554 research outputs found

    Combined single-pulse holography and time-resolved laser schlieren for flow visualization

    Get PDF
    A pulsed ruby laser and continuous-wave argon ion laser were used in a combined setup at the Langley Expansion Tube for single pulse holography and time resolved laser schlieren with a common optical axis. The systems can be operated simultaneously for a single run. For a single frame, the pulsed holographic setup offers the options of shadowgraph, Schlieren, and interferometry from the reconstructed hologram as well as the advantage of post-run sensitivity adjustments. For flow establishment studies the time resolved laser Schlieren provides visualization of the flow field every 12.5 microns for up to 80 frames with an exposure time per frame of 5.4 microns

    A comparison of measured and predicted test flow in an expansion tube with air and oxygen test gases

    Get PDF
    Simultaneous time-resolved measurements of temperature, density, pitot pressure, and wall pressure in both air and O2 test gases were obtained in the Langley pilot model expansion tube. These tests show nonequilibrium chemical and vibrational relaxation significantly affect the test-flow condition. The use of an electromagnetic device to preopen the secondary diaphragm before the arrival of the primary shock wave resulted in an improvement in the agreement between the measured pitot pressure and the value inferred from measured density and interface velocity. Boundary-layer splitter plates used to reduce the wall boundary layer show that this disagreement in the measured and inferred pitot pressures is not a result of boundary-layer effects

    Dynamic Moire Methods for Detection of Loosened Space Shuttle Tiles

    Get PDF
    Moire fringe methods for detecting loose space shuttle tiles were investigated with a test panel consisting of a loose tile surrounded by four securely bonded tiles. The test panel was excited from 20 to 150 Hz with in-plane sinusoidal acceleration of 2 g (peak). If the shuttle orbiter can be subjected to periodic excitation of 1 to 2 g (peak) and rigid-body periodic displacements do not mask the change in the Moire pattern due to tile looseness, then the use of projected Moire fringes to detect out-of-plane rockin appears to be the most viable indicator of tile looseness since no modifications to the tiles are required

    Video camera system for locating bullet holes in targets at a ballistics tunnel

    Get PDF
    A system consisting of a single charge coupled device (CCD) video camera, computer controlled video digitizer, and software to automate the measurement was developed to measure the location of bullet holes in targets at the International Shooters Development Fund (ISDF)/NASA Ballistics Tunnel. The camera/digitizer system is a crucial component of a highly instrumented indoor 50 meter rifle range which is being constructed to support development of wind resistant, ultra match ammunition. The system was designed to take data rapidly (10 sec between shoots) and automatically with little operator intervention. The system description, measurement concept, and procedure are presented along with laboratory tests of repeatability and bias error. The long term (1 hour) repeatability of the system was found to be 4 microns (one standard deviation) at the target and the bias error was found to be less than 50 microns. An analysis of potential errors and a technique for calibration of the system are presented

    Investigation of the enhanced spatial density of submicron lunar ejecta between L values 1.2 and 3.0 in the earth's magnetosphere: Theory

    Get PDF
    Initial results from the measurement conducted by the dust particle experiment on the lunar orbiting satellite Lunar Explorer 35 (LE 35) were reported with the data interpreted as indicating that the moon is a significant source of micrometeroids. Primary sporadic and stream meteoroids impacting the surface of the moon at hypervelocity was proposed as the source of micron and submicron particles that leave the lunar craters with velocities sufficient to escape the moon's gravitational sphere of influence. No enhanced flux of lunar ejecta with masses greater than a nanogram was detected by LE 35 or the Lunar Orbiters. Hypervelocity meteoroid simulation experiments concentrating on ejecta production combined with extensive analyses of the orbital dynamics of micron and submicron lunar ejecta in selenocentric, cislunar, and geocentric space have shown that a pulse of these lunar ejecta, with a time correlation relative to the position of the moon relative to the earth, intercepts the earth's magnetopause surface (EMPs). As shown, a strong reason exists for expecting a significant enhancement of submicron dust particles in the region of the magnetosphere between L values of 1.2 and 3.0. This is the basis for the proposal of a series of experiments to investigate the enhancement or even trapping of submicron lunar ejecta in this region. The subsequent interaction of this mass with the upper-lower atmosphere of the earth and possible geophysical effects can then be studied

    Photogrammetric technique for in-flight ranging of trailing vortices using entrained balloons

    Get PDF
    A method for experimentally determining the radial distance of a probe aircraft from a trailing vortex is described. The method relies on photogrammetric triangulation of targets entrained in the vortex core. The theory and preliminary testing were described using laboratory mock-ups. Solid state video cameras were to provide data at 300 Hz rates. Practical methods for seeding the vortex are under separate investigation and are not addressed

    Recent flow visualization studies in the 0.3-m TCT

    Get PDF
    Light beams are altered by refractive index changes; flow induced refractive index changes provide the impetus for conventional visualization techniques such as schlieren and shadowgraph. Unfortunately effects related to the flow can be masked by refractive index inhomogeneities external to the test section. A simple shadowgraph scheme was used to assess the flow quality of the Langley 0.3 meter Transonic Cryogenic Tunnel. When the penetration tubes were evacuated the quality of the shadowgraph improved dramatically

    Analysis of UV protection requirements and testing of candidate attenuators for the Haloe optical instrument

    Get PDF
    Results of calculations are presented which simulate photolytic processes occurring in HALOE gas calibration cells exposed to extra-terrestrial solar ultraviolet photons. These calculations indicate that significant photolysis takes place in two of the sapphire-enclosed cells over the exposure periods of the proposed mission. A subsequent laboratory investigation is also described in which a high-voltage discharge hydrogen light source is used in conjunction with a vacuum ultraviolet spectrograph. The UV emission from this lamp was used to expose two candidate UV attenuators (ZnSe and coated Ge) to ascertain their suitability as UV filters while maintaining original infrared optical properties. Both materials were found to be effectively opaque to vacuum UV radiaton and suffered no adverse effects regarding their infrared transmissivity

    Phase control during reconstruction of holographically recorded flow fields using real-time holographic interferometry

    Get PDF
    A technique of phase control during reconstruction of holographic interferograms is demonstrated in which the recorded scene beam with disturbance present is made to interfere with the real-time scene beam after the disturbance is removed. The reference phase is adjusted during reconstruction by manipulating either the scene or reference beams. Comparisons are made between the present technique and the two-reference-beam and two-plate techniques, more commonly used for phase control during reconstruction of holographic interferograms for flow visualization
    corecore