quantities for nylon phenolic heat shielding materials of hyperbolic reentry vehicle
Dynamical Effects from Asteroid Belts for Planetary Systems
The orbital evolution and stability of planetary systems with interaction
from the belts is studied using the standard phase-plane analysis. In addition
to the fixed point which corresponds to the Keplerian orbit, there are other
fixed points around the inner and outer edges of the belt. Our results show
that for the planets, the probability to move stably around the inner edge is
larger than the one to move around the outer edge. It is also interesting that
there is a limit cycle of semi-attractor for a particular case. Applying our
results to the Solar System, we find that our results could provide a natural
mechanism to do the orbit rearrangement for the larger Kuiper Belt Objects and
thus successfully explain the absence of these objects beyond 50 AU.Comment: accepted by International Journal of Bifurcation and Chaos in Aug.
2003, AAS Latex, 27 pages with 6 color figure
Memory usage verification using Hip/Sleek.
Embedded systems often come with constrained memory footprints. It is therefore essential to ensure that software running on such platforms fulfils memory usage specifications at compile-time, to prevent memory-related software failure after deployment. Previous proposals on memory usage verification are not satisfactory as they usually can only handle restricted subsets of programs, especially when shared mutable data structures are involved. In this paper, we propose a simple but novel solution. We instrument programs with explicit memory operations so that memory usage verification can be done along with the verification of other properties, using an automated verification system Hip/Sleek developed recently by Chin et al.[10,19]. The instrumentation can be done automatically and is proven sound with respect to an underlying semantics. One immediate benefit is that we do not need to develop from scratch a specific system for memory usage verification. Another benefit is that we can verify more programs, especially those involving shared mutable data structures, which previous systems failed to handle, as evidenced by our experimental results
Higher Order Force Gradient Symplectic Algorithms
We show that a recently discovered fourth order symplectic algorithm, which
requires one evaluation of force gradient in addition to three evaluations of
the force, when iterated to higher order, yielded algorithms that are far
superior to similarly iterated higher order algorithms based on the standard
Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the
step-size independent error functions associated with energy conservation and
the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric
Kepler problem. For orders 6, 8, 10 and 12, the new algorithms are
approximately a factor of , , and better.Comment: 23 pages, 10 figure
Quantum dynamics in photonic crystals
Employing a recently developed method that is numerically accurate within a
model space simulating the real-time dynamics of few-body systems interacting
with macroscopic environmental quantum fields, we analyze the full dynamics of
an atomic system coupled to a continuum light-field with a gapped spectral
density. This is a situation encountered, for example, in the radiation field
in a photonic crystal, whose analysis has been so far been confined to limiting
cases due to the lack of suitable numerical techniques. We show that both
atomic population and coherence dynamics can drastically deviate from the
results predicted when using the rotating wave approximation, particularly in
the strong coupling regime. Experimental conditions required to observe these
corrections are also discussed.Comment: 5 pages, 2 figures Updated with published versio
A new broken U(1)-symmetry in extreme type-II superconductors
A phase transition within the molten phase of the Abrikosov vortex system
without disorder in extreme type-II superconductors is found via large-scale
Monte-Carlo simulations. It involves breaking a U(1)-symmetry, and has a
zero-field counterpart, unlike vortex lattice melting. Its hallmark is the loss
of number-conservation of connected vortex paths threading the entire system
{\it in any direction}, driving the vortex line tension to zero. This tension
plays the role of a generalized ``stiffness'' of the vortex liquid, and serves
as a probe of the loss of order at the transition, where a weak specific heat
anomaly is found.Comment: 5 pages, 3 figure
Fractional-Period Excitations in Continuum Periodic Systems
We investigate the generation of fractional-period states in continuum
periodic systems. As an example, we consider a Bose-Einstein condensate
confined in an optical-lattice potential. We show that when the potential is
turned on non-adiabatically, the system explores a number of transient states
whose periodicity is a fraction of that of the lattice. We illustrate the
origin of fractional-period states analytically by treating them as resonant
states of a parametrically forced Duffing oscillator and discuss their
transient nature and potential observability.Comment: 10 pages, 6 figures (some with multiple parts); revised version:
minor clarifications of a couple points, to appear in Physical Review
InPCM: a network caching technique for improving the performance of TCP in wireless ad-hoc networks
We propose a novel mechanism called In-Network Packet Caching Mechanism (inPCM) to address TCP\u27s poor performance in IEEE 802.11 based multi-hop wireless networks. In particular, we address TCP\u27s inappropriate response to bursty and location dependent errors. The key concept is the use of intermediate nodes to perform packet recovery on behalf of TCP senders, similar to the well-known Snoop TCP but adapted to work over multi-hop wireless networks. We have conducted ns-2 simulation studies over a variety of network conditions and topologies. Our results confirm InPCM\u27s benefits to TCP in terms of delay and throughput. Moreover, it is immediately deployable without modifications to current protocols
Coherent Molecular Optics using Sodium Dimers
Coherent molecular optics is performed using two-photon Bragg scattering.
Molecules were produced by sweeping an atomic Bose-Einstein condensate through
a Feshbach resonance. The spectral width of the molecular Bragg resonance
corresponded to an instantaneous temperature of 20 nK, indicating that atomic
coherence was transferred directly to the molecules. An autocorrelating
interference technique was used to observe the quadratic spatial dependence of
the phase of an expanding molecular cloud. Finally, atoms initially prepared in
two momentum states were observed to cross-pair with one another, forming
molecules in a third momentum state. This process is analogous to sum-frequency
generation in optics
- …